Package ‘MSnbase’

September 18, 2025
Title Base Functions and Classes for Mass Spectrometry and Proteomics
Version 2.34.1

Description MSnbase provides infrastructure for manipulation,
processing and visualisation of mass spectrometry and
proteomics data, ranging from raw to quantitative and
annotated data.

Author Laurent Gatto, Johannes Rainer and Sebastian Gibb with
contributions from Guangchuang Yu, Samuel Wieczorek, Vasile-Cosmin
Lazar, Vladislav Petyuk, Thomas Naake, Richie Cotton, Arne Smits,
Martina Fisher, Ludger Goeminne, Adriaan Sticker, Lieven
Clement and Pascal Maas.

Maintainer Laurent Gatto <laurent.gatto@uclouvain.be>

Depends R (>= 3.5), methods, BiocGenerics (>= 0.7.1), Biobase (>=
2.15.2), mzR (>= 2.29.3), S4Vectors, ProtGenerics (>= 1.29.1)

Imports MsCoreUtils, PSMatch, BiocParallel, [Ranges (>= 2.13.28),
plyr, vsn, grid, stats4, affy, impute, pcaMethods, MALDIquant
(>=1.16), mzID (>= 1.5.2), digest, lattice, ggplot2, scales,
MASS, Repp

Suggests testthat, pryr, gridExtra, microbenchmark, zoo, knitr (>=
1.1.0), rols, Rdisop, pRoloc, pRolocdata (>= 1.43.3), magick,
msdata (>= 0.19.3), roxygen2, rgl, rpx, AnnotationHub,
BiocStyle (>= 2.5.19), rmarkdown, imputeLCMD, norm, gplots,
XML, shiny, magrittr, SummarizedExperiment, Spectra

LinkingTo Rcpp
License Artistic-2.0
LazyData yes
VignetteBuilder knitr
Encoding UTF-8

BugReports https://github.com/lgatto/MSnbase/issues

URL https://1gatto.github.io/MSnbase

https://github.com/lgatto/MSnbase/issues
https://lgatto.github.io/MSnbase

biocViews ImmunoOncology, Infrastructure, Proteomics,
MassSpectrometry, QualityControl, Datalmport

Roxygen list(markdown=TRUE)
Collate 'AllClassUnions.R' 'AllGenerics.R' 'DataClasses.R' 'MzTab.R'

'NTR.R' ReppExports.R' TMT10.R' ' TMT11.R' ' TMT16.R' " TMT6.R'

"TMT7.R' 'averageMSnSet.R' 'cache.R' 'coerce.R'
'combineFeatures.R' 'compfnames.R' 'environment.R'
'fData-utils.R' 'fdata-selection.R' 'foi.R’
'functions-Chromatogram.R' 'functions-MChromatograms.R'
'functions-MIAPE.R' 'functions-MSnExp.R'
'functions-MSnProcess.R' 'functions-MSnSet.R'
'functions-MSpectra.R' 'functions-OnDiskMSnExp.R'
'functions-Reporterlons.R' 'functions-Spectrum.R'
'functions-Spectrum1.R' 'functions-Spectrum2.R’
'functions-addIdentificationData.R' 'functions-mzR.R'
'functions-plotting.R' '"hmap.R' iPQFE.R" iTRAQ4.R' iTRAQS5.R'
iTRAQS8.R' iTRAQ9.R' 'imputation.R' 'map.R' 'matching.R'
'methods-Chromatogram.R' 'methods-MChromatograms.R'

'methods-MIAPE.R' 'methods-MSnExp.R' 'methods-MSnProcess.R'
'methods-MSnSet.R' 'methods-MSnSetList.R' 'methods-MSpectra.R'

‘methods-OnDiskMSnExp.R' 'methods-Reporterlons.R'
'methods-Spectrum.R' 'methods-Spectrum1.R’
'methods-Spectrum2.R' 'methods-all.equal.R' 'methods-filters.R'
'methods-mzR.R' 'methods-other.R' 'methods-pSet.R'
'methods-updateObjectTo.R' 'methods-write.R' 'missing-data.R’
'nadata.R' 'options.R' 'plotting-MSnExp.R' 'plotting-MSnSet.R'
‘plotting-Spectrum.R' 'plotting-Spectrum1.R’
'plotting-Spectrum2.R' 'plotting-dataframe.R’
'quantitation-MS2-isobaric.R' 'quantitation-MS2-labelfree.R’

'readChromData.R' 'eadMSData.R' readMSData2.R' 'readMSnSet.R'

‘readMzXMLData.R' readWriteMgfData.R' 'readWriteMzTab.R'
'utils.R' 'writeMSData.R' 'zzz.R'

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/MSnbase
git_branch RELEASE_3_21

git_last commit befc867

git_last commit_date 2025-05-08

Repository Bioconductor 3.21

Date/Publication 2025-09-17

Contents

addldentificationData-methods
AZEVAT . . o i i e e e e e e e e e e e e e e

as

Contents

Contents

3
averageMSnSet e e e 9
bin-methods 11
calculateFragments-methods L oo 12
Chromatogram e e e 14
chromatogram,MSnExp-method, 22
clean-methods L. L 24
combineFeatures 26
combineSpectra, MSnExp-method 29
combineSpectraMovingWindow 0oL o oL 32
commonFeatureNames 34
compareMSnSets e 35
compareSpectra-methods L. 36
CONSENSUSSPECIIUNM . .+« . v v v v v v v e et e e e e e e e e et e e e e 37
Deprecated e 39
estimateMzResolution,MSnExp-method L. 39
estimateMzScattering L 41
estimateNoise-methods 42
expandFeatureVars 43
extractPrecSpectra-methodso L 44
extractSpectraData L L 45
factorsAsStringso 46
FeatComp-class e e 47
featureCV L e 48
FeaturesOfInterest-class L 49
fillUp . . . e 52
filterldentificationDataFrame Lo L. 53
formatRt 54
getVariableName 54
grepEcolso e 55
hasSpectra L 56
imageNA2 e 57
impute,MSnSet-method 58
iPQF . . . e 59
isCentroidedFromFile 61
iTRAQ4 .« e 62
itraqdata L e e e e 63
ListOf . . . e 64
makeCamelCase 64
makeNaData 65
MChromatogramso e e 67
meanMzlInts L. 75
MIAPE-class e 78
missing-data L Lo e e e e 80
MSmap-class 82
MSnbaseOptions e e 84
MSnExp-class e e e e 85
MSnProcess-class e 89

MSnSet-class e 90

Index

Contents

MSnSetList-class 96
MSpectra e e e 99
MzTab-class e e 105
naplot e e e e 107
nFeatures L. e e e e 108
normalise-methods 109
normToReference L 110
NPCV o v v v e e i e e e e e e e e e 112
nQUANES e e e e e 113
OnDiskMSnExp-class. e 114
pickPeaks-methods 121
plot-methods e 123
plot.Spectrum.Spectrum-methods Lo 125
plot2d-methods e e e e 127
plotDensity-methods 128
plotMzDelta-methods 129
plotNA-methods e e e 130
precSelection L. L 131
ProcessingStep-class L 132
PSet-Classo e e e e e e 133
purityCorrect-methods 137
quantify-methods L 140
readMgfData e e e 143
readMSData 144
readMSnSet e 146
readMzldData 148
readMzTabData 149
readMzTabData_v0.9 e 150
readSRMData 151
reduce,data.frame-method e 153
removeNold-methods 154
removePeaks-methods L 155
removeReporters-methods L 157
Reporterlons-class L 158
selectFeatureData e 160
smooth-methods 161
Spectrum-class 162
Spectruml-class L e 165
Spectrum?2-class e e e e e 166
TMTO e 167
trimMz-methods e e e 168
updateObject-methods 169
writeMgfData-methods L 169
writeMSData,MSnExp,character-method 0L, 171
writeMzTabData 172
174

addIdentificationData-methods 5

addIdentificationData-methods
Adds Identification Data

Description

These methods add identification data to a raw MS experiment (an "MSnExp" object) or to quanti-
tative data (an "MSnSet"” object). The identification data needs to be available as a mzIdentML file
(and passed as filenames, or directly as identification object) or, alternatively, can be passed as an
arbitrary data. frame. See details in the Methods section.

Details

The featureData slots in a "MSnExp" or a "MSnSet” instance provides only one row per MS2 spec-
trum but the identification is not always bijective. Prior to addition, the identification data is filtered
as documented in the filterIdentificationDataFrame function: (1) only PSMs matching the
regular (non-decoy) database are retained; (2) PSMs of rank greater than 1 are discarded; and (3)
only proteotypic peptides are kept.

If after filtering, more then one PSM per spectrum are still present, these are combined (reduced,
see reduce,data.frame-method) into a single row and separated by a semi-colon. This has as
side-effect that feature variables that are being reduced are converted to characters. See the reduce
manual page for examples.

See also the section about identification data in the MSnbase-demo vignette for details and addi-
tional examples.

After addition of the identification data, new feature variables are created. The column nprot
contains the number of members in the protein group; the columns accession and description
contain a semicolon separated list of all matches. The columns npsm.prot and npep.prot repre-
sent the number of PSMs and peptides that were matched to a particular protein group. The col-
umn npsm. pep indicates how many PSMs were attributed to a peptide (as defined by its sequence
pepseq). All these values are re-calculated after filtering and reduction.

Methods

signature(object = "MSnExp"”, id = "character”, ... Adds the identification data stored in
mzldentML files to a "MSnExp" instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnExp"”, id = "mzID", ...) Same as above but id is a mzID object gen-
erated by mzID: :mzID. See below for additional arguments.

signature(object = "MSnExp"”, id = "mzIDCollection”, ...) Same asabovebutidisamzIDCollection
object. See below for additional arguments.

signature(object = "MSnExp”, id = "mzRident”, ... Same as above but id is a mzRident ob-
ject generated by mzR: : openIdfile. See below for additional arguments.

signature(object = "MSnExp"”, id = "data.frame”, ... Same as above but id could be adata. frame.
See below for additional arguments.

addIdentificationData-methods

signature(object = "MSnSet”, id = "character”, ...) Adds the identification data stored in
mzldentML files to an "MSnSet"” instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnSet"”, id = "mzID", ...) Same as above but id is a mzID object. See
below for additional arguments.

signature(object = "MSnSet"”, id = "mzIDCollection”, ...) Same asabovebutidisamzIDCollection
object. See below for additional arguments.

signature(object = "MSnSet"”, id = "data.frame”, ...) Same asabovebutidisadata.frame.
See below for additional arguments.

The methods above take the following additional argument. These need to be set when adding
identification data as a data. frame. In all other cases, the defaults are set automatically.

fcol The matching between the features (raw spectra or quantiative features) and identification
results is done by matching columns in the featue data (the featureData slot) and the identi-
fication data. These values are the spectrum file index and the acquisition number, passed as
a character of length 2. The default values for these variables in the object’s feature data
are "spectrum.file” and "acquisition.num”. Values need to be provided when id is a
data.frame.

icol The default values for the spectrum file and acquisition numbers in the identification data (the
id argument) are "spectrumFile” and "acquisitionNum”. Values need to be provided when
idis adata.frame.

acc The protein (group) accession number or identifier. Defaults are "DatabaseAccess” when
passing filenames or mzRident objects and "accession” when passing mzID or mzIDCollection
objects. A value needs to be provided when id is a data. frame.

desc The protein (group) description. Defaults are "DatabaseDescription” when passing file-
names or mzRident objects and "description” when passing mzID or mzIDCollection ob-
jects. A value needs to be provided when id is a data. frame.

pepseq The peptide sequence variable name. Defaults are "sequence” when passing filenames
or mzRident objects and "pepseq” when passing mzID or mzIDCollection objects. A value
needs to be provided when id is a data. frame.

key The key to be used when the identification data need to be reduced (see details section). De-
faults are "spectrumID” when passing filenames or mzRident objects and "spectrumid”
when passing mzID or mzIDCollection objects. A value needs to be provided when id is a
data.frame.

decoy The feature variable used to define whether the PSM was matched in the decoy of regular
fasta database for PSM filtering. Defaults are "isDecoy"” when passing filenames or mzRident
objects and "isdecoy” when passing mzID or mzIDCollection objects. A value needs to be
provided when id is a data.frame. See filterIdentificationDataFrame for details.

rank The feature variable used to defined the rank of the PSM for filtering. Defaults is "rank”. A
value needs to be provided when idis adata.frame. See filterIdentificationDataFrame
for details.

accession The feature variable used to defined the protein (groupo) accession or identifier for PSM
filterin. Defaults is to use the same value as acc . A value needs to be provided when id is a
data.frame. See filterIdentificationDataFrame for details.

verbose A logical defining whether to print out messages or not. Default is to use the session-
wide open from isMSnbaseVerbose.

aggvar 7

Author(s)

Sebastian Gibb <mail @sebastiangibb.de> and Laurent Gatto

See Also

filterIdentificationDataFrame for the function that filters identification data, readMzIdData
to read the identification data as a unfiltered data.frame and reduce,data.frame-method to re-
duce it to a data. frame that contains only unique PSMs per row.

Examples

find path to a mzXML file

quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),
full.name = TRUE, pattern = "mzXML$")

find path to a mzIdentML file

identFile <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")

create basic MSnExp
msexp <- readMSData(quantFile)

add identification information
msexp <- addIdentificationData(msexp, identFile)

access featureData
fData(msexp)

idSummary (msexp)

aggvar Identify aggregation outliers

Description
This function evaluates the variability within all protein group of an MSnSet. If a protein group is
composed only of a single feature, NA is returned.

Usage

aggvar (object, groupBy, fun)

Arguments
object An object of class MSnSet.
groupBy A character containing the protein grouping feature variable name.
fun A function the summarise the distance between features within protein groups,

typically max or mean.median.

Details

This function can be used to identify protein groups with incoherent feature (petides or PSMs)
expression patterns. Using max as a function, one can identify protein groups with single extreme
outliers, such as, for example, a mis-identified peptide that was erroneously assigned to that protein
group. Using mean identifies more systematic inconsistencies where, for example, the subsets of
peptide (or PSM) feautres correspond to proteins with different expression patterns.

Value

A matrix providing the number of features per protein group (nb_feats column) and the aggrega-
tion summarising distance (agg_dist column).

Author(s)

Laurent Gatto

See Also

combineFeatures to combine PSMs quantitation into peptides and/or into proteins.

Examples

library("pRolocdata”)

data(hyperLOPIT2015ms3r1psm)

groupBy <- "Protein.Group.Accessions”

res1 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = max)
res2 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = mean)
par(mfrow = c(1, 3))

non

plot(res1, log = "y", main = "Single outliers (max)")

plot(res2, log = "y", main = "Overall inconsistency (mean)")
plot(res1[, "agg_dist"”], res2[, "agg_dist"],
xlab = "max", ylab = "mean")
as Coerce identification data to a data.frame
Description

A function to convert the identification data contained in an mzRident object to a data.frame.
Each row represents a scan, which can however be repeated several times if the PSM matches
multiple proteins and/or contains two or more modifications. To reduce the data.frame so that
rows/scans are unique and use semicolon-separated values to combine information pertaining a
scan, use reduce.

