Package ‘FLAMES’

October 15, 2025
Title FLAMES: Full Length Analysis of Mutations and Splicing in long
read RNA-seq data
Version 2.2.0
Date 2023-03-27

Description Semi-supervised isoform detection and annotation from both bulk and single-cell
long read RNA-seq data. Flames provides automated pipelines for analysing isoforms,
as well as intermediate functions for manual execution.

biocViews RNASeq, SingleCell, Transcriptomics, Datalmport,
DifferentialSplicing, AlternativeSplicing, GeneExpression,
LongRead

BugReports https://github.com/mritchielab/FLAMES/issues
License GPL (>=3)
Encoding UTF-8

Imports abind, basilisk, bambu, BiocParallel, Biostrings,
BiocGenerics, circlize, ComplexHeatmap, cowplot, dplyr,
DropletUtils, GenomicRanges, GenomicFeatures, txdbmaker,
GenomicAlignments, GenomelInfoDb, ggplot2, ggbio, grid,
gridExtra, igraph, jsonlite, magrittr, magick, Matrix,
MatrixGenerics, readr, reticulate, Rsamtools, rtracklayer,
RColorBrewer, SparseArray (>= 1.7.7), SingleCellExperiment,
SummarizedExperiment, SpatialExperiment, scater, scatterpie,
S4Vectors, scuttle, stats, scran, stringr, tidyr, utils, withr,
future, methods, tibble, tidyselect, IRanges

Suggests BiocStyle, GEOquery, knitr, rmarkdown, BiocFileCache,
R.utils, ShortRead, uwot, testthat (>= 3.0.0), xml2

LinkingTo Rcpp, Rhtslib, testthat

SystemRequirements GNU make, C++17, samtools (>= 1.19), minimap2 (>=
2.17)

RoxygenNote 7.3.2
VignetteBuilder knitr

URL https://mritchielab.github.io/FLAMES

1

https://github.com/mritchielab/FLAMES/issues
https://mritchielab.github.io/FLAMES

Config/testthat/edition 3
Depends R (>=4.1.0)

LazyData true

LazyLoad yes

StagedInstall no

git_url https://git.bioconductor.org/packages/FLAMES
git_branch RELEASE_3_21
git_last_commit 273f0f6

git_last commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-10-15

Author Luyi Tian [aut],
Changqing Wang [aut, cre],
Yupei You [aut],

Oliver Voogd [aut],
Jakob Schuster [aut],
Shian Su [aut],
Matthew Ritchie [ctb]

Maintainer Changqing Wang <wang.ch@wehi.edu.au>

Contents

addRowRanges oL
add_gene_countso
annotation_to_fasta

bulk_long_pipeline,
combine SCe
convolution_filter
create_config
create_sce_from_diro
create_se_from_dir
Create_SPe o v vt e e e e e
cutadapt
demultiplex_sockeye
fake_stranded_gffo oL
filter_annotation
filter_coverage
find_barcode
find bin
find_isoform
find_variants
FLAMES oo
flexiplex

Contents

addRowRanges 3

GEL_COVETAZE .« « v v v v v e 25
get_GRangesList 26
minimap2_align L. e e e e 27
minimap2_realign L 28
MUtation_posSitions L. e e e e e e 29
mutation_positions_singleo Lo 31
PIOL_COVETage o i ot i e e e e e 31
plot_demultiplex 33
plot_isoforms e e 34
plot_isoform_heatmap 35
plot_isoform_reduced_dim L 36
plot_spatial_feature e 38
plot_spatial_isoform 39
plot_spatial_pie e e e e 40
quantify_gene e 40
quantify_transcript L e e e e 42
quantify_transcript_flameso Lo 43
scmixology_lib10 oL 44
scmixology_lib10_transcripts 45
scmixology 1ib90o 45
sc_DTU _analysis oo it e e 46
SC_IMPUte_transScript o oL e e e e e e e e e e e e e 48
sc_long_multisample_pipeline 49
sc_long_pipeline 51
SC_MULALIONS v v v e e e e e e e e e e e e e 54
Weight_transcripts e 55
Index 57
addRowRanges Add rowRanges by rownames to SummarizedExperiment object As-
sumes rownames are transcript_ids Assumes transcript_id is present
in the annotation file
Description

Add rowRanges by rownames to SummarizedExperiment object Assumes rownames are tran-
script_ids Assumes transcript_id is present in the annotation file

Usage

addRowRanges(sce, annotation, outdir)

Value

a SummarizedExperiment object with rowRanges added

4 add_gene_counts

add_gene_counts Add gene counts to a SingleCellExperiment object

Description

Add gene counts to a SingleCellExperiment object as an altExps slot named gene.

Usage

add_gene_counts(sce, gene_count_file)

Arguments

sce A SingleCellExperiment object.

gene_count_file
The file path to the gene count file. If missing, the function will try to find the
gene count file in the output directory.

Value

A SingleCellExperiment object with gene counts added.

Examples

Set up a mock SingleCellExperiment object

sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(counts = matrix(@, nrow = 10, ncol = 10))

)

colnames(sce) <- paste@(”cell”, 1:10)

Set up a mock gene count file

gene_count_file <- tempfile()

gene_mtx <- matrix(1:10, nrow = 2, ncol = 5)

colnames(gene_mtx) <- paste@("cell”, 1:5)

rownames (gene_mtx) <- c("genel”, "gene2")

write.csv(gene_mtx, gene_count_file)

Add gene counts to the SingleCellExperiment object

sce <- add_gene_counts(sce, gene_count_file)

verify the gene counts are added

SingleCellExperiment::altExps(sce)$gene

annotation_to_fasta 5

annotation_to_fasta GTF/GFF to FASTA conversion

Description

convert the transcript annotation to transcriptome assembly as FASTA file. The genome annotation
is first imported as TxDb object and then used to extract transcript sequence from the genome
assembly.

Usage

annotation_to_fasta(isoform_annotation, genome_fa, outdir, extract_fn)

Arguments

isoform_annotation
Path to the annotation file (GTF/GFF3)

genome_fa The file path to genome fasta file.
outdir The path to directory to store the transcriptome as transcript_assembly.fa.
extract_fn (optional) Function to extract GRangesList from the genome TxDb object. E.g.

function(txdb){GenomicFeatures: :cdsBy(txdb, by="tx", use.names=TRUE)}

Value

Path to the outputted transcriptome assembly

Examples

fasta <- annotation_to_fasta(system.file("extdata"”, "rps24.gtf.gz", package = "FLAMES"), system.file("extdata”, "
cat(readChar(fasta, nchars = 1e3))

blaze BLAZE Assign reads to cell barcodes.

Description

Uses BLAZE to generate barcode list and assign reads to cell barcodes.

Usage

blaze(expect_cells, fq_in, ...)

6 bulk_long_pipeline

Arguments

expect_cells Integer, expected number of cells. Note: this could be just a rough estimate.
E.g., the targeted number of cells.

fg_in File path to the fastq file used as a query sequence file

Additional BLAZE configuration parameters. E.g., setting *’output-prefix’="some_prefix’‘
is equivalent to specifying ‘—output-prefix some_prefix‘ in BLAZE; Similarly,
‘overwrite=TRUE" is equivalent to switch on the ‘—overwrite* option. Note that

the specified parameters will override the parameters specified in the configura-

tion file. All available options can be found at https://github.com/shimlab/BLAZE.

Value

A data.frame summarising the reads aligned. Other outputs are written to disk. The details of the
output files can be found at https://github.com/shimlab/BLAZE.

Examples

temp_path <- tempfile()

bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)

fastql_url <- 'https://raw.githubusercontent.com/shimlab/BLAZE/main/test/data/FAR20033_pass_51e510db_100.fastq’
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'Fastql', fastql_url))]]

outdir <- tempfile()

dir.create(outdir)

Not run:

blaze(expect_cells=10, fastql, overwrite=TRUE)

End(Not run)

bulk_long_pipeline Pipeline for Bulk Data

Description

Semi-supervised isofrom detection and annotation for long read data. This variant is meant for bulk
samples. Specific parameters relating to analysis can be changed either through function arguments,
or through a configuration JSON file.

Usage

bulk_long_pipeline(
annotation,
fastq,
outdir,
genome_fa,
minimap2 = NULL,
k8 = NULL,
config_file = NULL

bulk_long_pipeline 7

Arguments

annotation The file path to the annotation file in GFF3 format

fastq The file path to input fastq file

outdir The path to directory to store all output files.

genome_fa The file path to genome fasta file.

minimap2 Path to minimap?2, if it is not in PATH. Only required if either or both of do_genome_align
and do_read_realign are TRUE.

k8 Path to the k8 Javascript shell binary. Only required if do_genome_align is

TRUE.

config_file File path to the JSON configuration file. If specified, config_file overrides all
configuration parameters

Details

By default FLAMES use minimap?2 for read alignment. After the genome alignment step (do_genome_align),
FLAMES summarizes the alignment for each read by grouping reads with similar splice junctions
to get a raw isoform annotation (do_isoform_id). The raw isoform annotation is compared against
the reference annotation to correct potential splice site and transcript start/end errors. Transcripts
that have similar splice junctions and transcript start/end to the reference transcript are merged
with the reference. This process will also collapse isoforms that are likely to be truncated tran-
scripts. If isoform_id_bambu is set to TRUE, bambu: :bambu will be used to generate the up-
dated annotations. Next is the read realignment step (do_read_realign), where the sequence of
each transcript from the update annotation is extracted, and the reads are realigned to this updated
transcript_assembly. fa by minimap2. The transcripts with only a few full-length aligned reads
are discarded. The reads are assigned to transcripts based on both alignment score, fractions of
reads aligned and transcript coverage. Reads that cannot be uniquely assigned to transcripts or have
low transcript coverage are discarded. The UMI transcript count matrix is generated by collapsing
the reads with the same UMI in a similar way to what is done for short-read scRNA-seq data, but
allowing for an edit distance of up to 2 by default. Most of the parameters, such as the minimal
distance to splice site and minimal percentage of transcript coverage can be modified by the JSON
configuration file (config_file).

The default parameters can be changed either through the function arguments are through the con-
figuration JSON file config_file. the pipeline_parameters section specifies which steps are to
be executed in the pipeline - by default, all steps are executed. The isoform_parameters section
affects isoform detection - key parameters include:

Min_sup_cnt which causes transcripts with less reads aligned than it’s value to be discarded

MAX_TS_DIST which merges transcripts with the same intron chain and TSS/TES distace less than
MAX_TS_DIST

strand_specific which specifies if reads are in the same strand as the mRNA (1), or the reverse
complemented (-1) or not strand specific (0), which results in strand information being based
on reference annotation.

Value

if do_transcript_quantification set to true, bulk_long_pipeline returns a SummarizedEx-
periment object, containing a count matrix as an assay, gene annotations under metadata, as well

8 combine_sce

as a list of the other output files generated by the pipeline. The pipeline also outputs a number of
output files into the given outdir directory. These output files generated by the pipeline are:

transcript_count.csv.gz - a transcript count matrix (also contained in the SummarizedExperiment)

isoform_annotated.filtered.gff3 - isoforms in gff3 format (also contained in the SummarizedEx-
periment)

transcript_assembly.fa - transcript sequence from the isoforms

align2genome.bam - sorted BAM file with reads aligned to genome

realign2transcript.bam - sorted realigned BAM file using the transcript_assembly.fa as reference
tss_tes.bedgraph - TSS TES enrichment for all reads (for QC)

if do_transcript_quantification set to false, nothing will be returned

See Also

sc_long_pipeline() for single cell data, SummarizedExperiment() for how data is outputted

Examples

download the two fastq files, move them to a folder to be merged together
temp_path <- tempfile()
bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)
file_url <-

"https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data”
download the required fastq files, and move them to new folder
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep ="/")))]
fastq2 <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastq2", paste(file_url, "fastq/sample2.fastq.gz", sep="/")))]
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf"”, paste(file_url, "SIRV_isoforms_multi-fasta-annc
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
fastq_dir <- paste(temp_path, "fastq_dir"”, sep = "/") # the downloaded fastq files need to be in a directory to be me
dir.create(fastq_dir)
file.copy(c(fastql, fastqg2), fastqg_dir)
unlink(c(fastql, fastqg2)) # the original files can be deleted

outdir <- tempfile()
dir.create(outdir)
se <- bulk_long_pipeline(
annotation = annotation, fastq = fastg_dir, outdir = outdir, genome_fa = genome_fa,
config_file = create_config(outdir, type = "sc_3end”, threads = 1, no_flank = TRUE)
)

combine_sce Combine SCE

Description

Combine FLT-seq SingleCellExperiment objects

convolution_filter 9

Usage

combine_sce(sce_with_1lr, sce_without_1r)

Arguments

sce_with_1r A SingleCellExperiment object with both long and short reads. The long-read
transcript counts should be stored in the ’transcript’ altExp slot.

sce_without_lr A SingleCellExperiment object with only short reads.

Details

For protcols like FLT-seq that generate two libraries, one with both short and long reads, and one
with only short reads, this function combines the two libraries into a single SingleCellExperiment
object. For the library with both long and short reads, the long-read transcript counts should be
stored in the ’transcript’ altExp slot of the SingleCellExperiment object. This function will com-
bine the short-read gene counts of both libraries, and for the transcripts counts, it will leave NA
values for the cells from the short-read only library. The sc_impute_transcript function can
then be used to impute the NA values.

Value

A SingleCellExperiment object with combined gene counts and a "transcript" altExp slot.

Examples

with_lr <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(100, 5), ncol =10)))
without_lr <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(200, 5), ncol = 20))]
long_read <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(5@, 5), ncol =10)))
SingleCellExperiment::altExp(with_lr, "transcript”) <- long_read
SummarizedExperiment::colData(with_lr)$Barcode <- paste@(1:10, "-1")

SummarizedExperiment: :colData(without_lr)$Barcode <- paste@(8:27, "-1")

rownames(with_1r) <- as.character(101:110)

rownames(without_1r) <- as.character(103:112)

rownames(long_read) <- as.character(1001:1005)

combined_sce <- FLAMES::combine_sce(sce_with_lr = with_lr, sce_without_lr = without_1r)

combined_sce

convolution_filter Convolution filter for smoothing transcript coverages

Description

Filter out transcripts with sharp drops / rises in coverage, to be used in filter_coverage to remove
transcripts with potential misalignments / internal priming etc. Filtering is done by convolving the
coverage with a kernal of 1s and -1s (e.g. c(1, 1, -1, -1), where the width of the 1s and -1s are
determined by the width parameter), and check if the maximum absolute value of the convolution
is below a threshold. If the convolution is below the threshold, TRUE is returned, otherwise FALSE.