Arguments

from An object of class mzRident defined in the mzR package.

averageMSnSet

Details

See also the Tandem MS identification data section in the MSnbase-demo vignette.

Value

A data.frame

Author(s)

Laurent Gatto

Examples

find path to a

mzIdentML file

identFile <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")

library("mzR")

x <- openIDfile(identFile)

X

as(x, "data.frame")

averageMSnSet

Generate an average MSnSet

Description

Given a list of MSnSet instances, typically representing replicated experiments, the function returns

an average MSnSet.

Usage

averageMSnSet(x, avg = function(x) mean(x, na.rm = TRUE), disp = npcv)

Arguments

X

avg

disp

A list of valid MSnSet instances to be averaged.

The averaging function. Default is the mean after removing missing values, as
computed by function(x) mean(x, na.rm= TRUE).

The disperion function. Default is an non-parametric coefficient of variation that
replaces the standard deviation by the median absolute deviation as computed
by mad(x)/abs(mean(x)). See npcv for details. Note that the mad of a single
value is O (as opposed to NA for the standard deviation, see example below).

10 averageMSnSet

Details

This function is aimed at facilitating the visualisation of replicated experiments and should not be
used as a replacement for a statistical analysis.

The samples of the instances to be averaged must be identical but can be in a different order (they
will be reordered by default). The features names of the result will correspond to the union of the
feature names of the input MSnSet instances. Each average value will be computed by the avg
function and the dispersion of the replicated measurements will be estimated by the disp function.
These dispersions will be stored as a data. frame in the feature metadata that can be accessed with
fData(.)$disp. Similarly, the number of missing values that were present when average (and
dispersion) were computed are available in fData(.)$disp.

Currently, the feature metadata of the returned object corresponds the the feature metadata of the
first object in the list (augmented with the missing value and dispersion values); the metadata of the
features that were missing in this first input are missing (i.e. populated with NAs). This may change
in the future.

Value

A new average MSnSet.

Author(s)

Laurent Gatto

See Also

compfnames to compare MSnSet feature names.

Examples

library(”"pRolocdata")

3 replicates from Tan et al. 2009

data(tan2009r1)

data(tan2009r2)

data(tan2009r3)

X <- MSnSetList(list(tan2009r1, tan2009r2, tan2009r3))
avg <- averageMSnSet(x)

dim(avg)

head(exprs(avg))

head(fData(avg) $nNA)

head(fData(avg)$disp)

using the standard deviation as measure of dispersion
avg2 <-averageMSnSet(x, disp = sd)
head(fData(avg2)$disp)

keep only complete observations, i.e proteins

that had @ missing values for all samples

sel <- apply(fData(avg)$nNA, 1 , function(x) all(x == 0))
avg <- avglsel,]

disp <- rowMax(fData(avg)$disp)

library("pRoloc")

setStockcol (pasted(getStockcol(), "AA"))

bin-methods 11

plot2D(avg, cex = 7.7 * disp)
title(main = paste(”"Dispersion: non-parametric CV",
paste(round(range(disp), 3), collapse = " - ")))

bin-methods Bin "MSnExp’ or ’Spectrum’ instances

Description

This method aggregates individual spectra (Spectrum instances) or whole experiments (MSnExp
instances) into discrete bins. All intensity values which belong to the same bin are summed together.

Methods

signature(object = "MSnExp"”, binSize = "numeric”, verbose = "logical”) Bins all spectra
in an MSnExp object. Use binSize to control the size of a bin (in Dalton, default is 1). Displays
a control bar if verbose set to TRUE (default). Returns a binned MSnExp instance.

signature(object = "Spectrum”, binSize = "numeric”, breaks = "numeric”, msLevel. = "numeric”)
Bin the Spectrum object. Use binSize to control the size of a bin (in Dalton, default is 1).
Similar to hist you could use breaks to specify the breakpoints between m/z bins. msLevel.
defines the level of the spectrum, and if msLevel (object) !=msLevel., cleaning is ignored.
Only relevant when called from OnDiskMSnExp and is only relevant for developers.

Returns a binned Spectrum instance.

Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

See Also

clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

Examples

s <- new("Spectrum2”, mz=1:10, intensity=1:10)
intensity(s)
intensity(bin(s, binSize=2))

data(itraqdata)

sum(peaksCount (itraqdata))

itraqdata2 <- bin(itragdata, binSize=2)
sum(peaksCount (itragdata2))
processingData(itraqdata2)

12 calculateFragments-methods

calculateFragments-methods
Calculate ions produced by fragmentation.

Description

These method calculates a-, b-, c-, X-, y- and z-ions produced by fragmentation.

Arguments

sequence character, peptide sequence.

object Object of class "Spectrum2” or "missing” .

tolerance numeric tolerance between the theoretical and measured MZ values (only avail-
able if object is not missing).

method method used for for duplicated matches. Choose "highest” or "closest” to
select the peak with the highest intensity respectively the closest MZ in the tol-
erance range. If "all” is given all possible matches in the tolerance range are
reported (only available if object is not missing).

type character vector of target ions; possible values: c("a", "b", "c", "x", "y",
"z"); default: type=c("b", "y").

z numeric desired charge state; default z=1.

modifications named numeric vector of used modifications. The name must correspond to the
one-letter-code of the modified amino acid and the numeric value must repre-
sent the mass that should be added to the original amino accid mass, default:
Carbamidomethyl modifications=c(C=57.02146). Use Nterm or Cterm as
names for modifications that should be added to the amino respectively carboxyl-
terminus.

neutrallLoss list, it has to have two named elments, namely water and ammonia that contain
a character vector which type of neutral loss should be calculated. Currently
neutral loss on the C terminal "Cterm”, at the amino acids c("D", "E", "S",
"T") for "water” (shown with an _) and c("K", "N", "Q", "R") for "ammonia”
(shown with an *) are supported.
There is a helper function defaultNeutralloss that returns the correct list. It
has two arguments disableWaterLoss and disableAmmonialoss to remove
single neutral loss options. See the example section for use cases.

verbose logical if TRUE (default) the used modifications are printed.
Methods
signature(sequence = "character”, object = "missing"”, ...) Calculates the theoretical frag-

[n

ments for a peptide sequence. Returns a data.frame with the columns c("mz", "ion",

n_n

”type", nposn, z", nseqn).

calculateFragments-methods 13

signature(sequence = "character”, object = "Spectrum2”, ...) Calculates and matches the
theoretical fragments for a peptide sequence and a "Spectrum2” object. The ... argu-
ments are passed to the internal functions. Currently tolerance, method and relative are
supported.

You could change the tolerance (default 0.1) and decide whether this tolerance should be
applied relative to the target m/z (relative = TRUE) or absolute (default relative = FALSE)
to match the theoretical fragment MZ with the MZ of the spectrum. When (relative = TRUE)
the mass tolerance window is set to target mz +/- (target mz *x tolerance) and target
mz +/- tolerance otherwise. In cases of multiple matches use method to select the peak
with the highest intensity (method = "highest”, default) respectively closest MZ (method =
"closes"). If method = "all” is set all possible matches in the current tolerance range are
reported. Returns the same data.frame as above but the mz column represents the matched
MZ values of the spectrum. Additionally there is a column error that contains the difference
between the observed MZ (from the spectrum) to the theoretical fragment MZ.

Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

Examples

find path to a mzXML file
file <- dir(system.file(package = "MSnbase”, dir = "extdata"),
full.name = TRUE, pattern = "mzXML$")

create basic MSnExp
msexp <- readMSData(file, centroided = FALSE)

centroid them
msexp <- pickPeaks(msexp)

calculate fragments for ACE with default modification
calculateFragments("ACE", modifications=c(C=57.02146))

calculate fragments for ACE with an addition N-terminal modification
calculateFragments("ACE", modifications=c(C=57.02146, Nterm=229.1629))

calculate fragments for ACE without any modifications
calculateFragments("ACE", modifications=NULL)

calculateFragments("VESITARHGEVLQLRPK",

type=c("a", "b", "c", "x", "y", "z"),
z=1:2)

calculateFragments("VESITARHGEVLQLRPK"”, msexp[[1]1])

neutral loss
PSMatch: :defaultNeutrallLoss()

disable water loss on the C terminal
PSMatch: :defaultNeutralLoss(disableWaterLoss="Cterm")

14 Chromatogram

real example
calculateFragments("PQR")
calculateFragments("PQR",
neutrallLoss=PSMatch: :defaultNeutrallLoss(disableWaterLoss="Cterm"))
calculateFragments("PQR",
neutrallLoss=PSMatch::defaultNeutrallLoss(disableAmmonialLoss="Q"))

disable neutral loss completely
calculateFragments("PQR", neutrallLoss=NULL)

Chromatogram Representation of chromatographic MS data

Description

The Chromatogram class is designed to store chromatographic MS data, i.e. pairs of retention time
and intensity values. Instances of the class can be created with the Chromatogram constructor func-
tion but in most cases the dedicated methods for OnDiskMSnExp and MSnExp objects extracting
chromatograms should be used instead (i.e. the chromatogram() method).

Usage

Chromatogram(
rtime = numeric(),
intensity = numeric(),
mz = c(NA_real_, NA_real),
filterMz = c(NA_real_, NA_real),
precursorMz = c(NA_real_, NA_real_),
productMz = c(NA_real_, NA_real),
fromFile = integer(),
aggregationFun = character(),
msLevel = 1L

aggregationFun(object)

S4 method for signature 'Chromatogram'
show(object)

S4 method for signature 'Chromatogram'
rtime(object)

S4 method for signature 'Chromatogram'
intensity(object)

S4 method for signature 'Chromatogram'
mz(object, filter = FALSE)

Chromatogram

S4 method for signature 'Chromatogram'
precursorMz(object)

S4 method for signature 'Chromatogram'
fromFile(object)

S4 method for signature 'Chromatogram'
length(x)

S4 method for signature 'Chromatogram'
as.data.frame(x)

S4 method for signature 'Chromatogram'
filterRt(object, rt)

S4 method for signature 'Chromatogram'
clean(object, all = FALSE, na.rm = FALSE)

S4 method for signature 'Chromatogram,ANY'

plot(
X)
col = "#00000060",
1ty =1,
type = "1”,
xlab = "retention time",
ylab = "intensity",
main = NULL,
)

S4 method for signature 'Chromatogram'
msLevel (object)

S4 method for signature 'Chromatogram'
isEmpty(x)

S4 method for signature 'Chromatogram'
productMz(object)

S4 method for signature 'Chromatogram'

bin(
X,
binSize = 0.5,
breaks = seq(floor(min(rtime(x))), ceiling(max(rtime(x))), by = binSize),
fun = max

16

Chromatogram

S4 method for signature 'Chromatogram'
normalize(object, method = c("max"”, "sum"))

S4 method for signature 'Chromatogram'
filterIntensity(object, intensity = 0, ...)

S4 method for signature 'Chromatogram,Chromatogram’
alignRt(x, y, method = c("closest”, "approx"), ...)

S4 method for signature 'Chromatogram,Chromatogram’
compareChromatograms(

X’
Y,

ALIGNFUN = alignRt,
ALIGNFUNARGS = list(),

FUN = cor,

FUNARGS = list(use = "pairwise.complete.obs"),

S4 method for signature 'Chromatogram'
transformIntensity(object, FUN = identity)

Arguments

rtime

intensity

mz

filterMz

precursorMz

productMz

fromFile

aggregationFun

for Chromatogram: numeric with the retention times (length has to be equal to
the length of intensity).

for Chromatogram: numeric with the intensity values (length has to be equal to
the length of rtime). For filterIntensity: numeric(1) or function to use
to filter intensities. See description for details.

for Chromatogram: numeric(2) representing the mz value range (min, max) on
which the chromatogram was created. This is supposed to contain the real range
of mz values in contrast to filterMz. If not applicable use mzrange = c(@, 0).

for Chromatogram: numeric(2) representing the mz value range (min, max)
that was used to filter the original object on m/z dimension. If not applicable use
filterMz = c(0Q, 0).

for Chromatogram: numeric(2) for SRM/MRM transitions. Represents the mz
of the precursor ion. See details for more information.

for Chromatogram: numeric(2) for SRM/MRM transitions. Represents the mz
of the product. See details for more information.

for Chromatogram: integer (1) the index of the file within the OnDiskMSnExp
or MSnExp from which the chromatogram was extracted.

for Chromatogram: character string specifying the function that was used to
aggregate intensity values for the same retention time across the mz range. Sup-
ported are "sum” (total ion chromatogram), "max” (base peak chromatogram),
"min” and "mean”.

Chromatogram 17

msLevel for Chromatogram: integer (1) with the MS level from which the chromatogram
was extracted.

object Chromatogram object.

filter for mz: logical (1) defining whether the m/z range to filter the originating ob-

ject (e.g. MSnExp object) should be returned or the m/z range of the actual data.
Defaults to filter = FALSE.

X Chromatogram object.

rt for filterRt: numeric(2) defining the lower and upper retention time to which
the Chromatogram should be subsetted.

all for clean: logical(1) whether all O intensities should be removed. Defaults
to all = FALSE. See clean() for details.

na.rm for clean: if all NA intensities should be removed before cleaning the Chromatogram.
Defaults to clean = FALSE.

col for plot: the color to be used for plotting.

1ty for plot: the line type. See help page of plot in the graphics package for
details.

type for plot: the type of plot. See help page of plot in the graphics package for
details.

x1lab for plot: the x-axis label.

ylab for plot: the y-axis label.

main for plot: the plot title. If not provided the mz range will be used as plot title.

for plot: additional arguments to be passed to the base plot function. For
filterIntensity: additional parameters passed along to the function provided
with intensity. For compareChromatograms: ignored

binSize for bin: numeric(1) with the size of the bins (in seconds). Defaults to binSize
=0.5.
breaks for bin: numeric defining the bins. Usually not required as the function calcu-

lates the bins automatically based on binSize.

fun for bin: function to be used to aggregate the intensity values falling within each
bin. Defaults to fun = max.

method character(1). For normalise: defining whether each chromatogram should
be normalized to its maximum signal (method = "max") or total signal (method
= "sum"). For alignRt: aligning approach that should be used (see description).
Defaults to method = "closest".

y for alignRt: Chromatogram against which x should be aligned against.

ALIGNFUN for compareChromatograms: function to align chromatogram x against chro-
matogram y. Defaults to alignRt.

ALIGNFUNARGS list of parameters to be passed to ALIGNFUN.

FUN for compareChromatograms: function to calculate a similarity score on the in-
tensity values of the compared and aligned chromatograms. Defaults to FUN =
cor. For transformIntensity: function to transform chromatograms’ inten-
sity values. Defaults to FUN = identity.