10 create_config

Usage
convolution_filter(x, threshold = 0.15, width = 2, trim = 0.05)

Arguments
X numeric vector of coverage values
threshold numeric, the threshold for the maximum absolute value of the convolution
width numeric, the width of the 1s and -1s in the kernal. E.g. width = 2 will result in
akernalof c(1, 1, -1, -1)
trim numeric, the proportion of the coverage values to ignore at both ends before
convolution.
Value

logical, TRUE if the transcript passes the filter, FALSE otherwise

Examples

A >30% drop in coverage will fail the filter with threshold = 0.3
convolution_filter(c(1, 1, 1, 0.69, 0.69, 0.69), threshold = 0.3)
convolution_filter(c(1, 1, 1, @.71, 0.7, 0.7), threshold = 0.3)

create_config Create Configuration File From Arguments

Description

Create Configuration File From Arguments

Usage
create_config(outdir, type = "sc_3end”, ...)

Arguments
outdir the destination directory for the configuratio nfile
type use an example config, available values:

"sc_3end'" - config for 10x 3’ end ONT reads
"SIRV" - config for the SIRV example reads
Configuration parameters.

seed - Integer. Seed for minimap2.

threads - Number of threads to use.

do_barcode_demultiplex - Boolean. Specifies whether to run the barcode de-
multiplexing step.

create_config

11

do_genome_alignment - Boolean. Specifies whether to run the genome align-
ment step. TRUE is recommended

do_gene_quantification - Boolean. Specifies whether to run gene quantifica-
tion using the genome alignment results. TRUE is recommended

do_isoform_identification - Boolean. Specifies whether to run the isoform
identification step. TRUE is recommended

bambu_isoform_identification - Boolean. Whether to use Bambu for isoform
identification.

multithread_isoform_identification - Boolean. Whether to use FLAMES’
new multithreaded Cpp implementation for isoform identification.

do_read_realignment - Boolean. Specifies whether to run the read realign-
ment step. TRUE is recommended

do_transcript_quantification - Boolean. Specifies whether to run the tran-
script quantification step. TRUE is recommended

barcode_parameters - List. Parameters for barcode demultiplexing passed to
find_barcode (except fastq, barcodes_file, stats_out, reads_out)
and threads, which are set by the pipeline, see ?find_barcode for more
details.

generate_raw_isoform - Boolean. Whether to generate all isoforms for debug-
ging purpose.

max_dist - Maximum distance allowed when merging splicing sites in isoform
consensus clustering.

max_ts_dist - Maximum distance allowed when merging transcript start/end
position in isoform consensus clustering.

max_splice_match_dist - Maximum distance allowed when merging splice
site called from the data and the reference annotation.

min_fl_exon_len - Minimum length for the first exon outside the gene body in
reference annotation. This is to correct the alignment artifact

max_site_per_splice - Maximum transcript start/end site combinations allowed
per splice chain

min_sup_cnt - Minimum number of read support an isoform decrease this
number will significantly increase the number of isoform detected.

min_cnt_pct - Minimum percentage of count for an isoform relative to total
count for the same gene.

min_sup_pct - Minimum percentage of count for an splice chain that support
a given transcript start/end site combination.

strand_specific -0, 1 or-1. 1 indicates if reads are in the same strand as mRNA,
-1 indicates reads are reverse complemented, O indicates reads are not strand
specific.

remove_incomp_reads - The strenge of truncated isoform filtering. larger
number means more stringent filtering.

use_junctions - whether to use known splice junctions to help correct the align-
ment results

no_flank - Boolean. for synthetic spike-in data. refer to Minimap2 document
for detail

12 create_sce_from_dir

use_annotation - Boolean. whether to use reference to help annotate known
isoforms

min_tr_coverage - Minimum percentage of isoform coverage for a read to be
aligned to that isoform

min_read_coverage - Minimum percentage of read coverage for a read to be
uniquely aligned to that isoform

Details

Create a list object containing the arguments supplied in a format usable for the FLAMES pipeline.
Also writes the object to a JSON file, which is located with the prefix ’config_’ in the supplied
outdir. Default values from extdata/config_sclr_nanopore_3end. json will be used for un-
provided parameters.

Value

file path to the config file created

Examples

create the default configuration file
outdir <- tempdir()
config <- create_config(outdir)

create_sce_from_dir Create SingleCellExperiment object from FLAMES output folder

Description

Create SingleCellExperiment object from FLAMES output folder

Usage

create_sce_from_dir(outdir, annotation, quantification = "FLAMES")
Arguments

outdir The folder containing FLAMES output files

annotation the annotation file that was used to produce the output files

quantification (Optional) the quantification method used to generate the output files (either
"FLAMES" or "Oarfish".). If not specified, the function will attempt to deter-
mine the quantification method.

Value

a list of SingleCellExperiment objects if multiple transcript matrices were found in the output
folder, or a SingleCellExperiment object if only one were found

create_se_from_dir

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)
annotation <- system.file("extdata”, "rps24.gtf.gz", package = "FLAMES")

sce <- FLAMES::sc_long_pipeline(
genome_fa = genome_fa,
fastq = system.file("extdata”, "fastq”, "musc_rps24.fastq.gz"”, package = "FLAMES"),
annotation = annotation,
outdir = outdir,
barcodes_file = bc_allow,
config_file = create_config(outdir, oarfish_quantification = FALSE)
)

sce_2 <- create_sce_from_dir(outdir, annotation)

create_se_from_dir Create SummarizedExperiment object from FLAMES output folder

Description

Create SummarizedExperiment object from FLAMES output folder

Usage

create_se_from_dir(outdir, annotation)

Arguments

outdir The folder containing FLAMES output files

annotation (Optional) the annotation file that was used to produce the output files
Value

a SummarizedExperiment object

14 create_spe

Examples

download the two fastq files, move them to a folder to be merged together
temp_path <- tempfile()
bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)
file_url <-

"https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data”
download the required fastq files, and move them to new folder
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep ="/")))]
fastq2 <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastq2", paste(file_url, "fastq/sample2.fastq.gz", sep ="/")))]
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf"”, paste(file_url, "SIRV_isoforms_multi-fasta-annc
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
fastq_dir <- paste(temp_path, "fastq_dir", sep = "/") # the downloaded fastq files need to be in a directory to be me
dir.create(fastqg_dir)
file.copy(c(fastql, fastqg2), fastqg_dir)
unlink(c(fastql, fastq2)) # the original files can be deleted

outdir <- tempfile()
dir.create(outdir)
se <- bulk_long_pipeline(
annotation = annotation, fastq = fastg_dir, outdir = outdir, genome_fa = genome_fa,
config_file = create_config(outdir, type = "sc_3end”, threads = 1, no_flank = TRUE)
)

create_spe Create a SpatialExperiment object

Description

This function creates a SpatialExperiment object from a SingleCellExperiment object and a spatial
barcode file.

Usage

create_spe(
sce,
spatial_barcode_file,
mannual_align_json,

image,
tissue_positions_file
)
Arguments
sce The SingleCellExperiment object obtained from running the sc_long_pipeline

function.
spatial_barcode_file
The path to the spatial barcode file, e.g. "spaceranger-2.1.1/1ib/python/cellranger/barcodes/vi.

cutadapt 15

mannual_align_json
The path to the mannual alignment json file.

image ’DataFrame’ containing the image data. See ?SpatialExperiment: :readImgData
and ?SpatialExperiment::SpatialExperiment.

tissue_positions_file
The path to Visium positions file, e.g. "spaceranger-2.1.1/1ib/python/cellranger/barcodes/visi
Value

A SpatialExperiment object.

cutadapt cutadapt wrapper

Description

trim TSO adaptor with cutadapt

Usage

cutadapt(args)

Arguments

args arguments to be passed to cutadapt

Value

Exit code of cutadapt

Examples

cutadapt(”-h")

demultiplex_sockeye Demultiplex reads using Sockeye outputs

Description

Demultiplex reads using the cell_umi_gene. tsv file from Sockeye.