FUNARGS for compareChromatograms: 1ist with additional parameters for FUN. Defaults
to FUNARGS = list(use = "pairwise.complete.obs"”).

18 Chromatogram

Details

The mz, filterMz, precursorMz and productMz are stored as a numeric(2) representing a range
even if the chromatogram was generated for only a single ion (i.e. a single mz value). Using
ranges for mz values allow this class to be used also for e.g. total ion chromatograms or base peak
chromatograms.

The slots “precursorMz™ and “productMz™ allow to represent SRM
(single reaction monitoring) and MRM (multiple SRM) chromatograms. As
example, a ~Chromatogram™ for a SRM transition 273 -> 153 will have
a ~@precursorMz = c(273, 273)° and a

“@productMz = c(153, 153)".

Object creation
Chromatogram objects can be extracted from an MSnExp or OnDiskMSnExp object with the chromatogram()
function.

Alternatively, the constructor function Chromatogram can be used, which takes arguments rtime,
intensity, mz, filterMz, precursorMz, productMz, fromFile, aggregationFun and msLevel.

Data access and coercion

* aggregationFun: gets the aggregation function used to create the Chromatogram.
e as.data.frame: returns a data. frame with columns "rtime"” and "intensity”.
* fromFile: returns an integer (1) with the index of the originating file.

e intensity: returns the intensities from the Chromatogram.

e isEmpty: returns TRUE if the chromatogram is empty or has only NA intensities.

* length: returns the length (i.e. number of data points) of the Chromatogram.

* msLevel: returns an integer (1) with the MS level of the chromatogram.

* mz: get the m/z (range) from the Chromatogram. The function returns a numeric(2) with the
lower and upper boundaries. Parameter filter allows to specify whether the m/z range used
to filter the originating object should be returned or the m/z range of the actual data.

* precursorMz: get the m/z of the precursor ion. The function returns a numeric(2) with the
lower and upper boundary.

* productMz: get the m/z of the producto chromatogram/ion. The function returns a numeric(2)
with the lower and upper m/z value.

e rtime: returns the retention times from the Chromatogram.

Data subsetting and filtering

e filterRt: filter/subset the Chromatogram to the specified retention time range (defined with
parameter rt).

e filterIntensity: filter a Chromatogram() object removing data points with intensities be-
low a user provided threshold. If intensity is a numeric value, the returned chromatogram
will only contain data points with intensities > intensity. In addition it is possible to provide
a function to perform the filtering. This function is expected to take the input Chromatogram

Chromatogram 19

(object) and to return a logical vector with the same length then there are data points in
object with TRUE for data points that should be kept and FALSE for data points that should be
removed. See examples below.

Data processing and manipulation

alignRt: Aligns chromatogram x against chromatogram y. The resulting chromatogram has
the same length (number of data points) than y and the same retention times thus allowing to
perform any pair-wise comparisons between the chromatograms. If x is a MChromatograms ()
object, each Chromatogram in it is aligned against y. Additional parameters (. . .) are passed
along to the alignment functions (e.g. closest()).

Parameter method allows to specify which alignment method should be used. Currently there
are the following options:

— method = "closest” (the default): match data points in the first chromatogram (x) to
those of the second (y) based on the difference between their retention times: each data
point in x is assigned to the data point in y with the smallest difference in their retention
times if their difference is smaller than the minimum average difference between retention
times in x or y (parameter tolerance for the call to the closest () function). By setting
tolerance = @ only exact retention times are matched against each other (i.e. only values
are kept with exactly the same retention times between both chromatograms).

— method = "approx": uses the base R approx function to approximate intensities in x to
the retention times in y (using linear interpolation). This should only be used for chro-
matograms that were measured in the same measurement run (e.g. MS1 and correspond-
ing MS2 chromatograms from SWATH experiments).

bin: aggregates intensity values from a chromatogram in discrete bins along the retention time
axis and returns a Chromatogram object with the retention time representing the mid-point of
the bins and the intensity the binned signal. Parameters binSize and breaks allow to define
the binning, fun the function which should be used to aggregate the intensities within a bin.

compareChromatograms: calculates a similarity score between 2 chromatograms after align-
ing them. Parameter ALIGNFUN allows to define a function that can be used to align x against
y (defaults to ALIGNFUN = alignRt). Subsequently, the similarity is calculated on the aligned
intensities with the function provided with parameter FUN which defaults to cor (hence by
default the Pearson correlation is calculated between the aligned intensities of the two com-
pared chromatograms). Additional parameters can be passed to the ALIGNFUN and FUN with
the parameter ALIGNFUNARGS and FUNARGS, respectively.

clean: removes O-intensity data points (and NA values). See clean() for details.

normalize, normalise: normalises the intensities of a chromatogram by dividing them ei-
ther by the maximum intensity (method = "max") or total intensity (method = "sum") of the
chromatogram.

transformIntensity: allows to manipulate the intensity values of a chromatogram using a
user provided function. See below for examples.

Data visualization

plot: plots a Chromatogram object.

20 Chromatogram

Author(s)

Johannes Rainer

See Also

MChromatograms for combining Chromatogram in a two-dimensional matrix (rows being mz-rt
ranges, columns samples). chromatogram()] for the method to extract chromatogram data from an MSnExporOnD
object.

Examples

Create a simple Chromatogram object.

ints <- abs(rnorm(100, sd = 100))

rts <- seg_len(length(ints))

chr <- Chromatogram(rtime = rts, intensity = ints)
chr

Extract intensities
intensity(chr)

Extract retention times
rtime(chr)

Extract the mz range - is NA for the present example
mz(chr)

plot the Chromatogram
plot(chr)

Create a simple Chromatogram object based on random values.
chr <- Chromatogram(intensity = abs(rnorm(1000, mean = 2000, sd = 200)),
rtime = sort(abs(rnorm(1000, mean = 10, sd = 5))))

chr

Get the intensities
head(intensity(chr))

Get the retention time
head(rtime(chr))

What is the retention time range of the object?
range(rtime(chr))

Filter the chromatogram to keep only values between 4 and 10 seconds
chr2 <- filterRt(chr, rt = c(4, 10))

range(rtime(chr2))
Data manipulations:

normalize a chromatogram
par(mfrow = c(1, 2))

Chromatogram

plot(chr)
plot(normalize(chr, method = "max"))

Align chromatograms against each other

chr1l <- Chromatogram(rtime = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
intensity = c(3, 5, 14, 30, 24, 6, 2, 1, 1, 0))

chr2 <- Chromatogram(rtime = c(2.5, 3.42, 4.5, 5.43, 6.5),
intensity = c(5, 12, 15, 11, 5))

plot(chr1, col = "black")
points(rtime(chr2), intensity(chr2), col = "blue”, type = "1")

Align chr2 to chr1l without interpolation

res <- alignRt(chr2, chri)

rtime(res)

intensity(res)

points(rtime(res), intensity(res), col = "#00ff0080", type = "1")

Align chr2 to chr1l with interpolation

res <- alignRt(chr2, chri1, method = "approx")

points(rtime(res), intensity(res), col = "#ff000080", type = "1")

legend("topright”, col = c("black”, "blue"”, "#00ff0080","#ff000080"),1ty = 1,
legend = c("chr1”, "chr2", "chr2 matchRtime"”, "chr2 approx"”))

Compare Chromatograms. Align chromatograms with “alignRt~ and
method ~"approx""
compareChromatograms(chr2, chr1l, ALIGNFUNARGS = list(method = "approx"))

Data filtering

chr1 <- Chromatogram(rtime = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
intensity = c(3, 5, 14, 30, 24, 6, 2, 1, 1, 0))

Remove data points with intensities below 10
res <- filterIntensity(chrl, 10)
intensity(res)

Remove data points with an intensity lower than 10% of the maximum
intensity in the Chromatogram
filt_fun <- function(x, prop = 0.1) {

x@intensity >= max(x@intensity, na.rm = TRUE) * prop

3
res <- filterIntensity(chrl, filt_fun)
intensity(res)

Remove data points with an intensity lower than half of the maximum
res <- filterIntensity(chril, filt_fun, prop = 0.5)
intensity(res)

log2 transform intensity values
res <- transformIntensity(chril, log2)

22

intensity(res)

chromatogram,MSnExp-method

log2(intensity(chr1))

chromatogram,MSnExp-method

Extract chromatogram object(s)

Description

The chromatogram method extracts chromatogram(s) from an MSnExp or OnDiskMSnExp object.
Depending on the provided parameters this can be a total ion chromatogram (TIC), a base peak
chromatogram (BPC) or an extracted ion chromatogram (XIC) extracted from each sample/file.

Usage
S4 method for signature 'MSnExp'
chromatogram(
object,
rt,
mz,
aggregationFun = "sum”,
missing = NA_real_,
msLevel = 1L,
BPPARAM = bpparam()
)
Arguments
object For chromatogram: a MSnExp or OnDiskMSnExp object from which the chro-
matogram should be extracted.
rt A numeric(2) or two-column matrix defining the lower and upper boundary
for the retention time range/window(s) for the chromatogram(s). If a matrix is
provided, a chromatogram is extracted for each row. If not specified, a chro-
matogram representing the full retention time range is extracted. See examples
below for details.
mz A numeric(2) or two-column matrix defining the mass-to-charge (mz) range(s)
for the chromatogram(s). For each spectrum/retention time, all intensity val-
ues within this mz range are aggregated to result in the intensity value for the
spectrum/retention time. If not specified, the full mz range is considered. See
examples below for details.
aggregationFun character defining the function to be used for intensity value aggregation along
the mz dimension. Allowed values are "sum” (TIC), "max” (BPC), "min" and
"mean”.
missing numeric(1) allowing to specify the intensity value for if for a given reten-

tion time (spectrum) no signal was measured within the mz range. Defaults
toNA_real_.

chromatogram,MSnExp-method 23

msLevel integer specifying the MS level from which the chromatogram should be ex-
tracted. Defaults to msLevel = 1L.

BPPARAM Parallelisation backend to be used, which will depend on the architecture. De-
fault is BiocParallel: :bpparam().

Details

Arguments rt and mz allow to specify the MS data slice from which the chromatogram should be
extracted. The parameter aggregationSum allows to specify the function to be used to aggregate
the intensities across the mz range for the same retention time. Setting aggregationFun = "sum”
would e.g. allow to calculate the total ion chromatogram (TIC), aggregationFun = "max" the base
peak chromatogram (BPC). The length of the extracted Chromatogram object, i.e. the number of
available data points, corresponds to the number of scans/spectra measured in the specified retention
time range. If in a specific scan (for a give retention time) no signal was measured in the specified mz
range, a NA_real_ is reported as intensity for the retention time (see Notes for more information).
This can be changed using the missing parameter.

By default or if \code{mz} and/or \code{rt} are numeric vectors, the
function extracts one \code{\link{Chromatogram}} object for each file
in the \code{\linkS4class{MSnExp}} or \code{\linkS4class{OnDiskMSnExp}}
object. Providing a numeric matrix with argument \code{mz} or \code{rt}
enables to extract multiple chromatograms per file, one for each row in
the matrix. If the number of columns of \code{mz} or \code{rt} are not
equal to 2, \code{range} is called on each row of the matrix.

Value

chromatogram returns a MChromatograms object with the number of columns corresponding to
the number of files in object and number of rows the number of specified ranges (i.e. number
of rows of matrices provided with arguments mz and/or rt). The featureData of the returned
object contains columns "mzmin” and "mzmax” with the values from input argument mz (if used)
and "rtmin” and "rtmax” if the input argument rt was used.

Author(s)

Johannes Rainer

See Also

Chromatogram and MChromatograms for the classes that represent single and multiple chromatograms.

Examples

Read a test data file.

library(BiocParallel)

register(SerialParam())

library(msdata)

f <- c(system.file("microtofq/MM14.mzML", package = "msdata”),
system.file("microtofq/MM8.mzML", package = "msdata”))

24

clean-methods

Read the data as an MSnExp
msd <- readMSData(f, msLevel = 1)

Extract the total ion chromatogram for each file:
tic <- chromatogram(msd)

tic

Extract the TIC for the second file:
tic[1, 2]

Plot the TIC for the first file
plot(rtime(tic[1, 11), intensity(tic[1, 11), type = "1",
xlab = "rtime"”, ylab = "intensity”, main = "TIC")

Extract chromatograms for a MS data slices defined by retention time
and mz ranges.

rtr <- rbind(c(10, 60), c(280, 300))

mzr <- rbind(c(140, 160), c(300, 320))

chrs <- chromatogram(msd, rt = rtr, mz = mzr)

Each row of the returned MChromatograms object corresponds to one mz-rt
range. The Chromatogram for the first range in the first file is empty,
because the retention time range is outside of the file's rt range:
chrs[1, 1]

The mz and/or rt ranges used are provided as featureData of the object
fData(chrs)

The mz method can be used to extract the m/z ranges directly
mz(chrs)

Also the Chromatogram for the second range in the second file is empty
chrs[2, 2]

Get the extracted chromatogram for the first range in the second file
chr <- chrs[1, 2]

chr

plot(rtime(chr), intensity(chr), xlab = "rtime"”, ylab = "intensity")

clean-methods Clean "MSnExp’, ’Spectrum’ or ’Chromatogram’ instances

Description

This method cleans out individual spectra (Spectrum instances), chromatograms (Chromatogram
instances) or whole experiments (MSnExp instances) of O-intensity peaks. Unless all is set to FALSE,
original O-intensity values are retained only around peaks. If more than two 0’s were separating two
peaks, only the first and last ones, those directly adjacent to the peak ranges are kept. If two peaks
are separated by only one O-intensity value, it is retained. An illustrative example is shown below.

clean-methods 25

Methods

signature(object = "MSnExp"”, all = "logical”, verbose = "logical”) Cleans all spectra in
MSnExp object. Displays a control bar if verbose set to TRUE (default). Returns a cleaned
MSnExp instance.

signature(object = "Spectrum”, all = "logical”, msLevel. = "numeric”) Cleans the Spectrum
object. Returns a cleaned Spectrum instance. If all = TRUE, then all zeros are removed.
msLevel. defines the level of the spectrum, and if msLevel (object) !=msLevel., cleaning
is ignored. Only relevant when called from OnDiskMSnExp and is only relevant for developers.

signature(object = "Chromatogram”, all = "logical”, na.rm= "logical") Cleansthe Chromatogram
instance and returns a cleaned Chromatogram object. If na.rmis TRUE (default is FALSE) all
NA intensities are removed before cleaning the chromatogram.

Author(s)

Laurent Gatto

See Also

removePeaks and trimMz for other spectra processing methods.