Usage

demultiplex_sockeye(fastq_dir, sockeye_tsv, out_fq)

16 filter_annotation

Arguments
fastq_dir The folder containing FASTQ files from Sockeye’s output under ingest/chunked_fastgs.
sockeye_tsv The cell_umi_gene. tsv file from Sockeye.
out_fq The output FASTQ file.
Value
returns NULL
fake_stranded_gff Fake stranded GFF file
Description

Check if all the transcript in the annotation is stranded. If not, convert to °+’.

Usage
fake_stranded_gff(gff_file)

Value

Path to the temporary file with unstranded transcripts converted to *+’.

filter_annotation filter annotation for plotting coverages

Description

Removes isoform annotations that could produce ambigious reads, such as isoforms that only differ
by the 5° / 3’ end. This could be useful for plotting average coverage plots.

Usage
filter_annotation(annotation, keep = "tss_differ")
Arguments
annotation path to the GTF annotation file, or the parsed GenomicRanges object.
keep string, one of ’tss_differ’ (only keep isoforms that all differ by the transcription

start site position), 'tes_differ’ (only keep those that differ by the transcription
end site position), *both’ (only keep those that differ by both the start and end
site), or ’single_transcripts’ (only keep genes that contains a sinlge transcript).

filter_coverage 17

Value

GenomicRanges of the filtered isoforms

Examples

filtered_annotation <- filter_annotation(
system.file("extdata"”, "rps24.gtf.gz", package = 'FLAMES'), keep = 'tes_differ")
filtered_annotation

filter_coverage Filter transcript coverage

Description

Filter the transcript coverage by applying a filter function to the coverage values.

Usage

filter_coverage(x, filter_fn = convolution_filter)

Arguments
X The tibble returned by get_coverage, or a BAM file path, or a GAlignments
object.
filter_fn The filter function to apply to the coverage values. The function should take
a numeric vector of coverage values and return a logical value (TRUE if the
transcript passes the filter, FALSE otherwise). The default filter function is
convolution_filter, which filters out transcripts with sharp drops / rises in
coverage.
Value

a tibble of the transcript information and coverages, with transcipts that pass the filter

Examples

Create a BAM file with minimap2_realign

temp_path <- tempfile()

bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)

file_url <- 'https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data’

fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'Fastql', paste(file_url, 'fastq/samplel.fastq.gz', sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'genome.fa', paste(file_url, 'SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'annot.gtf', paste(file_url, 'SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()

dir.create(outdir)

fasta <- annotation_to_fasta(annotation, genome_fa, outdir)

minimap2_realign(

18 find_barcode

config = jsonlite::fromJSON(
system.file("extdata”, "config_sclr_nanopore_3end.json", package = "FLAMES")),
fg_in = fastql,
outdir = outdir
)
x <- get_coverage(file.path(outdir, 'realign2transcript.bam'))
nrow(x)
filter_coverage(x) |>
nrow()

find_barcode Match Cell Barcodes

Description

demultiplex reads with flexiplex

Usage

find_barcode(
fastq,
barcodes_file,
max_bc_editdistance = 2,
max_flank_editdistance = 8,
reads_out,
stats_out,
threads = 1,
pattern = c(primer = "CTACACGACGCTCTTCCGATCT", BC = paste@(rep(”"N", 16), collapse =
"""y, UMI = paste@(rep(”"N", 12), collapse = ""), polyT = paste@(rep("T", 9), collapse
= ")),
TSO_seq = "",
TSO_prime = 3,
strand = "+",
cutadapt_minimum_length = 1,
full_length_only = FALSE

Arguments

fastq character vector of paths to FASTQ files or folders, if named, the names will be
used as sample names, otherwise the file names will be used
barcodes_file path to file containing barcode allow-list, with one barcode in each line
max_bc_editdistance
max edit distances for the barcode sequence
max_flank_editdistance
max edit distances for the flanking sequences (primer and polyT)

find_barcode 19

reads_out path to output FASTQ file; if multiple samples are processed, the sample name
will be appended to this argument, e.g. provide path/out. fq for single sample,
and path/prefix for multiple samples.

stats_out path of output stats file; similar to reads_out, e.g. provide path/stats.tsv
for single sample, and path/prefix for multiple samples.

threads number of threads to be used

pattern named character vector defining the barcode pattern

TSO_seq TSO sequence to be trimmed

TSO_prime either 3 (when TSO_seq is on 3’ the end) or 5 (on 5’ end)

strand strand of the barcode pattern, either + or ’-” (read will be reverse comple-

mented after barcode matching if *-)
cutadapt_minimum_length

minimum read length after TSO trimming (cutadapt’s —minimum-length)
full_length_only

boolean, when TSO sequence is provided, whether reads without TSO are to be
discarded

Details

This function demultiplexes reads by searching for flanking sequences (adaptors) around the bar-
code sequence, and then matching against allowed barcodes. For single sample, either provide a
single FASTQ file or a folder containing FASTQ files. For multiple samples, provide a vector of
paths (either to FASTQ files or folders containing FASTQ files). Gzipped file input are supported
but the output will be uncompressed.

Value

a list containing: reads_tb (tibble of read demultiplexed information) and input, output, read1_with_adapter
from cutadapt report (if TSO trimming is performed)

Examples

outdir <- tempfile()
dir.create(outdir)
bc_allow <- file.path(outdir, "bc_allow.tsv")
R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE
)
single sample
find_barcode(
fastq = system.file("extdata”, "fastq”, "musc_rps24.fastq.gz"”, package = "FLAMES"),
stats_out = file.path(outdir, "bc_stat"),
reads_out = file.path(outdir, "demultiplexed.fq"),
barcodes_file = bc_allow,
TSO_seq = "AAGCAGTGGTATCAACGCAGAGTACATGGG", TSO_prime = 5,
strand = '-', cutadapt_minimum_length = 10, full_length_only = TRUE

20 find_bin

multi-sample
fastq_dir <- tempfile()
dir.create(fastq_dir)
file.copy(system.file("extdata”, "fastq”, "musc_rps24.fastq.gz", package = "FLAMES"),
file.path(fastq_dir, "musc_rps24.fastq.gz"))
sampled_lines <- readlLines(file.path(fastq_dir, "musc_rps24.fastqg.gz"), n = 400)
writeLines(sampled_lines, file.path(fastq_dir, "copy.fastq"))
result <- find_barcode(
you can mix folders and files. each path will be considered as a sample
fastq = c(fastq_dir, system.file("extdata”, "fastq"”, "musc_rps24.fastq.gz", package = "FLAMES")),
stats_out = file.path(outdir, "bc_stat"),
reads_out = file.path(outdir, "demultiplexed.fq"),
barcodes_file = bc_allow, TSO_seq = "CCCATGTACTCTGCGTTGATACCACTGCTT"
)

find_bin Find path to a binary Wrapper for Sys.which to find path to a binary

Description

This function is a wrapper for base: :Sys.which to find the path to a command. It also searches
within the FLAMES basilisk conda environment. This function also replaces "" with NA in the output
of base: : Sys.which to make it easier to check if the binary is found.

Usage

find_bin(command)

Arguments

command character, the command to search for

Value

character, the path to the command or NA

Examples

find_bin("minimap2")

find_isoform 21

find_isoform Isoform identification

Description

Long-read isoform identification with FLAMES or bambu.

Usage

find_isoform(annotation, genome_fa, genome_bam, outdir, config)

Arguments
annotation Path to annotation file. If configured to use bambu, the annotation must be
provided as GTF file.
genome_fa The file path to genome fasta file.
genome_bam File path to BAM alignment file. Multiple files could be provided.
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
Value

The updated annotation and the transcriptome assembly will be saved in the output folder as isoform_annotated.gff3
(GTF if bambu is selected) and transcript_assembly. fa respectively.