Examples

int <- ¢(1,0,90,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0)
sp1 <- new("Spectrum2”,
intensity=int,
mz=1:1length(int))
sp2 <- clean(sp1) ## default is all=FALSE
intensity(sp1)
intensity(sp2)
intensity(clean(sp1, all = TRUE))

mz(sp1)
mz(sp2)
mz(clean(sp1, all = TRUE))

data(itraqdata)

itraqdata2 <- clean(itraqdata)
sum(peaksCount (itraqdata))
sum(peaksCount (itragdata2))
processingData(itraqdata2)

Create a simple Chromatogram object
chr <- Chromatogram(rtime = 1:12,
intensity = c(0, 0, 20, 0, 0, @, 123, 124343, 3432, 0, 0, 0))

Remove @-intensity values keeping those adjacent to peaks
chr <- clean(chr)

intensity(chr)

Remove all 0-intensity values

26 combineFeatures

chr <- clean(chr, all = TRUE)
intensity(chr)

Clean a Chromatogram with NAs.
chr <- Chromatogram(rtime = 1:12,
intensity = c(@, 0, 20, NA, NA, 0, 123, 124343, 3432, 0, 0, 0))
chr <- clean(chr, all = FALSE, na.rm = TRUE)
intensity(chr)

combineFeatures Combines features in an MSnSet object

Description

This function combines the features in an "MSnSet"” instance applying a summarisation function
(see fun argument) to sets of features as defined by a factor (see fcol argument). Note that the
feature names are automatically updated based on the groupBy parameter.

The coefficient of variations are automatically computed and collated to the featureData slot. See
cv and cv.norm arguments for details.

If NA values are present, a message will be shown. Details on how missing value impact on the
data aggregation are provided below.

Arguments

object An instance of class "MSnSet"” whose features will be summerised.

groupBy A factor, character, numeric or a list of the above defining how to sum-
merise the features. The list must be of length nrow(object). Each element
of the list is a vector describing the feature mapping. If the list can be named,
its names must match fetureNames(object). See redundancy.handler for
details about the latter.

fun Deprecated; use method instead.

method The summerising function. Currently, mean, median, weighted mean, sum, me-
dian polish, robust summarisation (using MASS: : r1m, implemented in MsCoreUtils: : robustSummary())
iPQF (see iPQF for details) and NTR (see NTR for details) are implemented, but
user-defined functions can also be supplied. Note that the robust menthods as-
sumes that the data are already log-transformed.

fcol Feature meta-data label (fData column name) defining how to summerise the

features. It must be present in fvarLabels(object) and, if present, will be
used to defined groupBy as fData(object)[, fcoll. Note that fcol is ignored
if groupBy is present.

redundancy.handler
If groupBy is a list, one of "unique” (default) or "multiple” (ignored other-
wise) defining how to handle peptides that can be associated to multiple higher-
level features (proteins) upon combination. Using "unique” will only consider

combineFeatures 27

uniquely matching features (features matching multiple proteins will be dis-
carded). "multiple” will allow matching to multiple proteins and each feature
will be repeatedly tallied for each possible matching protein.

cv A logical defining if feature coefficients of variation should be computed and
stored as feature meta-data. Default is TRUE.

cv.norm A character defining how to normalise the feature intensitites prior to CV cal-
culation. Default is sum. Use none to keep intensities as is. See featureCV for
more details.

verbose A logical indicating whether verbose output is to be printed out.

Additional arguments for the fun function.

Details

Missing values have different effect based on the aggregation method employed, as detailed below.
See also examples below.

1. When using either "sum”, "mean”, "weighted.mean” or "median”, any missing value will be

propagated at the higher level. If na. rm = TRUE is used, then the missing value will be ignored.

2. Missing values will result in an error when using "medpolish”, unless na.rm = TRUE is used.

3. When using robust summarisation ("robust"), individual missing values are excluded prior
to fitting the linear model by robust regression. To remove all values in the feature containing
the missing values, use filterNA.

4. The "iPQF" method will fail with an error if missing value are present, which will have to be
handled explicitly. See below.

More generally, missing values often need dedicated handling such as filtering (see filterNA) or
imputation (see impute).

Value

A new "MSnSet" instance is returned with ncol (i.e. number of samples) is unchanged, but nrow
(i.e. the number od features) is now equals to the number of levels in groupBy. The feature metadata
(featureData slot) is updated accordingly and only the first occurrence of a feature in the original
feature meta-data is kept.

Author(s)

Laurent Gatto with contributions from Martina Fischer for iPQF and Ludger Goeminne, Adriaan
Sticker and Lieven Clement for robust.

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

28

See Also

combineFeatures

featureCV to calculate coefficient of variation, nFeatures to document the number of features per

group in the feature data, and the aggvar to explore variability within protein groups.

iPQF for iPQF summarisation.

NTR for normalisation to reference summarisation.

Examples

data(msnset)
msnset <- msnset[11:15,]
exprs(msnset)

arbitrary grouping into two groups
grp <- as.factor(c(1, 1, 2, 2, 2))

msnset.comb <- combineFeatures(msnset, groupBy = grp, method = "sum")

dim(msnset.comb)
exprs(msnset.comb)
fvarLabels(msnset.comb)

grouping with a list

grpl <- list(c(”A”, "B"), "A", "A", "C", c("C", "B"))

optional naming
names(grpl) <- featureNames(msnset)

exprs(combineFeatures(msnset, groupBy = grpl, method = "sum”, redundanc
exprs(combineFeatures(msnset, groupBy = grpl, method = "sum”, redundanc

missing data
exprs(msnset)[4, 4] <-
exprs(msnset)[2, 2] <- NA
exprs(msnset)
NAs propagate in the 115 and 117 channels
exprs(combineFeatures(msnset, grp, "sum"))
NAs are removed before summing
exprs(combineFeatures(msnset, grp,

n n

sum”, na.rm

using iPQF
data(msnset2)
anyNA(msnset2)
res <- combineFeatures(msnset2,

groupBy = fData(msnset2)$accession,
redundancy.handler = "unique”,

method = "iPQF”,

low.support.filter = FALSE,

n "

ratio.calc = "sum”,
method.combine = FALSE)
head(exprs(res))

using robust summarisation
data(msnset) ## reset data
msnset <- log(msnset, 2) ## log2 transform

"unique"))
"multiple”))

combineSpectra, MSnExp-method 29

Feature X46, in the ENO protein has one missig value
which(is.na(msnset), arr.ind = TRUE)
exprs(msnset["X46", 1)
Only the missing value in X46 and iTRAQ4.116 will be ignored
res <- combineFeatures(msnset,

fcol = "ProteinAccession”,

method = "robust”)
tail(exprs(res))

msnset2 <- filterNA(msnset) ## remove features with missing value(s)
res2 <- combineFeatures(msnset2,

fcol = "ProteinAccession”,

method = "robust")
Here, the values for ENO are different because the whole feature
X46 that contained the missing value was removed prior to fitting.
tail(exprs(res2))

combineSpectra,MSnExp-method
Combine Spectra

Description

combineSpectra combines spectra in a MSnExp, OnDiskMSnExp or MSpectra object applying the
summarization function fun to sets of spectra defined by a factor (fcol parameter). The resulting
combined spectrum for each set contains metadata information (present in mcols and all spectrum
information other than mz and intensity) from the first spectrum in each set.

Combining of spectra for MSnExp or OnDiskMSnExp objects is performed by default for each file
separately, combining of spectra across files is thus not possible. See examples for details.

Usage

S4 method for signature 'MSnExp'
combineSpectra(

object,

fcol = "fileldx",

method = meanMzInts,

BPPARAM = bpparam()

)

S4 method for signature 'MSpectra’

combineSpectra(object, fcol, method = meanMzInts, fun, ...)
Arguments

object A MSnExp or MSpectra

30

fcol

method

BPPARAM

fun

Value

combineSpectra,MSnExp-method

For MSpectra objects: mcols column name to be used to define the sets of
spectra to be combined. If missing, all spectra are considered to be one set.
For MSnExp/OnDiskMSnExp objects: column in fData(object) defining which
spectra to combine. See examples below for more details.

function to be used to combine the spectra by fcol. Has to be a function that
takes a list of spectra as input and returns a single Spectrum. See meanMzInts()
for details.

additional arguments for fun.

For MSnExp/OnDiskMSnExp objects: parallel processing setup to perform per-file
parallel spectra combining. See bpparam() for more details.

Deprecated use method instead.

A MSpectra or MSnExp object with combined spectra. Metadata (mcols) and all spectrum attributes
other than mz and intensity are taken from the first Spectrum in each set.

Author(s)

Johannes Rainer, Laurent Gatto

See Also

meanMzInts() for a function to combine spectra.

Examples

set.seed(123)

mzs <- seq(1, 20, 0.1)
ints1 <- abs(rnorm(length(mzs), 10))

ints1[11:
ints2 <-
ints2[11:
ints3 <-
ints3[11:

20] <- c(15, 30, 90, 200, 500, 300, 100, 70, 40, 20) # add peak
abs(rnorm(length(mzs), 10))

20] <- c(15, 30, 60, 120, 300, 200, 90, 60, 30, 23)
abs(rnorm(length(mzs), 10))

20] <- c(13, 20, 50, 100, 200, 100, 80, 40, 30, 20)

Create the spectra.

spl <- new("Spectrum1”, mz = mzs + rnorm(length(mzs), sd

0.01),

intensity = ints1, rt = 1)

sp2 <- new("Spectrum1”, mz = mzs + rnorm(length(mzs), sd

0.01),

intensity = ints2, rt = 2)
sp3 <- new("Spectruml”, mz = mzs + rnorm(length(mzs), sd = 0.009),
intensity = ints3, rt = 3)

spctra <- MSpectra(spl, sp2, sp3,
elementMetadata = DataFrame(idx = 1:3, group = c("b", "a", "a")))

Combine the spectra reporting the maximym signal
res <- combineSpectra(spctra, mzd = .05, intensityFun = max)

res

combineSpectra,MSnExp-method

All values other than m/z and intensity are kept from the first spectrum
rtime(res)

Plot the individual and the merged spectrum
par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")
points(mz(sp2), intensity(sp2), type = "h", col = "green")
points(mz(sp3), intensity(sp3), type = "h", col = "blue")
plot(mz(res[[1]]), intensity(res[[1]]), type = "h",
col = "black”, xlim = range(mzs[5:25]1))

Combine spectra in two sets.

res <- combineSpectra(spctra, fcol = "group”, mzd = 0.05)
res
rtime(res)

Plot the individual and the merged spectra

par(mfrow = c(3, 1), mar = c(4.3, 4, 1, 1))

plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")

points(mz(sp2), intensity(sp2), type = "h", col = "green")

points(mz(sp3), intensity(sp3), type = "h", col = "blue")

plot(mz(res[[1]]1), intensity(res[[1]1), xlim = range(mzs[5:25]), type
col = "black”)

plot(mz(res[[2]1]), intensity(res[[2]]1), xlim = range(mzs[5:25]), type = "h",
col = "black")

"h
’

Combining spectra of an MSnExp/OnDiskMSnExp objects

Reading data from 2 mzML files

sciex <- readMSData(dir(system.file("sciex", package = "msdata”),
full.names = TRUE), mode = "onDisk")

Filter the file to a retention time range from 2 to 20 seconds (to reduce
execution time of the example)

sciex <- filterRt(sciex, rt = c(2, 20))

table(fromFile(sciex))

We have thus 64 spectra per file.

In the example below we combine spectra measured in one second to a

single spectrum. We thus first define the grouping variable and add that
to the “fData” of the object. For combining, we use the

"~consensusSpectrum™ function that combines the spectra keeping only peaks
that were found in 50% of the spectra; by defining “mzd = 0.01° all peaks
within an m/z of 0.01 are evaluated for combining.

seconds <- round(rtime(sciex))

head(seconds)

fData(sciex)$second <- seconds

res <- combineSpectra(sciex, fcol = "second”, mzd = ©.01, minProp = 0.1,
method = consensusSpectrum)
table(fromFile(res))

32 combineSpectraMoving Window

The data was reduced to 19 spectra for each file.

combineSpectraMovingWindow
Combine signal from consecutive spectra of LCMS experiments

Description

combineSpectraMovingWindow combines signal from consecutive spectra within a file. The result-
ing MSnExp has the same total number of spectra than the original object, but with each individual’s
spectrum information representing aggregated data from the original spectrum and its neighboring
spectra. This is thus equivalent with a smoothing of the data in retention time dimension.

Note that the function returns always a MSnExp object, even if x was an OnDiskMSnExp object.

Usage

combineSpectraMovingWindow(
X,
halfWindowSize = 1L,
intensityFun = base: :mean,
mzd = NULL,
timeDomain = FALSE,
weighted = FALSE,

ppm = 0,
BPPARAM = bpparam()
)
Arguments
X MSnExp or OnDiskMSnExp object.

halfWindowSize integer (1) with the half window size for the moving window.

intensityFun function to aggregate the intensity values per m/z group. Should be a function
or the name of a function. The function is expected to return a numeric(1).

mzd numeric(1) defining the maximal m/z difference below which mass peaks are
considered to represent the same ion/mass peak. Intensity values for such grouped
mass peaks are aggregated. If not specified this value is estimated from the dis-
tribution of differences of m/z values from the provided spectra (see details).

timeDomain logical (1) whether definition of the m/z values to be combined into one m/z is
performed on m/z values (timeDomain = FALSE) or on sqrt(mz) (timeDomain
= TRUE). Profile data from TOF MS instruments should be aggregated based
on the time domain (see details). Note that a pre-defined mzd should also be
estimated on the square root of m/z values if timeDomain = TRUE.

weighted logical(1) whether m/z values per m/z group should be aggregated with an
intensity-weighted mean. The default is to report the mean m/z.

combineSpectraMoving Window 33

ppm numeric(1) to define an m/z relative deviation. Note that if only ppm should be
considered but not mzd, mzd should be set to @ (i.e. mzd = @). This parameter is
directly passed to meanMzInts().

BPPARAM parallel processing settings.

Details

The method assumes same ions being measured in consecutive scans (i.e. LCMS data) and thus
combines their signal which can increase the increase the signal to noise ratio.

Intensities (and m/z values) for signals with the same m/z value in consecutive scans are aggregated
using the intensityFun. m/z values of intensities from consecutive scans will never be exactly
identical, even if they represent signal from the same ion. The function determines thus internally
a similarity threshold based on differences between m/z values within and between spectra below
which m/z values are considered to derive from the same ion. For robustness reasons, this threshold
is estimated on the 100 spectra with the largest number of m/z - intensity pairs (i.e. mass peaks).

See meanMzInts() for details.

Parameter timeDomain: by default, m/z-intensity pairs from consecutive scans to be aggregated are
defined based on the square root of the m/z values. This is because it is highly likely that in all QTOF
MS instruments data is collected based on a timing circuit (with a certain variance) and m/z values
are later derived based on the relationship t = k * sqrt(m/z). Differences between individual m/z
values will thus be dependent on the actual m/z value causing both the difference between m/z
values and their scattering being different in the lower and upper m/z range. Determining m/z values
to be combined on the sqrt(mz) reduces this dependency. For non-QTOF MS data timeDomain =
FALSE might be used instead.

Value

MSnExp with the same number of spectra than x.

Note

The function has to read all data into memory for the spectra combining and thus the memory
requirements of this function are high, possibly preventing its usage on large experimental data. In
these cases it is suggested to perform the combination on a per-file basis and save the results using
the writeMSData() function afterwards.

Author(s)

Johannes Rainer, Sigurdur Smarason

See Also

meanMzInts() for the function combining spectra provided in a list.

estimateMzScattering() for a function to estimate m/z value scattering in consecutive spectra.

34 commonFeatureNames

Examples

library(MSnbase)
library(msdata)

Read a profile-mode LC-MS data file.
fl <- dir(system.file("”sciex", package = "msdata"), full.names = TRUE)[1]
od <- readMSData(fl, mode = "onDisk")

Subset the object to the retention time range that includes the signal
for proline. This is done for performance reasons.

rtr <- c(165, 175)

od <- filterRt(od, rtr)

Combine signal from neighboring spectra.
od_comb <- combineSpectraMovingWindow(od)

The combined spectra have the same number of spectra, same number of

mass peaks per spectra, but the signal is larger in the combined object.
length(od)

length(od_comb)

peaksCount (od)
peaksCount (od_comb)

Comparing the chromatographic signal for proline (m/z ~ 116.0706)
before and after spectra data combination.

mzr <- c(116.065, 116.075)

chr <- chromatogram(od, rt = rtr, mz = mzr)

chr_comb <- chromatogram(od_comb, rt = rtr, mz = mzr)

par(mfrow = c(1, 2))

plot(chr)

plot(chr_comb)

Chromatographic data is "smoother” after combining.

commonFeatureNames Keep only common feature names

Description

Subsets MSnSet instances to their common feature names.

Usage

commonFeatureNames(x, y)

Arguments

X An instance of class MSnSet or a 1ist or MSnSetList with at least 2 MSnSet
objects.

compareMSnSets 35

y An instance of class MSnSet. Ignored if x is a 1ist/MSnSetList.

Value

An linkS4class{MSnSetList} composed of the input MSnSet containing only common features
in the same order. The names of the output are either the names of the x and y input variables or the
names of x if a list is provided.

Author(s)

Laurent Gatto

Examples

library(”"pRolocdata")

data(tan2009r1)

data(tan2009r2)

cmn <- commonFeatureNames(tan2009r1, tan2009r2)

names(cmn)

as a named list

names (commonFeatureNames(list(a = tan2009r1, b = tan2009r2)))

without message

suppressMessages(cmn <- commonFeatureNames(tan2009r1, tan2009r2))
more than 2 instance

data(tan2009r3)
cmn <- commonFeatureNames(list(tan2009r1, tan2009r2, tan2009r3))
length(cmn)
compareMSnSets Compare two MSnSets
Description

Compares two MSnSet instances. The qual and processingData slots are generally omitted.

Usage

compareMSnSets(x, y, qual = FALSE, proc = FALSE)

Arguments

X First MSnSet

y Second MSnSet

qual Should the qual slots be compared? Default is FALSE.

proc Should the processingData slots be compared? Default is FALSE.
Value

A logical

36 compareSpectra-methods

Author(s)

Laurent Gatto

compareSpectra-methods
Compare Spectra of an ’"MSnExp’ or ’Spectrum’ instances

Description

This method compares spectra (Spectrum instances) pairwise or all spectra of an experiment (MSnExp
instances). Currently the comparison is based on the number of common peaks fun = "common”, the
Pearson correlation fun = "cor”, the dot product fun = "dotproduct” or a user-defined function.

For fun = "common” the tolerance (default 25e-6) can be set and the tolerance can be defined to
be relative (default relative = TRUE) or absolute (relative = FALSE). To compare spectra with
fun = "cor"” and fun = "dotproduct”, the spectra need to be binned. The binSize argument (in
Dalton) controls the binning precision. Please see bin for details.

Instead of these three predefined functions for fun a user-defined comparison function can be sup-
plied. This function takes two Spectrum objects as the first two arguments and . . . as third argu-
ment. The function must return a single numeric value. See the example section.

Methods
signature(x = "MSnExp"”, y = "missing"”, fun = "character”, ...) Compares all spectra in an
MSnExp object. The ... arguments are passed to the internal functions. Returns a matrix of
dimension length(x) by length(x).
signature(x = "Spectrum”, y = "Spectrum”, fun = "character”, ...) Comparestwo Spectrum
objects. See the above explanation for fun and Returns a single numeric value.
Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

References

Stein, S. E., & Scott, D. R. (1994). Optimization and testing of mass spectral library search algo-
rithms for compound identification. Journal of the American Society for Mass Spectrometry, 5(9),
859-866. doi: https://doi.org/10.1016/1044-0305(94)87009-8

Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E. and Aebersold, R. (2007)
Development and validation of a spectral library searching method for peptide identification from
MS/MS. Proteomics, 7: 655-667. doi: https://doi.org/10.1002/pmic.200600625

See Also

bin, clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

consensusSpectrum 37

Examples

s1 <- new("Spectrum2”, mz=1:10, intensity=1:10)
s2 <- new("Spectrum2”, mz=1:10, intensity=10:1)
compareSpectra(sl, s2)

compareSpectra(s1, s2, fun="cor"”, binSize=2)
compareSpectra(sl, s2, fun="dotproduct")

define our own (useless) comparison function (it is just a basic example)

equallLength <- function(x, vy, ...) {
return(peaksCount(x)/(peaksCount(y)+.Machine$double.eps))

3

compareSpectra(sl, s2, fun=equallLength)

compareSpectra(s1, new("Spectrum2”, mz=1:5, intensity=1:5), fun=equallength)

compareSpectra(s1, new("Spectrum2"), fun=equallength)

data(itraqdata)
compareSpectra(itraqdatal1:5], fun="cor")

consensusSpectrum Combine spectra to a consensus spectrum

Description

consensusSpectrum takes a list of spectra and combines them to a consensus spectrum containing
mass peaks that are present in a user definable proportion of spectra.

Usage
consensusSpectrum(
X)
mzd = 0,

minProp = 0.5,

intensityFun = stats::median,
mzFun = stats::median,

ppm = @,

weighted = FALSE,

)
Arguments
X list of Spectrum objects (either Spectruml or Spectrum?2).
mzd numeric(1) defining the maximal m/z difference below which mass peaks are

grouped in to the same final mass peak (see details for more information). De-
faults to @; see meanMzInts() for estimating this value from the distribution of
differences of m/z values from the spectra. See also parameter ppm below for
the definition of an m/z dependent peak grouping.

38 consensusSpectrum

minProp numeric(1) defining the minimal proportion of spectra in which a mass peak
has to be present in order to include it in the final consensus spectrum. Should
be a number between 0 and 1 (present in all spectra).

intensityFun function (or name of a function) to be used to define the intensity of the aggre-
gated peak. By default the median signal for a mass peak is reported.

mzFun function (or name of a function) to be used to define the intensity of the aggre-
gated peak. By default the median m/z is reported. Note that setting weighted
= TRUE overrides this parameter.

ppm numeric(1) allowing to perform a m/z dependent grouping of mass peaks. See
details for more information.

weighted logical (1) whether the m/z of the aggregated peak represents the intensity-
weighted average of the m/z values of all peaks of the peak group. If FALSE (the
default), the m/z of the peak is calculated with mzFun.

additional arguments to be passed to intensityFun.

Details

Peaks from spectra with a difference of their m/z being smaller than mzd are grouped into the same
final mass peak with their intensities being aggregated with intensityFun. Alternatively (or in
addition) it is possible to perform an m/z dependent grouping of mass peaks with parameter ppm:
mass peaks from different spectra with a difference in their m/z smaller than ppm of their m/z are
grouped into the same final peak.

The m/z of the final mass peaks is calculated with mzFun. By setting weighted = TRUE the parameter
mzFun is ignored and an intensity-weighted mean of the m/z values from the individual mass peaks
is returned as the peak’s m/z.

Author(s)

Johannes Rainer

See Also

Other spectra combination functions: meanMzInts()

Examples

library(MSnbase)

Create 3 example spectra.

sp1 <- new("Spectrum2”, rt = 1, precursorMz = 1.41,
mz = c(1.2, 1.5, 1.8, 3.6, 4.9, 5.0, 7.8, 8.4),
intensity = c(10, 3, 140, 14, 299, 12, 49, 20))

sp2 <- new("Spectrum2”, rt = 1.1, precursorMz = 1.4102,
mz = c(1.4, 1.81, 2.4, 4.91, 6.0, 7.2, 9),
intensity = c(3, 184, 8, 156, 12, 23, 10))

sp3 <- new("Spectrum2”, rt = 1.2, precursorMz = 1.409,
mz = c(1, 1.82, 2.2, 3, 7.0, 8),
intensity = c(8, 210, 7, 101, 17, 8))

spl <- MSpectra(spl, sp2, sp3)

Deprecated 39

Plot the spectra, each in a different color
par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
plot(mz(spl), intensity(spl), type = "h", col = "#ff000080", lwd = 2,
xlab = "m/z", ylab = "intensity"”, xlim = range(mz(spl)),
ylim = range(intensity(spl)))
points(mz(sp2), intensity(sp2), type
points(mz(sp3), intensity(sp3), type

"he o col
"h", col

"#00ff0080", lwd
"#0000ff80", 1lwd

2)
2)

cons <- consensusSpectrum(spl, mzd = 0.02, minProp = 2/3)

Peaks of the consensus spectrum
mz(cons)
intensity(cons)

Other Spectrum data is taken from the first Spectrum in the list
rtime(cons)
precursorMz(cons)

plot(mz(cons), intensity(cons), type = "h", xlab = "m/z", ylab = "intensity",
xlim = range(mz(spl)), ylim = range(intensity(spl)), lwd = 2)

Deprecated MSnbase Deprecated and Defunct

Description

The function, class, or data object you have asked for has been deprecated or made defunct.
Deprecated:

Defunct: readMzXMLData, extractSpectra, writeMzTabData, makeMTD, makePEP, makePRT, NAnnotatedDataFrame
class.

estimateMzResolution,MSnExp-method
Estimate the m/z resolution of a spectrum

Description

estimateMzResolution estimates the m/z resolution of a profile-mode Spectrum (or of all spec-
tra in an MSnExp or OnDiskMSnExp object. The m/z resolution is defined as the most frequent
difference between a spectrum’s m/z values.

Usage
S4 method for signature 'MSnExp'

estimateMzResolution(object, ...)

S4 method for signature 'Spectrum'
estimateMzResolution(object, ...)

40 estimateMzResolution,MSnExp-method

Arguments
object either a Spectrum, MSnExp or OnDiskMSnExp object.
currently not used.
Value

numeric(1) with the m/z resolution. If called on a MSnExp or OnDiskMSnExp a 1ist of m/z resolu-
tions are returned (one for each spectrum).

Note

This assumes the data to be in profile mode and does not return meaningful results for centroided
data.

The estimated m/z resolution depends on the number of ions detected in a spectrum, as some in-
strument don’t measure (or report) signal if below a certain threshold.

Author(s)

Johannes Rainer

Examples

Load a profile mode example file
library(BiocParallel)
register(SerialParam())
library(msdata)
f <- proteomics(full.names = TRUE,
pattern = "TMT_Erwinia_TuLSike_Top1@HCD_isol2_45stepped_60min_01.mzML.gz")

od <- readMSData(f, mode = "onDisk")

Estimate the m/z resolution on the 3rd spectrum.
estimateMzResolution(od[[3]1])

Estimate the m/z resolution for each spectrum
mzr <- estimateMzResolution(od)

plot the distribution of estimated m/z resolutions. The bimodal

distribution represents the m/z resolution of the MS1 (first peak) and
MS2 spectra (second peak).

plot(density(unlist(mzr)))

estimateMzScattering 41

estimateMzScattering Estimate m/z scattering in consecutive scans

Description

Estimate scattering of m/z values (due to technical, instrument specific noise) for the same ion in
consecutive scans of a LCMS experiment.

Usage

estimateMzScattering(x, halfWindowSize = 1L, timeDomain = FALSE)

Arguments

X MSnExp or OnDiskMSnExp object.

halfWindowSize integer (1) defining the half window size for the moving window to combine
consecutive spectra.

timeDomain logical (1) whether m/z scattering should be estimated on mz (timeDomain =
FALSE) or sqrt(mz) (timeDomain = TRUE) values. See combineSpectraMovingWindow()
for details on this parameter.

Details

The m/z values of the same ions in consecutive scans (spectra) of a LCMS run will not be identical.
This random noise is expected to be smaller than the resolution of the MS instrument. The distribu-
tion of differences of m/z values from neighboring spectra is thus expected to be (at least) bi-modal
with the first peak representing the above described random variation and the second (or largest)
peak the m/z resolution. The m/z value of the first local minimum between these first two peaks in
the distribution is returned as the m/z scattering.

Note

For timeDomain = TRUE the function does not return the estimated scattering of m/z values, but the
scattering of sqrt(mz) values.

Author(s)

Johannes Rainer

See Also

estimateMzResolution() for the function to estimate a profile-mode spectrum’s m/z resolution
from it’s data.

42 estimateNoise-methods

Examples

library(MSnbase)

library(msdata)

Load a profile-mode LC-MS data file

f <- dir(system.file("sciex"”, package = "msdata"), full.names = TRUE)[1]
od <- readMSData(f, mode = "onDisk")

im <- as(filterRt(od, c(10, 20)), "MSnExp")

res <- estimateMzScattering(im)

Plot the distribution of estimated m/z scattering
plot(density(unlist(res)))

Compare the m/z resolution and m/z scattering of the spectrum with the
most peaks
idx <- which.max(unlist(spectrapply(im, peaksCount)))

res[[idx]]

abline(v = res[[idx]], 1ty = 2)

estimateMzResolution(im[[idx]1])

As expected, the m/z scattering is much lower than the m/z resolution.

estimateNoise-methods Noise Estimation for 'Spectrum’ instances

Description

This method performs a noise estimation on individual spectra (Spectrum instances). There are cur-
rently two different noise estimators, the Median Absolute Deviation (method = "MAD") and Fried-
man’s Super Smoother (method = "SuperSmoother"), as implemented in the MALDIquant: : detectPeaks
and MALDIquant: :estimateNoise functions respectively.