Examples

temp_path <- tempfile()
bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)
file_url <- "https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data”
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf", paste(file_url, "SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()
dir.create(outdir)
config <- jsonlite::fromJSON(
system.file("extdata”, "config_sclr_nanopore_3end.json", package = "FLAMES")
)
minimap2_align(
config = config,
fa_file = genome_fa,
fg_in = fastql,
annot = annotation,
outdir = outdir
)
find_isoform(
annotation = annotation, genome_fa = genome_fa,
genome_bam = file.path(outdir, "align2genome.bam"),

22 find_variants

outdir = outdir, config = config

)

find_variants bulk variant identification

Description

Treat each bam file as a bulk sample and identify variants against the reference

Usage

find_variants(
bam_path,
reference,
annotation,
min_nucleotide_depth = 100,
homopolymer_window = 3,
annotated_region_only = FALSE,

names_from = "gene_name",
threads = 1
)
Arguments
bam_path character(1) or character(n): path to the bam file(s) aligned to the reference
genome (NOT the transcriptome!).
reference DNAStringSet: the reference genome
annotation GRanges: the annotation of the reference genome. You can load a GTF/GFF

annotation file with anno <- rtracklayer: :import(file).
min_nucleotide_depth
integer(1): minimum read depth for a position to be considered a variant.
homopolymer_window
integer(1): the window size to calculate the homopolymer percentage. The ho-
mopolymer percentage is calculated as the percentage of the most frequent nu-
cleotide in a window of -homopolymer_window to homopolymer_window nu-
cleotides around the variant position, excluding the variant position itself. Cal-
culation of the homopolymer percentage is skipped when homopolymer_window
= 0. This is useful for filtering out Nanopore sequencing errors in homopolymer
regions.
annotated_region_only
logical(1): whether to only consider variants outside annotated regions. If TRUE,
only variants outside annotated regions will be returned. If FALSE, all variants
will be returned, which could take significantly longer time.

names_from character(1): the column name in the metadata column of the annotation (mcols(annotation)[,
names_from]) to use for the region column in the output.

FLAMES

threads

Details

23

integer(1): number of threads to use. Threading is done over each annotated re-
gion and (if annotated_region_only = FALSE) unannotated gaps for each bam
file.

Each bam file is treated as a bulk sample to perform pileup and identify variants. You can run
sc_mutations with the variants identified with this function to get single-cell allele counts. Note
that reference genome FASTA files may have the chromosome names field as ‘“>chrl 1° instead
of ‘>chrl‘. You may need to remove the trailing number to match the chromosome names in
the bam file, for example with names(ref) <- sapply(names(ref), function(x) strsplit(x,

"IOII0ND.

Value

A tibble with columns: seqnames, pos, nucleotide, count, sum, freq, ref, region, homopolymer_pct,
bam_path The homopolymer percentage is calculated as the percentage of the most frequent nu-
cleotide in a window of homopolymer_window nucleotides around the variant position, excluding
the variant position itself.

Examples

outdir <- tempfile()
dir.create(outdir)
genome_fa <- system.file("extdata”, "rps24.fa.gz", package = "FLAMES")
minimap2_align(# align to genome
config = jsonlite::fromJSON(

system.file("extdata"”, "config_sclr_nanopore_3end.json", package = "FLAMES")),
fa_file

)

fg_in
annot

outdir

= genome_fa,

system.file("extdata”, "fastq", "demultiplexed.fq.gz", package = "FLAMES"),
system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),

= outdir

variants <- find_variants(

bam_path = file.path(outdir, "align2genome.bam"),

reference = genome_fa,

annotation = system.file("extdata"”, "rps24.gtf.gz", package = "FLAMES"),
min_nucleotide_depth = 4

)

head(variants)

FLAMES

FLAMES: full-length analysis of mutations and splicing

Description

FLAMES: full-length analysis of mutations and splicing

24

flexiplex

flexiplex Repp port of flexiplex

Description

demultiplex reads with flexiplex, for detailed description, see documentation for the original flexi-

plex: https://davidsongroup.github.io/flexiplex

Usage

flexiplex(
reads_in,
barcodes_file,
bc_as_readid,
max_bc_editdistance,
max_flank_editdistance,
pattern,
reads_out,
stats_out,
bc_out,
reverseCompliment,
n_threads

Arguments

reads_in Input FASTQ or FASTA file
barcodes_file barcode allow-list file

bc_as_readid bool, whether to add the demultiplexed barcode to the read ID field
max_bc_editdistance

max edit distance for barcode ’
max_flank_editdistance

max edit distance for the flanking sequences ’

pattern StringVector defining the barcode structure, see [find_barcode]
reads_out output file for demultiplexed reads

stats_out output file for demultiplexed stats

bc_out WIP

reverseCompliment

bool, whether to reverse complement the reads after demultiplexing

n_threads number of threads to be used during demultiplexing

Value

integer return value. O represents normal return.

get_coverage 25

get_coverage Get read coverages from BAM file

Description

Get the read coverages for each transcript in the BAM file (or a GAlignments object). The read
coverages are sampled at 100 positions along the transcript, and the coverage is scaled by dividing
the coverage at each position by the total read counts for the transcript. If a BAM file is provided,
alignment with MAPQ < 5, secondary alignments and supplementary alignments are filtered out. A
GAlignments object can also be provided in case alternative filtering is desired.

Usage

get_coverage(bam, min_counts = 10, remove_UTR = FALSE, annotation)

Arguments
bam path to the BAM file, or a parsed GAlignments object
min_counts numeric, the minimum number of alignments required for a transcript to be
included
remove_UTR logical, if TRUE, remove the UTRs from the coverage
annotation (Required if remove_UTR = TRUE) path to the GTF annotation file
Value

a tibble of the transcript information and coverages, with the following columns:

* transcript: the transcript name / ID
* read_counts: the total number of aligments for the transcript
* coverage_1-100: the coverage at each of the 100 positions along the transcript

* tr_length: the length of the transcript

Examples

Create a BAM file with minimap2_realign
temp_path <- tempfile()
bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)
file_url <- 'https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data’
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'Fastql', paste(file_url, 'fastq/samplel.fastq.gz', sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'genome.fa', paste(file_url, 'SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'annot.gtf', paste(file_url, 'SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()
dir.create(outdir)
fasta <- annotation_to_fasta(annotation, genome_fa, outdir)
minimap2_realign(
config = jsonlite::fromJSON(
system.file("extdata"”, "config_sclr_nanopore_3end.json", package = "FLAMES")),

26 get_GRangesList
fg_in = fastql,
outdir = outdir
)
x <- get_coverage(file.path(outdir, 'realign2transcript.bam'))
head(x)
get_GRangesList Parse FLAMES’ GFF output
Description
Parse FLAMES’ GFF ouputs into a Genomic Ranges List
Usage
get_GRangesList(file)
Arguments
file the GFF file to parse
Value
A Genomic Ranges List
Examples

temp_path <- tempfile()
bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)
file_url <- "https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data”
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep ="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf"”, paste(file_url, "SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()
dir.create(outdir)
config <- jsonlite::fromJSON(
system.file("extdata”, "config_sclr_nanopore_3end.json", package = "FLAMES"))
minimap2_align(
config = config,
fa_file = genome_fa,
fg_in = fastql,
annot = annotation,
outdir = outdir
)
find_isoform(
annotation = annotation, genome_fa = genome_fa,
genome_bam = file.path(outdir, "align2genome.bam"),
outdir = outdir, config = config
)
grlist <- get_GRangesList(file = file.path(outdir, "isoform_annotated.gff3"))

minimap2_align

27

minimap2_align

Minimap?2 Align to Genome

Description

Uses minimap?2 to align sequences agains a reference databse. Uses options *-ax splice -t 12 -k14
—secondary=no fa_file fq_in’

Usage

minimap2_align(
config,
fa_file,
fg_in,
annot,
outdir,

minimap2 = NA,

k8 = NA,

samtools = NA,

prefix = NULL
threads = 1

Arguments

config
fa_file
fg_in
annot
outdir
minimap2
k8

samtools

prefix

threads

Value

’

Parsed list of FLAMES config file

Path to the fasta file used as a reference database for alignment
File path to the fastq file used as a query sequence file
Genome annotation file used to create junction bed files

Output folder

Path to minimap?2 binary

Path to the k8 Javascript shell binary

path to the samtools binary, required for large datasets since Rsamtools does
not support CSI indexing

String, the prefix (e.g. sample name) for the outputted BAM file

Integer, threads for minimap?2 to use, see minimap2 documentation for details,
FLAMES will try to detect cores if this parameter is not provided.

a data.frame summarising the reads aligned

See Also

[minimap?2_realign()]

28 minimap?2_realign

Examples

temp_path <- tempfile()
bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)
file_url <- 'https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data’
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'Fastql', paste(file_url, 'fastq/samplel.fastq.gz', sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'genome.fa', paste(file_url, 'SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'annot.gtf', paste(file_url, 'SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()
dir.create(outdir)
minimap2_align(

config = jsonlite::fromJSON(

system.file("extdata"”, "config_sclr_nanopore_3end.json", package = 'FLAMES')

),

fa_file = genome_fa,

fg_in = fastql,

annot = annotation,

outdir = outdir

minimap2_realign Minimap?2 re-align reads to transcriptome

Description

Uses minimap?2 to re-align reads to transcriptome

Usage

minimap2_realign(
config,
fg_in,
outdir,
minimap2,
samtools = NULL,
prefix = NULL,
minimap2_args,

sort_by,
threads = 1
)
Arguments
config Parsed list of FLAMES config file
fg_in File path to the fastq file used as a query sequence file
outdir Output folder

minimap2 Path to minimap?2 binary

mutation_positions 29

samtools path to the samtools binary, required for large datasets since Rsamtools does
not support CSI indexing

prefix String, the prefix (e.g. sample name) for the outputted BAM file

minimap2_args vector of command line arguments to pass to minimap2

sort_by String, If provided, sort the BAM file by this tag instead of by position.

threads Integer, threads for minimap?2 to use, see minimap2 documentation for details,

FLAMES will try to detect cores if this parameter is not provided.

Value

a data.frame summarising the reads aligned

See Also

[minimap?2_align()]

Examples

outdir <- tempfile()
dir.create(outdir)
annotation <- system.file('extdata', 'rps24.gtf.gz', package = 'FLAMES')
genome_fa <- system.file('extdata', 'rps24.fa.gz', package = 'FLAMES')
fasta <- annotation_to_fasta(annotation, genome_fa, outdir)
fastq <- system.file('extdata', 'fastq', 'demultiplexed.fq.gz', package = 'FLAMES')
minimap2_realign(

config = jsonlite::fromJSON(

system.file("extdata”, "config_sclr_nanopore_3end.json", package = 'FLAMES')

) ’
fq_in = fastq,
outdir = outdir
)
mutation_positions Calculate mutation positions within the gene body
Description

Given a set of mutations and gene annotation, calculate the position of each mutation within the
gene body they are in.

Usage

mutation_positions(
mutations,
annotation,
type = "relative”,
bin = FALSE,

30

by = c(region
threads = 1

Arguments

mutations

annotation

type

bin

by

threads

Value

mutation_positions

= "gene_name"),

either the tibble output from find_variants. It must have columns segnames,
pos, and a third column for specifying the gene id or gene name. The mutation
must be within the gene region.

Either path to the annotation file (GTF/GFF) or a GRanges object of the gene
annotation.

character(1): the type of position to calculate. Can be one of "TSS" (distance
from the transcription start site), "TES" (distance from the transcription end
site), or "relative" (relative position within the gene body).

logical(1): whether to bin the relative positions into 100 bins. Only applicable
when type = "relative”.

character(1): the column name in the annotation to match with the gene anno-
tation. E.g. c("region” = "gene_name") to match the ‘region‘ column in the
mutations with the ‘gene_name* column in the annotation.

integer(1): number of threads to use.

A numeric vector of positions of each mutation within the gene body. When type = "relative”,
the positions are normalized to the gene length, ranging from O (start of the gene) to 1 (end of the
gene). When type = "TSS" / type = "TES", the distances from the transcription start / end site. If
bin = TRUE, and type = "relative”, the relative positions are binned into 100 bins along the gene
body, and the output is a matrix with the number of mutations in each bin, the rows are named by

the by column (e.g.

Examples

variants <- data.

gene name).

frame(

segnames = rep(”chr14”, 8),

pos = c(1084, 1

085, 1217, 1384, 2724, 2789, 5083, 5147),

region = rep("Rps24"”, 8)

)

positions <-

mutation_positions(
mutations = variants,
annotation = system.file("extdata"”, "rps24.gtf.gz", package = "FLAMES")

mutation_positions_single 31

mutation_positions_single
mutation positions within the gene body

Description

Given a set of mutations and a gene annotation, calculate the position of each mutation within the
gene body. The gene annotation must have the following types: "gene" and "exon". The gene
annotation must be for one gene only. The mutations must be within the gene region. The function
will merge overlapping exons and calculate the position of each mutation within the gene body,
excluding intronic regions.

Usage

mutation_positions_single(mutations, annotation_grange, type, verbose = TRUE)

Arguments

mutations either the tibble output from find_variants or a GRanges object. Make sure
to filter it for only the gene of interest.
annotation_grange

GRanges: the gene annotation. Must have the following types: "gene" and
"exon".

type character(1): the type of position to calculate. Can be one of "TSS" (distance
from the transcription start site), "TES" (distance from the transcription end
site), or "relative” (relative position within the gene body).

verbose logical(1): whether to print messages.

Value

A numeric vector of positions of each mutation within the gene body. When type = "relative”,
the positions are normalized to the gene length, ranging from 0 (start of the gene) to 1 (end of the
gene). When type = "TSS"” / type = "TES", the distances from the transcription start / end site.

plot_coverage plot read coverages

Description

Plot the average read coverages for each length bin or a perticular isoform

32 plot_coverage

Usage

plot_coverage(
X,
quantiles = c(@, ©.2375, 0.475, 0.7125, ©.95, 1),
length_bins = c(@, 1, 2, 5, 10, Inf),
weight_fn = weight_transcripts,

filter_fn,
detailed = FALSE
)
Arguments

X path to the BAM file (aligning reads to the transcriptome), or the (Genomi-
cAlignments::readGAlignments) parsed GAlignments object, or the tibble re-
turned by get_coverage, or the filtered tibble returned by filter_coverage.

quantiles numeric vector to specify the quantiles to bin the transcripts lengths by if length_bins
is missing. The length bins will be determined such that the read counts are dis-
tributed acording to the quantiles.

length_bins numeric vector to specify the sizes to bin the transcripts by

weight_fn function to calculate the weights for the transcripts. The function should take
a numeric vector of read counts and return a numeric vector of weights. The
default function is weight_transcripts, you can change its default parameters
by passing an anonymous function like function(x) weight_transcripts(x,
type = 'equal').

filter_fn Optional filter function to filter the transcripts before plotting. See the filter_fn
parameter in filter_coverage for more details. Providing a filter fucntion here
is the same as providing it in filter_coverage and then passing the result to
this function.

detailed logical, if TRUE, also plot the top 10 transcripts with the highest read counts for
each length bin.