Methods
signature(object = "Spectrum”, method = "character”, ...) Estiamtes the noise in a non-
centroided spectrum (Spectrum instance). method could be "MAD" or "SuperSmoother"”. The
arguments . . . are passed to the noise estimator functions implemented in MALDIquant: : estimateNoise.
Currenlty only the method = "SuperSmoother” accepts additional arguments, e.g. span.
Please see supsmu for details. This method returns a two-column matrix with the m/z and
intensity values in the first and the second column.
signature(object = "MSnExp"”, method = "character”, ...) Estimates noise for all spectra in
object.
Author(s)

Sebastian Gibb <mail @sebastiangibb.de>

expandFeature Vars 43

References
S. Gibb and K. Strimmer. 2012. MALDIquant: a versatile R package for the analysis of mass spec-
trometry data. Bioinformatics 28: 2270-2271. http://strimmerlab.org/software/maldiquant/
See Also

pickPeaks, and the underlying method in MALDIquant: estimateNoise.

Examples

sp1 <- new("Spectruml”,
intensity = c(1:6, 5:1),

mz = 1:11,
centroided = FALSE)
estimateNoise(spl1, method = "SuperSmoother”)
expandFeatureVars Expand or merge feature variables

Description

The expandFeatureVars and mergeFeatureVars respectively expand and merge groups of feature
variables. Using these functions, a set of columns in a feature data can be merged into a single new
data.frame-column variables and a data.frame-column can be expanded into single feature columns.
The original feature variables are removed.

Usage

expandFeatureVars(x, fcol, prefix)

mergeFeatureVars(x, fcol, fcol2)

Arguments
X An object of class MSnSet.
fcol A character() of feature variables to expand (for expandFeatureVars) or
merge (for mergeFeatureVars).
prefix A character (1) to use as prefix to the new feature variables. If missing (de-
fault), then fcol is used instead. If NULL, then no prefix is used.
fcol2 A character (1) defining the name of the new feature variable.
Value

An MSnSet for expanded (merged) feature variables.

Author(s)

Laurent Gatto

http://strimmerlab.org/software/maldiquant/

44 extractPrecSpectra-methods

Examples

library("pRolocdata”)

data(hyperLOPIT2015)

fvarLabels(hyperLOPIT2015)

Let's merge all svm prediction feature variables

(k <- grep("*svm”, fvarLabels(hyperLOPIT2015), value = TRUE))
hl <- mergeFeatureVars(hyperLOPIT2015, fcol = k, fcol2 = "SVM")
fvarLabels(hl)

head(fData(hl)$SVM)

Let's expand the new SVM into individual columns

hl2 <- expandFeatureVars(hl, "SVM")

fvarLabels(hl2)

We can set the prefix manually

hl2 <- expandFeatureVars(hl, "SVM", prefix = "Expanded")
fvarLabels(hl2)

If we don't want any prefix

hl2 <- expandFeatureVars(hl, "SVM", prefix = NULL)
fvarLabels(hl2)

extractPrecSpectra-methods
Extracts precursor-specific spectra from an "MSnExp’ object

Description

Extracts the MSMS spectra that originate from the precursor(s) having the same MZ value as defined
in theprec argument.

A warning will be issued of one or several of the precursor MZ values in prec are absent in the
experiment precursor MZ values (i.e in precursorMz(object)).

Methods

signature(object = "MSnExp"”, prec = "numeric”) Returns an "MSnExp" containing MSMS spec-
tra whose precursor MZ values are in prec.

Author(s)

Laurent Gatto

Examples

file <- dir(system.file(package="MSnbase"”,dir="extdata"),
full.name=TRUE,pattern="mzXML$")

aa <- readMSData(file,verbose=FALSE)

my.prec <- precursorMz(aa)[1]

my.prec

bb <- extractPrecSpectra(aa,my.prec)

precursorMz(bb)

processingData(bb)

extractSpectraData 45

extractSpectraData Conversion between objects from the Spectra and MSnbase packages

Description

The Spectra package provides a more robust and efficient infrastructure for mass spectrometry data
handling and analysis. So, wherever possible, the newer Spectra package should be used instead
of the MSnbase. The functions listed here allow to convert between objects from the MSnbase and
Spectra packages.

extractSpectraData extracts the spectra data (m/z and intensity values including metadata) from
MSnExp, OnDiskMSnExp, Spectruml, Spectrum?2 objects (or 1ist of such objects) and returns
these as a DataFrame that can be used to create a Spectra::Spectra object.This function enables thus
to convert data from the old MSnbase package to the newer Spectra package.

To convert a Spectra object to a MSpectra object use as(sps, "MSpectra”) where sps is a
Spectra object.

Usage

extractSpectraData(x)

Arguments
X a list of Spectrum objects or an object extending MSnExp or a MSpectra ob-
ject.
Value

* extracSpectraData() returns a DataFrame() with the full spectrum data that can be passed
to the Spectra: : Spectra() function to create a Spectra object.

* as(x, "MSpectra") returns a MSpectra object with the content of the Spectra object x.

Note

Coercion from Spectra to a MSpectra will only assign values to the contained Spectruml and
Spectrum? objects, but will not add all eventually spectra variables present in Spectra.

Author(s)

Johannes Rainer

Examples

Read an mzML file with MSnbase

fl <- system.file("TripleTOF-SWATH", "PestMix1_SWATH.mzML",
package = "msdata")

data <- filterRt(readMSData(fl, mode = "onDisk"), rt = c(1, 6))

https://bioconductor.org/packages/Spectra

46 factorsAsStrings

Extract the data as a DataFrame
res <- extractSpectraData(data)
res

library(Spectra)

This can be used as an input for the Spectra constructor of the
Spectra package:

sps <- Spectra::Spectra(res)

sps

A Spectra object can be coerced to a MSnbase MSpectra object using
msps <- as(sps, "MSpectra")

factorsAsStrings Converts factors to strings

Description

This function produces the opposite as the stringsAsFactors argument in the data.frame or
read. table functions; it converts factors columns to characters.

Usage

factorsAsStrings(x)
Arguments

X A data.frame
Value

A data.frame where factors are converted to characters.

Author(s)

Laurent Gatto

Examples

data(iris)
str(iris)
str(factorsAsStrings(iris))

FeatComp-class 47

FeatComp-class Class "FeatComp”

Description

Comparing feature names of two comparable MSnSet instances.

Objects from the Class

Objects can be created with compfnames. The method compares the feature names of two objects
of class "MSnSet”. It prints a summary matrix of common and unique feature names and invisibly
returns a list of FeatComp instances.

The function will compute the common and unique features for all feature names of the two input
objects (featureNames(x) and feautreNames(y)) as well as distinct subsets as defined in the
fcoll and fcol2 feautre variables.

Slots

name: Object of class "character"” defining the name of the compared features. By convention,
"all" is used when all feature names are used; otherwise, the respective levels of the feature
variables fcol1 and fcol2.

common: Object of class "character” with the common feature names.
uniquel: Objectof class "character” with the features unique to the first MSnSet (x in compfname).
unique2: Object of class "character” with the features unique to the seconn MSnSet (y in compfname).

all: Object of class "logical” defining if all features of only a subset were compared. One
expects that name == "all"” when all is TRUE.

Methods

Accessors names, common, uniquel and unique2 can be used to access the respective FeatComp
slots.

compfnames signature(x = "MSnSet"”, y = "MSnSet"”, fcol1 = "character”, fcol2 = "character”,
simplify = "logical”, verbose = "logical”): creates the FeatComp comparison object
for instances x and y. The feature variables to be considered to details feature comparison can
be defined by fcol1 (default is "markers” and fcol2 for x and y respectively). Setting either
to NULL will only consider all feature names; in such case, of simplify is TRUE (default), an
FeatComp object is returned instead of a list of length 1. The verbose logical controls if a
summary table needs to be printed (default is TRUE).

compfnames signature(x ="list", y="missing", ...): when x is alist of MSnSet instances,
compfnames is applied to all element pairs of x. Additional parameters fcol1, fcol2, simplify
and verbose are passed to the pairwise comparison method.

show signature(object = "FeatComp"): prints a summary of the object.

48 featureCV

Author(s)

Laurent Gatto and Thomas Naake

See Also

averageMSnSet to compuate an average MSnSet.

Examples

library("pRolocdata”)

data(tan2009r1)

data(tan2009r2)

x <- compfnames(tan2009ri1, tan2009r2)
x[[1]]

x[2:3]

head(common(x[[111))

data(tan2009r3)

tanl <- list(tan2009r1, tan2009r2, tan2009r3)
xx <- compfnames(tanl, fcoll = NULL)
length(xx)

tail (xx)

all.equal(xx[[15]],
compfnames(tan2009r2, tan2009r3, fcoll = NULL))
str(sapply(xx, common))

featureCV Calculates coeffivient of variation for features

Description

This function calculates the column-wise coefficient of variation (CV), i.e. the ration between the
standard deviation and the mean, for the features in an MSnSet. The CVs are calculated for the
groups of features defined by groupBy. For groups defined by single features, NA is returned.

Usage
featureCV(x, groupBy, na.rm = TRUE, norm = "none”, suffix = NULL)

Arguments
X An instance of class MSnSet.
groupBy An object of class factor defining how to summarise the features.
na.rm A logical(1) defining whether missing values should be removed.
norm One of normalisation methods applied prior to CV calculation. See normalise()

for more details. Here, the default is 'none', i.e. no normalisation.

FeaturesOfInterest-class 49

suffix A character (1) to be used to name the new CV columns. Default is NULL to
ignore this. This argument should be set when CV values are already present in
the MSnSet feature variables.

Value

A matrix of dimensions length(levels(groupBy)) by ncol(x) with the respecive CVs. The
column names are formed by pasting CV. and the sample names of object x, possibly suffixed by
.suffix.

Author(s)

Laurent Gatto and Sebastian Gibb

See Also

combineFeatures()

Examples

data(msnset)

msnset <- msnset[1:4]

gb <- factor(rep(1:2, each = 2))
featureCV(msnset, gb)
featureCV(msnset, gb, suffix = "2")

FeaturesOfInterest-class
Features of Interest

Description

The Features of Interest infrastructure allows to define a set of features of particular interest to be
used/matched against existing data sets contained in "MSnSet"”. A specific set of features is stored
as an FeaturesOfInterest object and a collection of such non-redundant instances (for example
for a specific organism, project, ...) can be collected in a FoICollection.

Objects from the Class

Objects can be created with the respective FeaturesOfInterest and FoICollection constructors.

FeaturesOfInterest instances can be generated in two different ways: the constructor takes either
(1) a set of features names (a character vector) and a description (character of length 1 - any
subsequent elements are silently ignored) or (2) feature names, a description and an instance of class
"MSnSet”. In the latter case, we call such FeaturesOfInterest objects traceable, because we can
identify the origin of the feature names and thus their validity. This is done by inspecting the MSnSet
instance and recording its dimensions, its name and a unique md5 hash tag (these are stores as part
of the optional objpar slot). In such cases, the feature names passed to the FeaturesOfInterest
constructor must also be present in the MSnSet; if one or more are not, an error will be thrown. If

50

FeaturesOfInterest-class

your features of interest to be recorded stem for an existing experiment and have all been observed,
it is advised to pass the 3 arguments to the constructor to ensure that the feature names as valid.
Otherwise, only the third argument should be omitted.

FoICollection instances can be constructed by creating an empty collection and serial additions of
FeaturesOfInterest using addFeaturesOfInterest or by passing alist of FeaturesOfInterest
instance.

Slots

FeaturesOfInterest class:

description: Object of class "character"” describing the instance.

objpar: Optional object of class "1ist" providing details about the MSnSet instance originally
used to create the instance. See details section.

fnames: Object of class "character” with the feature of interest names.
date: Object of class "character” with the date the instance was first generated.

.__classVersion__: Object of class "Versions” with the FeaturesOfInterest class version.
Only relevant for development.

FoICollection class:

foic: Object of class "1ist"” with the FeaturesOfInterest.

.__classVersion__: Object of class "Versions” with the FoICollection class version. Only
relevant for development.

Extends

Class "Versioned”, directly.

Methods

FeaturesOfInterest class:

description signature(object = "FeaturesOfInterest”): returns the description of object.
foi signature(object = "FeaturesOfInterest”): returns the features of interests.

length signature(x = "FeaturesOfInterest"”): returns the number of features of interest in x.
show signature(object = "FeaturesOfInterest"”): displays object.

fnamesIn signature(x = "FeaturesOfInterst”, y = "MSnSet", count = "logical"): if count
is FALSE (default), return a logical indicating whether there is at least one feautre of interest
present in x? Otherwise, returns the number of such features. Works also with matrices and
data.frames.

[Subsetting works like lists. Returns a new FoICollection.

[[Subsetting works like lists. Returns a new FeatureOfInterest.

FoICollection class:

description signature(object = "FoICollection"): returns the description of object.

FeaturesOfInterest-class 51

foi signature(object = "FoICollection"): returns a list of FeaturesOfInterest.

length signature(x = "FoICollection"): returns the number of FeaturesOfInterest in the
collection.

lengths signature(x = "FoICollection"): returns the number of features of interest in each
FeaturesOfInterest in the collection x.

addFeaturesOfInterest signature(x = "FeaturesOflInterest”, y="FoICollection"): add the
FeaturesOfInterest instance x to FoICollection y. If x is already present, a message is
printed and y is returned unchanged.

rmFeaturesOfInterest signature(object = "FoICollection”, i = "numeric”): removes the
ith FeatureOfInterest in the collection object.

show signature(object = "FoICollection™): displays object.

Author(s)

Laurent Gatto

Examples

library("pRolocdata”)

data(tan2009r1)

X <- FeaturesOfInterest(description = "A traceable test set of features of interest”,
fnames = featureNames(tan2009r1)[1:10],
object = tan2009r1)

X

description(x)

foi(x)

y <- FeaturesOfInterest(description = "Non-traceable features of interest”,
fnames = featureNames(tan2009r1)[111:113])

y

an illegal FeaturesOfInterest

try(FeaturesOfInterest(description = "Won't work”,
fnames = c("A", "Z", featureNames(tan2009r1)),
object = tan2009r1))

FeaturesOfInterest(description = "This work, but not traceable”,
fnames = c("A", "Z", featureNames(tan2009r1)))

xx <- FoICollection()
XX

xx <- addFeaturesOfInterest(x, xx)
xx <- addFeaturesOfInterest(y, xx)
names(xx) <- LETTERS[1:2]

52 fillUp

XX

Sub-setting
xx[1]

xx[[1]1]
xx[["A"]]

description(xx)
foi(xx)

fnamesIn(x, tan2009r1)
fnamesIn(x, tan2009r1, count = TRUE)

rmFeaturesOfInterest(xx, 1)

fillUp Fills up a vector

Description

nn

This function replaces all the empty characters "" and/or NAs with the value of the closest preceding
the preceding non-NA/"" element. The function is used to populate dataframe or matrice columns
where only the cells of the first row in a set of partially identical rows are explicitly populated and
the following are empty.

Usage
fillUp(x)

Arguments

X a vector.

Value

nn

A vector as x with all empty characters "" and NA values replaced by the preceding non-NA/"" value.