Value

a ggplot2 object of the coverage plot(s)

Examples

Create a BAM file with minimap2_realign

temp_path <- tempfile()

bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)

file_url <- 'https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data’

fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'Fastql', paste(file_url, 'fastq/samplel.fastq.gz', sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'genome.fa', paste(file_url, 'SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, 'annot.gtf', paste(file_url, 'SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()

dir.create(outdir)

fasta <- annotation_to_fasta(annotation, genome_fa, outdir)

minimap2_realign(

plot_demultiplex 33

config = jsonlite::fromJSON(
system.file("extdata”, "config_sclr_nanopore_3end.json", package = "FLAMES")),
fg_in = fastql,
outdir = outdir
)
Plot the coverages directly from the BAM file
plot_coverage(file.path(outdir, 'realign2transcript.bam'))

Get the coverage information first

coverage <- get_coverage(file.path(outdir, 'realign2transcript.bam')) |>
dplyr::filter(read_counts > 2) |> # Filter out transcripts with read counts < 3
filter_coverage(filter_fn = convolution_filter) # Filter out transcripts with sharp drops / rises

Plot the filtered coverages

plot_coverage(coverage, detailed = TRUE)

filtering function can also be passed directly to plot_coverage

plot_coverage(file.path(outdir, 'realign2transcript.bam'), filter_fn = convolution_filter)

plot_demultiplex Plot Cell Barcode demultiplex statistics

Description

produce a barplot of cell barcode demultiplex statistics

Usage

plot_demultiplex(find_barcode_result)

Arguments

find_barcode_result
output from find_barcode

Value

a list of ggplot objects:

* reads_count_plot: stacked barplot of: demultiplexed reads

* knee_plot: knee plot of UMI counts before TSO trimming

« flank_editdistance_plot: flanking sequence (adaptor) edit-distance plot
* barcode_editdistance_plot: barcode edit-distance plot

* cutadapt_plot: if TSO trimming is performed, number of reads kept by cutadapt

34

Examples

plot_isoforms

outdir <- tempfile()

dir.create(outdir)

fastg_dir <- tempfile()

dir.create(fastq_dir)

file.copy(system.file("extdata”, "fastq”, "musc_rps24.fastq.gz", package = "FLAMES"),
file.path(fastq_dir, "musc_rps24.fastq.gz"))

sampled_lines <- readLines(file.path(fastq_dir, "musc_rps24.fastqg.gz"), n = 400)

writeLines(sampled_lines, file.path(fastq_dir, "copy.fastq"))

bc_allow <- file.path(outdir, "bc_allow.tsv")

R.utils::gunzip(

filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

)
find_barcode(

fastq = fastqg_dir,
stats_out = file.path(outdir, "bc_stat"),
reads_out = file.path(outdir, "demultiplexed.fq"),

barcodes_file

) 1>

bc_allow, TSO_seq = "CCCATGTACTCTGCGTTGATACCACTGCTT"

plot_demultiplex()

plot_isoforms

Plot isoforms

Description

Plot isoforms, either from a gene or a list of transcript ids.

Usage

plot_isoforms(
sce,
gene_id,

transcript_ids,

n =4,

format = "plot_grid"”,

colors

Arguments

sce

gene_id
transcript_ids

n

The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.

The gene symbol of interest, ignored if transcript_ids is provided.
The transcript ids to plot.

The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

plot_isoform_heatmap 35

format The format of the output, either "plot_grid" or "list".

colors A character vector of colors to use for the isoforms. If not provided, gray will
be used. for all isoforms.

Details

This function takes a SingleCellExperiment object and plots the top isoforms of a gene, or a
list of specified transcript ids. Either as a list of plots or together in a grid. This function wraps
the ggbio: :geom_alignment function to plot the isoforms, and orders the isoforms by expression
levels (when specifying a gene) or by the order of the transcript_ids.

Value
When format = "list"”, a list of ggplot objects is returned. Otherwise, a grid of the plots is
returned.

Examples

plot_isoforms(scmixology_lib10@_transcripts, gene_id = "ENSG00000108107")

plot_isoform_heatmap FLAMES heetmap plots

Description

Plot expression heatmap of top n isoforms of a gene

Usage

plot_isoform_heatmap(
sce,
gene_id,
transcript_ids,
n =4,
isoform_legend_width = 7,
col_low = "#313695",
col_mid = "#FFFFBF",
col_high = "#A50026",
color_quantile = 1,
cluster_palette,

36 plot_isoform_reduced_dim

Arguments
sce The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.
gene_id The gene symbol of interest, ignored if transcript_ids is provided.

transcript_ids The transcript ids to plot.

n The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

isoform_legend_width
The width of isoform legends in heatmaps, in cm.

col_low Color for cells with low expression levels in UMAPs.
col_mid Color for cells with intermediate expression levels in UMAPs.
col_high Color for cells with high expression levels in UMAPs.

color_qguantile The lower and upper expression quantile to be displayed bewteen col_low and
col_high, e.g. with color_quantile =0.95, cells with expressions higher
than 95% of other cells will all be shown in col_high, and cells with expression
lower than 95% of other cells will all be shown in col_low.

cluster_palette
Optional, named vector of colors for the cluster annotations.

Additional arguments to pass to Heatmap.

Details
Takes SingleCellExperiment object and plots an expression heatmap with the isoform visualiza-
tions along genomic coordinates.

Value

a ComplexHeatmap

Examples

scmixology_lib1@_transcripts |>
scuttle::logNormCounts() |>
plot_isoform_heatmap(gene = "ENSG0Q000108107")

plot_isoform_reduced_dim
FLAMES isoform reduced dimensions plots

Description

Plot expression of top n isoforms of a gene in reduced dimensions

plot_isoform_reduced_dim 37

Usage
plot_isoform_reduced_dim(
sce,
gene_id,
transcript_ids,
n =4,
reduced_dim_name = "UMAP",

use_gene_dimred = FALSE,

expr_func = function(x) {
SingleCellExperiment: :logcounts(x)

b

col_low = "#313695",

col_mid = "#FFFFBF",

col_high = "#A50026",

color_quantile = 1,

format = "plot_grid"”,

Arguments
sce The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.
gene_id The gene symbol of interest, ignored if transcript_ids is provided.

transcript_ids The transcript ids to plot.

n The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

reduced_dim_name
The name of the reduced dimension to use for plotting cells.

use_gene_dimred

Whether to use gene-level reduced dimensions for plotting. Set to TRUE if the
SingleCellExperiment has gene counts in main assay and transcript counts in

altExp.
expr_func The function to extract expression values from the SingleCellExperiment ob-
ject. Default is logcounts. Alternatively, counts can be used for raw counts.
col_low Color for cells with low expression levels in UMAPs.
col_mid Color for cells with intermediate expression levels in UMAPs.
col_high Color for cells with high expression levels in UMAPs.

color_qguantile The lower and upper expression quantile to be displayed bewteen col_low and
col_high, e.g. with color_quantile =0.95, cells with expressions higher
than 95% of other cells will all be shown in col_high, and cells with expression
lower than 95% of other cells will all be shown in col_low.

format The format of the output, either "plot_grid" or "list".

Additional arguments to pass to plot_grid.

38 plot_spatial_feature

Details

Takes SingleCellExperiment object and plots an expression on reduced dimensions with the iso-
form visualizations along genomic coordinates.