Author(s)

Laurent Gatto

Examples
d <- data.frame(protein=c("Prot1”,"",”"”,"Prot2”,"",""),
peptide=c("pepl1”,"", "pepl2”, "pep21”, "pep22”,""Y
score=c(1:2,NA,1:3))
d

e <- apply(d,2,fillUp)

filterIdentificationDataFrame 53

e
data.frame(e)
fillUp(d[,11)

filterIdentificationDataFrame
Filter out unreliable PSMs.

Description

A function to filter out PSMs matching to the decoy database, of rank greater than one and matching
non-proteotypic peptides.

Usage
filterIdentificationDataFrame(
X,
decoy = "isDecoy"”,
rank = "rank”,
accession = "DatabaseAccess”,
spectrumID = "spectrumID”,
verbose = isMSnbaseVerbose()
)
Arguments
X A data. frame containing PSMs.
decoy The column name defining whether entries match the decoy database. Default is
"isDecoy"”. The column should be a logical and only PSMs holding a FALSE
are retained. Ignored is set to NULL.
rank The column name holding the rank of the PSM. Default is "rank”. This column
should be a numeric and only PSMs having rank equal to 1 are retained. Ignored
is set to NULL.
accession The column name holding the protein (groups) accession. Defaultis "DatabaseAccess”.
Ignored is set to NULL.
spectrumID The name of the spectrum identifier column. Default is spectrumID.
verbose A logical verbosity flag. Default is to take isMSnbaseVerbose().
Details

The PSMs should be stored in a data.frame such as those produced by readMzIdData(). Note
that this function should be called before calling the reduce method on a PSM data. frame.

Value

A new data. frame with filtered out peptides and with the same columns as the input x.

54

Author(s)

Laurent Gatto

getVariableName

formatRt Format Retention Time

Description

This function is used to convert retention times. Conversion is seconds to/from the more human
friendly format "mm:sec". The implementation is from MsCoreUtils: : formatRt().

Usage
formatRt(rt)

Arguments

rt retention time in seconds (numeric) or "mm:sec" (character).

Value

A vector of same length as rt.

Author(s)

Laurent Gatto and Sebastian Gibb

Examples

formatRt(1524)
formatRt("25:24")

getVariableName Return a variable name

Description

Return the name of variable varname in call match_call.

Usage

getVariableName(match_call, varname)

Arguments

match_call An object of class call, as returned by match.call.

varname An character of length 1 which is looked up in match_call.

grepEcols 55

Value

A character with the name of the variable passed as parameter varname in parent close of match_call.

Author(s)

Laurent Gatto

Examples

a<-1

f <- function(x, y)

MSnbase: : :getVariableName(match.call(), "x")
f(x = a)

fly = a)

grepEcols Returns the matching column names of indices.

Description

Given a text spread sheet f and a pattern to be matched to its header (first line in the file), the
function returns the matching columns names or indices of the corresponding data. frame.

The function starts by reading the first line of the file (or connection) f with readLines, then splits
it according to the optional ... arguments (it is important to correctly specify strsplit’s split
character vector here) and then matches pattern to the individual column names using grep.

Similarly, getEcols can be used to explore the column names and decide for the appropriate
pattern value.

These functions are useful to check the parameters to be provided to readMSnSet2.

Usage
grepEcols(f, pattern, ..., n =1)
getEcols(f, ..., n=1)
Arguments
f A connection object or a character string to be read in with readLines(f, n
=1).
pattern A character string containing a regular expression to be matched to the file’s
header.
Additional parameters passed to strsplit to split the file header into individual
column names.
n An integer specifying which line in file f to grep (get). Default is 1. Note that

this argument must be named.

56 hasSpectra

Value

Depending on value, the matching column names of indices. In case of getEcols, a character of
column names.

Author(s)

Laurent Gatto

See Also

readMSnSet?2

hasSpectra Checks if raw data files have any spectra or chromatograms

Description

Helper functions to check whether raw files contain spectra or chromatograms.

Usage

hasSpectra(files)

hasChromatograms(files)

Arguments

files A character () with raw data filenames.

Value

A logical(n) where n == length(x) with TRUE if that files contains at least one spectrum, FALSE
otherwise.

Author(s)

Laurent Gatto

Examples

f <- msdata::proteomics(full.names = TRUE)[1:2]
hasSpectra(f)
hasChromatograms(f)

imageNA2

57

imageNA2

NA heatmap visualisation for 2 groups

Description

Produces a heatmap after reordring rows and columsn to highlight missing value patterns.

Usage

imageNA2(
object,
pcol,
Rowv,
Colv = TRUE,
useGroupMean
plot = TRUE,

Arguments

object
pcol

Rowv

Colv

useGroupMean

plot

Value

= FALSE,

An instance of class MSnSet

Either the name of a phenoData variable to be used to determine the group struc-
ture or a factor or any object that can be coerced as a factor of length equal
to nrow(object). The resulting factor must have 2 levels. If missing (default)
image(object) is called.

Determines if and how the rows/features are reordered. If missing (default),
rows are reordered according to order ((nNAT + 1)*2/(nNA2 + 1)), where NA1
and NA2 are the number of missing values in each group. Use a vector of
numerics of feautre names to customise row order.

A logical that determines if columns/samples are reordered. Default is TRUE.

Replace individual feature intensities by the group mean intensity. Default is
FALSE.

A logical specifying of an image should be produced. Default is TRUE.

Additional arguments passed to image.

Used for its side effect of plotting. Invisibly returns Rovw and Colv.

Author(s)

Laurent Gatto, Samuel Wieczorek and Thomas Burger

58 impute,MSnSet-method

Examples

library("pRolocdata”)

library("pRoloc")

data(dunkley2006)

pcol <- ifelse(dunkley2006$fraction <= 5, "A", "B")

nax <- makeNaData(dunkley2006, pNA = 0.10)
exprs(nax)[sample(nrow(nax), 30), pcol == "A"] <- NA
exprs(nax)[sample(nrow(nax), 50), pcol == "B"] <- NA
MSnbase: : : imageNA2(nax, pcol)

MSnbase: : : imageNA2(nax, pcol, useGroupMean = TRUE)
MSnbase: : : imageNA2(nax, pcol, Colv = FALSE, useGroupMean = FALSE)
MSnbase: : : imageNA2(nax, pcol, Colv = FALSE, useGroupMean = TRUE)

impute,MSnSet-method Quantitative proteomics data imputation

Description

The impute method performs data imputation on MSnSet instances using a variety of methods.

Users should proceed with care when imputing data and take precautions to assure that the impu-
tation produce valid results, in particular with naive imputations such as replacing missing values
with 0.

See MsCoreUtils: :impute_matrix() for details on the different imputation methods available
and strategies.

Usage
S4 method for signature 'MSnSet'
impute(object, method, ...)
Arguments
object An MSnSet object with missing values to be imputed.
method character (1) defining the imputation method. See MsCoreUtils: : imputeMethods()

for available ones. See MsCoreUtils: :impute_matrix() for details.

Additional parameters passed to the inner imputation function. See MsCoreUtils: :impute_matrix()
for details.

Examples
data(naset)

table of missing values along the rows
table(fData(naset)$nNA)

table of missing values along the columns
pData(naset)$nNA

iPQF 59

non-random missing values

notna <- which(!fData(naset)$randna)
length(notna)

notna

impute(naset, method = "min”

if (require(”imputeLCMD")) {
impute(naset, method = "QRILC")
impute(naset, method = "MinDet")

}

if (require("norm"))
impute(naset, method

"MLE")

impute(naset, "mixed"”,
randna = fData(naset)$randna,
mar = "knn", mnar = "QRILC")

neighbour averaging
X <- naset[1:4, 1:6]

exprs(x)[1, 11 <- NA ## min value

exprs(x)[2, 3] <- NA ## average

exprs(x)[3, 1:2] <- NA ## min value and average
4th row: no imputation

exprs(x)

exprs(impute(x, "nbavg"))

iPQF iPQF': iTRAQ (and TMT) Protein Quantification based on Features

Description

The iPQF spectra-to-protein summarisation method integrates peptide spectra characteristics and
quantitative values for protein quantitation estimation. Spectra features, such as charge state, se-
quence length, identification score and others, contain valuable information concerning quantifi-
cation accuracy. The iPQF algorithm assigns weights to spectra according to their overall feature
reliability and computes a weighted mean to estimate protein quantities. See also combineFeatures
for a more general overview of feature aggregation and examples.

Usage
iPQF (
object,
groupBy,

60 iPQF

low.support.filter = FALSE,
ratio.calc = "sum",
method.combine = FALSE,

feature.weight = c(7, 6, 4, 3, 2, 1, 5)*2

)
Arguments
object An instance of class MSnSet containing absolute ion intensities.
groupBy Vector defining spectra to protein matching. Generally, this is a feature variable

such as fData(object)$accession.

low.support.filter
A logical specifying if proteins being supported by only 1-2 peptide spectra
should be filtered out. Default is FALSE.

ratio.calc Either "none” (don’t calculate any ratios), "sum” (default), or a specific chan-
nel (one of sampleNames(object)) defining how to calculate relative peptides
intensities.

method.combine A logical defining whether to further use median polish to combine features.

feature.weight Vector "numeric” giving weight to the different features. Default is the squared
order of the features redundant -unique-distance metric, charge state, ion inten-
sity, sequence length, identification score, modification state, and mass based on
a robustness analysis.

Value

A matrix with estimated protein ratios.

Author(s)

Martina Fischer

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

Examples

data(msnset2)

head(exprs(msnset2))

prot <- combineFeatures(msnset2,
groupBy = fData(msnset2)$accession,
method = "iPQF")

head(exprs(prot))

isCentroidedFromFile 61

isCentroidedFromFile Get mode from mzML data file

Description

The function extracts the mode (profile or centroided) from the raw mass spectrometry file by pars-
ing the mzML file directly. If the object x stems from any other type of file, NAs are returned.

Usage

isCentroidedFromFile(x)

Arguments

X An object of class OnDiskMSnExp.

Details

This function is much faster than isCentroided(), which estimates mode from the data, but is
limited to data stemming from mzML files which are still available in their original location (and
accessed with fileNames(x)).

Value

A named logical vector of the same length as x.

Author(s)

Laurent Gatto

Examples

library("msdata”)
f <- proteomics(full.names = TRUE,
pattern = "TMT_Erwinia_TuLSike_Top1@HCD_isol2_45stepped_60min_01.mzML.gz")
X <- readMSData(f, mode = "onDisk")
table(isCentroidedFromFile(x), msLevel(x))

62 iTRAQ4

iTRAQ4 iTRAQ 4-plex set

Description

This instance of class "ReporterIons” corresponds to the iTRAQ 4-plex set, i.e the 114, 115,
116 and 117 isobaric tags. In the iTRAQS data set, an unfragmented tag, i.e reporter and attached
isobaric tag, is also included at MZ 145. These objects are used to plot the reporter ions of interest
in an MSMS spectra (see "Spectrum2") as well as for quantification (see quantify).

Usage

iTRAQ4
iTRAQ5
iTRAQS8
iTRAQ9

References

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S,
Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin
DJ. "Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric
tagging reagents." Mol Cell Proteomics, 2004 Dec;3(12):1154-69. Epub 2004 Sep 22. PubMed
PMID: 15385600.

See Also

TMT6.

Examples

iTRAQ4
iTRAQ4[1:2]

newReporter <- new("ReporterIons”,
description="an example”,
name="my reporter ions",
reporterNames=c("myrepl1”, "myrep2"),
mz=c(121,122),
col=c("red","blue"),
width=0.05)

newReporter

itraqdata 63

itraqdata Example MSnExp and MSnSet data sets

Description

itraqdata is and example data sets is an iTRAQ 4-plex experiment that has been run on an Orbitrap
Velos instrument. It includes identification data in the feature data slot obtain from the Mascot
search engine. It is a subset of an spike-in experiment where proteins have spiked in an Erwinia
background, as described in

Karp et al. (2010), Addressing accuracy and precision issues in iTRAQ quantitation, Mol Cell
Proteomics. 2010 Sep;9(9):1885-97. Epub 2010 Apr 10. (PMID 20382981).

The spiked-in proteins in itradata are BSA and ENO and are present in relative abundances 1,
2.5,5,10and 10, 5, 2.5, 1 in the 114, 115, 116 and 117 reporter tags.

The msnset object is produced by running the quantify method on the itraqdata experimental
data, as detailed in the quantify example. This example data set is used in the MSnbase-demo
vignette, available with vignette(”"MSnbase-demo”, package="MSnbase").

The msnset2 object is another example iTRAQ4 data that is used to demonstrate features of the
package, in particular the iPQF feature aggregation method, described in iPQF. It corresponds to 11
proteins with spectra measurements from the original data set described by Breitwieser et al. (2011)

General statistical modeling of data from protein relative expression isobaric tags. J. Proteome
Res., 10, 2758-2766.

Usage

itraqdata

Examples

data(itraqdata)
itraqdata

created by

msnset <- quantify(itragdata, method = "trap"”, reporters = iTRAQ4)
data(msnset)

msnset

data(msnset2)
msnset?2

64 makeCamelCase

listof Tests equality of list elements class

Description

Compares equality of all members of a list.

Usage
listOf(x, class, valid = TRUE)

Arguments

X Alist.

class A character defining the expected class.

valid A logical defining if all elements should be tested for validity. Default is TRUE.
Value

TRUE is all elements of x inherit from class.

Author(s)

Laurent Gatto

Examples

listOf (list(), "foo")
listOf(list("a", "b"), "character”)
listOf(list("a", 1), "character"”)

makeCamelCase Convert to camel case by replacing dots by captial letters

Description

Convert a vector of characters to camel case by replacing dots by captial letters.

Usage

makeCamelCase(x, prefix)

Arguments

X A vector to be transformed to camel case.

prefix An optional character of length one. Any additional elements are ignores.

makeNaData 65

Value

A character of same length as x.

Author(s)

Laurent Gatto

Examples
nms <- c("aa.foo"”, "ab.bar")
makeCamelCase (nms)
makeCamelCase(nms, prefix = "x")
makeNaData Create a data with missing values
Description

These functions take an instance of class "MSnSet” and sets randomly selected values to NA.

Usage
makeNaData(object, nNA, pNA, exclude)

makeNaData2(object, nRows, nNAs, exclude)

whichNA(x)
Arguments
object An instance of class MSnSet.
nNA The absolute number of missing values to be assigned.
pNA The proportion of missing values to be assignmed.
exclude A vector to be used to subset object, defining rows that should not be used to
set NAs.
nRows The number of rows for each set.
nNAs The number of missing values for each set.
X A matrix or an instance of class MSnSet.
Details

makeNaData randomly selects a number nNA (or a proportion pNA) of cells in the expression matrix
to be set to NA.

makeNaData2 will select length(nRows) sets of rows from object, each with nRows[i] rows
respectively. The first set will be assigned nNAs[1] missing values, the second nNAs[2], ... As
opposed to makeNaData, this permits to control the number of NAs per rows.

The whichNA can be used to extract the indices of the missing values, as illustrated in the example.

66 makeNaData

Value

An instance of class MSnSet, as object, but with the appropriate number/proportion of missing
values. The returned object has an additional feature meta-data columns, nNA

Author(s)

Laurent Gatto

Examples

Example 1
library(pRolocdata)
data(dunkley2006)
sum(is.na(dunkley2006))
dunkleyNA <- makeNaData(dunkley2006, nNA
processingData(dunkleyNA)
sum(is.na(dunkleyNA))
table(fData(dunkleyNA)$nNA)
naldx <- whichNA(dunkleyNA)
head(naldx)
Example 2
dunkleyNA <- makeNaData(dunkley2006, nNA = 150, exclude = 1:10)
processingData(dunkleyNA)
table(fData(dunkleyNA)$nNAL1:10])
table(fData(dunkleyNA)$nNA)
Example 3
nr <- rep(10, 5)
na <- 1:5
x <- makeNaData2(dunkley2006[1:100, 1:5],

nRows = nr,

nNAs = na)
processingData(x)
(res <- table(fData(x)$nNA))
stopifnot(as.numeric(names(res)[-1]1) == na)
stopifnot(res[-1] == nr)
Example 3
nr2 <- c(5, 12, 11, 8)
na2 <- c(3, 8, 1, 4)
x2 <- makeNaData2(dunkley2006[1:100, 1:101],

nRows = nr2,

nNAs = na2)
processingData(x2)
(res2 <- table(fData(x2)$nNA))
stopifnot(as.numeric(names(res2)[-1]) == sort(na2))
stopifnot(res2[-1] == nr2[order(na2)])
Example 5
nr3 <- c(5, 12, 11, 8)
na3 <- c(3, 8, 1, 3)
x3 <- makeNaData2(dunkley2006[1:100, 1:10],

nRows = nr3,

nNAs = na3)
processingData(x3)

150)

MChromatograms 67

(res3 <- table(fData(x3)$nNA))

MChromatograms Container for multiple Chromatogram objects

Description

The MChromatograms class allows to store Chromatogram() objects in a matrix-like two-dimensional
structure.

Usage
MChromatograms(data, phenoData, featureData, ...)

S4 method for signature 'MChromatograms'
show(object)

S4 method for signature 'MChromatograms,ANY,ANY,ANY'
x[i, j, drop = FALSE]

S4 replacement method for signature 'MChromatograms,ANY,ANY,ANY'
x[i, j] <- value

S4 method for signature 'MChromatograms,ANY'

plot(
X,
col = "#00000060",
1ty =1,
type = "1",
xlab = "retention time",
ylab = "intensity",
main = NULL,
)

S4 method for signature 'MChromatograms'
phenoData(object)

S4 method for signature 'MChromatograms'
pData(object)

S4 replacement method for signature 'MChromatograms,data.frame'
pData(object) <- value

S4 method for signature 'MChromatograms'
x$name

68

S4 replacement method for signature 'MChromatograms'
x$name <- value

S4 replacement method for signature 'MChromatograms,ANY'
colnames(x) <- value

S4 method for signature 'MChromatograms'
sampleNames(object)

S4 replacement method for signature 'MChromatograms,ANY'
sampleNames(object) <- value

S4 method for signature 'MChromatograms'
isEmpty(x)

S4 method for signature 'MChromatograms'
featureNames(object)

S4 replacement method for signature 'MChromatograms'
featureNames(object) <- value

S4 method for signature 'MChromatograms'
featureData(object)

S4 replacement method for signature 'MChromatograms,ANY'
featureData(object) <- value

S4 method for signature 'MChromatograms'
fData(object)

S4 replacement method for signature 'MChromatograms,ANY'
fData(object) <- value

S4 method for signature 'MChromatograms'
fvarLabels(object)

S4 replacement method for signature 'MChromatograms'
rownames(x) <- value

S4 method for signature 'MChromatograms'
precursorMz(object)

S4 method for signature 'MChromatograms'
productMz(object)

S4 method for signature 'MChromatograms'
mz(object)

MChromatograms

MChromatograms 69

S4 method for signature 'MChromatograms'
polarity(object)

S4 method for signature 'MChromatograms'
bin(x, binSize = 0.5, breaks = numeric(), fun = max)

S4 method for signature 'MChromatograms'
clean(object, all = FALSE, na.rm = FALSE)

S4 method for signature 'MChromatograms'
normalize(object, method = c("max"”, "sum"))

S4 method for signature 'MChromatograms'
filterIntensity(object, intensity =0, ...)

S4 method for signature 'MChromatograms,Chromatogram'
alignRt(x, y, method = c("closest”, "approx"), ...)

S4 method for signature 'MChromatograms'
c(x, ...)

S4 method for signature 'MChromatograms,missing'’
compareChromatograms(

X)

Y,

ALIGNFUN = alignRt,

ALIGNFUNARGS = 1list(),

FUN = cor,

FUNARGS = list(use = "pairwise.complete.obs”),

)

S4 method for signature 'MChromatograms,MChromatograms'
compareChromatograms(

X,

Y,

ALIGNFUN = alignRt,

ALIGNFUNARGS = 1list(),

FUN = cor,

FUNARGS = list(use = "pairwise.complete.obs”),

)

S4 method for signature 'MChromatograms'
transformIntensity(object, FUN = identity)

Arguments

data for MChromatograms: a list of Chromatogram() objects.

MChromatograms

phenoData for MChromatograms: either a data.frame, AnnotatedDataFrame describing
the phenotypical information of the samples.

featureData for MChromatograms: either a data. frame or AnnotatedDataFrame with addi-
tional information for each row of chromatograms.

for MChromatograms: additional parameters to be passed to the matrix con-
structor, such as nrow, ncol and byrow. For compareChromatograms: ignored.

object aMChromatograms object.

X for all methods: a MChromatograms object.

i for [: numeric, logical or character defining which row(s) to extract.

j for [: numeric, logical or character defining which columns(s) to extract.
drop for [: logical (1) whether to drop the dimensionality of the returned object (if

possible). The default is drop = FALSE, i.e. each subsetting returns aMChromatograms
object (or a Chromatogram object if a single element is extracted).

value for [<-: the replacement object(s). Can be a 1ist of [Chromatogram()objects or, if length ofiandja
object.
For “pData<-": a “data.frame™ with the number of rows matching

the number of columns of “object~.

For “colnames™: a “character™ with the new column names.

col for plot: the color to be used for plotting. Either a vector of length 1 or equal
to ncol (x).

1ty for plot: the line type (see plot in the graphics package for more details).
Can be either a vector of length 1 or of length equal to ncol(x).

type for plot: the type of plot (see plot from the graphics package for more de-
tails). Can be either a vector of length 1 or of length equal to ncol(x).

xlab for plot: the x-axis label.

ylab for plot: the y-axis label.

main for plot: the plot title. If not provided the mz range will be used as plot title.

name for $, the name of the pheno data column.

binSize for bin: numeric (1) with the size of the bins (in seconds).

breaks For bin: numeric defining the bins. Usually not required as the function calcu-

lates the bins automatically based on binSize and the retention time range of
chromatograms in the same row.

fun for bin: function to be used to aggregate the intensity values falling within each
bin.

all for clean: logical(1) whether all O-intensities should be removed (all =
TRUE), or whether O-intensities adjacent to peaks should be kept (all = FALSE;
default).

na.rm for clean: logical(1) whether all NA intensities should be removed prior to

clean O-intensity data points.

MChromatograms 71

method character(1). For normalise: defining whether each chromatogram should
be normalized to its maximum signal (method = "max") or total signal (method
= "sum"). For alignRt: alignment methods (see documentation for alignRt in
the Chromatogram() help page. Defaults to method = "closest”.

intensity for filterIntensity: numeric(1) or function to use to filter intensities. See
description for details.

y for alignRt: a Chromatogram() object against which x should be aligned
against.
ALIGNFUN for compareChromatograms: function to align chromatogram x against chro-

matogram y. Defaults to alignRt.
ALIGNFUNARGS list of parameters to be passed to ALIGNFUN.

FUN for transformIntensity: function to transform chromatograms’ intensity val-
ues. Defaults to FUN = identity.

FUNARGS for compareChromatograms: 1ist with additional parameters for FUN. Defaults
to FUNARGS = list(use = "pairwise.complete.obs"”).

Details

The MChromatograms class extends the base matrix class and hence allows to store Chromatogram()
objects in a two-dimensional array. Each row is supposed to contain Chromatogram objects for one
MS data slice with a common m/z and rt range. Columns contain Chromatogram objects from the
same sample.

Value

For [: the subset of the MChromatograms object. If a single element is extracted (e.g. if i and j
are of length 1) a Chromatogram() object is returned. Otherwise (if drop = FALSE, the default, is
specified) a MChromatograms object is returned. If drop = TRUE is specified, the method returns a
list of Chromatogram objects.

For “phenoData™: an ~AnnotatedDataFrame™ representing the
pheno data of the object.

For “pData™: a “data.frame” representing the pheno data of
the object.

For “$>: the value of the corresponding column in the pheno data
table of the object.

For all other methods see function description.

Object creation

MChromatograms are returned by a chromatogram() function from an MSnExp or OnDiskMSnExp.
Alternatively, the MChromatograms constructor function can be used.

72 MChromatograms

Data access

* $ and $<-: get or replace individual columns of the object’s phenodata.

* colnames and colnames<-: replace or set the column names of the MChromatograms object.
Does also set the rownames of the phenoData.

» fData: return the feature data as a data. frame.

» fData<-: replace the object’s feature data by passing a data. frame.

» featureData: return the feature data.
» featureData<-: replace the object’s feature data.

» featureNames: returns the feature names of the MChromatograms object.
» featureNames<-: set the feature names.

e fvarLabels: return the feature data variable names (i.e. column names).

* isEmpty: returns TRUE if the MChromatograms object or all of its Chromatogram objects is/are
empty or contain only NA intensities.

* mz: returns the m/z for each row of the MChromatograms object as a two-column matrix (with
columns "mzmin" and "mzmax").

* pData: accesses the phenotypical description of the samples. Returns a data. frame.
* pData<-: replace the phenotype data.

* phenoData: accesses the phenotypical description of the samples. Returns an AnnotatedDataFrame
object.

* polarity: returns the polarity of the scans/chromatograms: 1, @ or -1 for positive, negative
or unknown polarity.

* precursorMz: return the precursor m/z from the chromatograms. The method returns a
matrix with 2 columns ("mzmin” and "mzmax") and as many rows as there are rows in the
MChromatograms object. Each row contains the precursor m/z of the chromatograms in that
row. An error is thrown if the chromatograms within one row have different precursor m/z
values.

e productMz: return the product m/z from the chromatograms. The method returns a matrix
with 2 columns ("mzmin” and "mzmax") and as many rows as there are rows in the MChromatograms
object. Each row contains the product m/z of the chromatograms in that row. An error is
thrown if the chromatograms within one row have different product m/z values.

* rownames<-: replace the rownames (and featureNames) of the object.

Data subsetting, combining and filtering

* [subset (similar to a matrix) by row and column (with parameters i and j).

» [<- replace individual or multiple elements. value has to be either a single Chromatogram
obhect or a 1ist of Chromatogram objects.

* cconcatenate (row-wise) MChromatogram objects with the same number of samples (columns).

» filterIntensity: filter each Chromatogram() object within the MChromatograms removing
data points with intensities below the user provided threshold. If intensity is a numeric
value, the returned chromatogram will only contain data points with intensities > intensity.
In addition it is possible to provide a function to perform the filtering. This function is expected
to take the input Chromatogram (object) and to return a logical vector with the same length

MChromatograms 73

then there are data points in object with TRUE for data points that should be kept and FALSE
for data points that should be removed. See the filterIntensity documentation in the
Chromatogram() help page for details and examples.

Data processing and manipulation

e alignRt: align all chromatograms in an MChromatograms object against the chromatogram
specified with y. See documentation on alignRt in the Chromatogram() help page.

* bin: aggregates intensity values of chromatograms in discrete bins along the retention time
axis. By default, individual Chromatogram objects of one row are binned into the same bins.
The function returns a MChromatograms object with binned chromatograms.

* clean: removes O-intensity data points. Either all of them (with all = TRUE) or all except
those adjacent to non-zero intensities (all = FALSE; default). See clean() documentation for
more details and examples.

* compareChromatograms: calculates pairwise similarity score between chromatograms in x
and y and returns a similarity matrix with the number of rows corresponding to the number
of chromatograms in x and the number of columns to the number of chromatograms in y.
If y is missing, a pairwise comparison is performed between all chromatograms in x. See
documentation on compareChromatograms in the Chromatogram() help page for details.

* normalize, normalise: normalises the intensities of a chromatogram by dividing them ei-
ther by the maximum intensity (method = "max") or total intensity (method = "sum") of the
chromatogram.

* transformIntensity: allows to manipulate the intensity values of all chromatograms using
a user provided function. See below for examples.

Data visualization

* plot: plots a MChromatograms object. For each row in the object one plot is created, i.e. all
Chromatogram() objects in the same row are added to the same plot. If nrow(x) > 1 the plot
area is split into nrow(x) sub-plots and the chromatograms of one row are plotted in each.

Author(s)

Johannes Rainer

See Also

Chromatogram()] for the class representing chromatogram data. [chromatogram()] for the method to extrac
matogramsobject from aMSnExporOnDiskMSnExp object. [readSRMData() for the function
to read chromatographic data of an SRM/MRM experiment.

Examples

Creating some chromatogram objects to put them into a MChromatograms object
ints <- abs(rnorm(25, sd = 200))

chl <- Chromatogram(rtime = 1:length(ints), ints)

ints <- abs(rnorm(32, sd = 90))

ch2 <- Chromatogram(rtime = 1:length(ints), ints)

ints <- abs(rnorm(19, sd = 120))

74

MChromatograms

ch3 <- Chromatogram(rtime = 1:length(ints), ints)
ints <- abs(rnorm(21, sd = 40))
ch4 <- Chromatogram(rtime = 1:length(ints), ints)

Create a MChromatograms object with 2 rows and 2 columns
chrs <- MChromatograms(list(ch1l, ch2, ch3, ch4), nrow = 2)
chrs

Extract the first element from the second column. Extracting a single
element always returns a Chromatogram object.
chrs[1, 2]

Extract the second row. Extracting a row or column (i.e. multiple elements
returns by default a list of Chromatogram objects.
chrs[2,]

Extract the second row with drop = FALSE, i.e. return a MChromatograms
object.
chrs[2, , drop = FALSE]

Replace the first element.
chrs[1, 1] <- ch3
chrs

Add a pheno data.

pd <- data.frame(name = c("first sample”, "second sample”),
idx = 1:2)

pData(chrs) <- pd

Column