Value

a ggplot object of the UMAP(s)

Examples

scmixology_lib10 <-
scmixology_lib1@[, colSums(SingleCellExperiment::counts(scmixology_lib10)) > @]
sce_lr <- scmixology_lib10[, colnames(scmixology_lib10) %in% colnames(scmixology_lib10_transcripts)]
SingleCellExperiment::altExp(sce_lr, "transcript”) <-
scmixology_lib1@_transcripts[, colnames(sce_lr)]
combined_sce <- combine_sce(sce_lr, scmixology_lib90)
combined_sce <- combined_sce |>
scuttle::logNormCounts() |>
scater::runPCA() [>
scater: :runUMAP()
combined_imputed_sce <- sc_impute_transcript(combined_sce)
plot_isoform_reduced_dim(combined_sce, 'ENSG00000108107")
plot_isoform_reduced_dim(combined_imputed_sce, 'ENSG0O0000108107')

plot_spatial_feature Plot feature on spatial image

Description

This function plots a spatial point plot for given feature

Usage

plot_spatial_feature(
spe,
feature,
opacity = 50,
grayscale = TRUE,
size = 1,
assay_type = "counts”,
color = "red”,

plot_spatial_isoform

Arguments

spe

feature

opacity
grayscale
size
assay_type

color

Value

A ggplot object.

39

The SpatialExperiment object.

The feature to plot. Could be either a feature name or index present in the assay
or a numeric vector of length nrow(spe).

The opacity of the background tissue image.

Whether to convert the background image to grayscale.

The size of the points.

The assay that contains the given features. E.g. *counts’, ’logcounts’.
The maximum color for the feature. Minimum color is transparent.

Additional arguments to pass to geom_point.

plot_spatial_isoform Plot spatial pie chart of isoforms

Description

This function plots a spatial pie chart for given features.

Usage

plot_spatial_isoform(spe, isoforms, assay_type = "counts”, color_palette, ...)
Arguments

spe The SpatialExperiment object.

isoforms The isoforms to plot.

assay_type The assay that contains the given features. E.g. "counts’, ’logcounts’.

color_palette

Value

A ggplot object.

Named vector of colors for each isoform.

Additional arguments to pass to plot_spatial_pie, including opacity, grayscale,
pie_scale.

40

quantify_gene

plot_spatial_pie

Plot spatial pie chart

Description

This function plots a spatial pie chart for given features.

Usage

plot_spatial_pie(

Spe,
features,
assay_type

"counts”,

color_palette,

opacity = 50,

grayscale = TRUE,
pie_scale = 0.8

Arguments
spe
features
assay_type
color_palette
opacity
grayscale

pie_scale

Value

A ggplot object.

The SpatialExperiment object.

The features to plot.

The assay that contains the given features.

Named vector of colors for each feature.

The opacity of the background tissue image.

Whether to convert the background image to grayscale.

The size of the pie charts.

quantify_gene

Gene quantification

Description

Calculate the per gene UMI count matrix by parsing the genome alignment file.

quantify_gene 41

Usage

quantify_gene(
annotation,
outdir,
infq,
n_process,
pipeline = "sc_single_sample”,
samples = NULL,
random_seed = 2024

)
Arguments
annotation The file path to the annotation file in GFF3 format
outdir The path to directory to store all output files.
infq The input FASTQ file.
n_process The number of processes to use for parallelization.
pipeline The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample),
samples A vector of sample names, default to the file names of input fastq files, or folder
names if fastqgs is a vector of folders. bulk (bulk, single or multi-sample), or
sc_multi_sample (single-cell, multiple samples)
random_seed The random seed for reproducibility.
Details

After the genome alignment step (do_genome_align), the alignment file will be parsed to generate
the per gene UMI count matrix. For each gene in the annotation file, the number of reads overlap-
ping with the gene’s genomic coordinates will be assigned to that gene. If a read overlaps multiple
genes, it will be assigned to the gene with the highest number of overlapping nucleotides. If exon
coordinates are included in the provided annotation, the decision will first consider the number of
nucleotides aligned to the exons of each gene. In cases of a tie, the overlap with introns will be used
as a tiebreaker. If there is still a tie after considering both exons and introns, a random gene will be
selected from the tied candidates.

After the read-to-gene assignment, the per gene UMI count matrix will be generated. Specifically,
for each gene, the reads with similar mapping coordinates of transcript termination sites (TTS, i.e.
the end of the the read with a polyT or polyA) will be grouped together. UMIs of reads in the same
group will be collapsed to generate the UMI counts for each gene.

Finally, a new fastq file with deduplicated reads by keeping the longest read in each UMI.

Value

The count matrix will be saved in the output folder as transcript_count.csv.gz.

42 quantify_transcript

quantify_transcript Transcript quantification

Description

Calculate the transcript count matrix by parsing the re-alignment file.

Usage
quantify_transcript(
annotation,
outdir,
config,
pipeline = "sc_single_sample”,
)
Arguments
annotation The file path to the annotation file in GFF3 format
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
pipeline The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample),
Supply sample names as character vector (e.g. samples = c("namel1”, "name2”,
...)) for muti-sample or bulk pipeline. bulk (bulk, single or multi-sample), or
sc_multi_sample (single-cell, multiple samples)
Value

A SingleCellExperiment object for single-cell pipeline, a list of SingleCellExperiment objects
for multi-sample pipeline, or a SummarizedExperiment object for bulk pipeline.

Examples

temp_path <- tempfile()

bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)

file_url <- "https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data”

fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf"”, paste(file_url, "SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()

dir.create(outdir)

fasta <- annotation_to_fasta(annotation, genome_fa, outdir)

config <- jsonlite::fromJSON(create_config(outdir, bambu_isoform_identification = TRUE, min_tr_coverage = 0.1, mi
file.copy(annotation, file.path(outdir, "isoform_annotated.gtf"))

Not run:

quantify_transcript_flames 43

if (lany(is.na(find_bin(c("minimap2”, "k8"))))) {
minimap2_realign(
config = config, outdir = outdir,
fg_in = fastql
)
quantify_transcript_flames(annotation, outdir, config, pipeline = "bulk")

}

End(Not run)

quantify_transcript_flames
FLAMES Transcript quantification

Description

Calculate the transcript count matrix by parsing the re-alignment file.

Usage
quantify_transcript_flames(
annotation,
outdir,
config,
pipeline = "sc_single_sample”,
samples
)
Arguments
annotation The file path to the annotation file in GFF3 format
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
pipeline The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample),
samples A vector of sample names, required for sc_multi_sample pipeline. bulk (bulk,
single or multi-sample), or sc_multi_sample (single-cell, multiple samples)
Value

A SingleCellExperiment object for single-cell pipeline, a list of SingleCellExperiment objects
for multi-sample pipeline, or a SummarizedExperiment object for bulk pipeline.

44 scmixology_lib10

Examples

temp_path <- tempfile()
bfc <- BiocFileCache: :BiocFileCache(temp_path, ask = FALSE)
file_url <- "https://raw.githubusercontent.com/0OliverVoogd/FLAMESData/master/data”
fastql <- bfc[[names(BiocFileCache: :bfcadd(bfc, "Fastql”, paste(file_url, "fastq/samplel.fastq.gz", sep="/")))]
genome_fa <- bfc[[names(BiocFileCache: :bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_17061
annotation <- bfc[[names(BiocFileCache: :bfcadd(bfc, "annot.gtf"”, paste(file_url, "SIRV_isoforms_multi-fasta-annc
outdir <- tempfile()
dir.create(outdir)
fasta <- annotation_to_fasta(annotation, genome_fa, outdir)
config <- jsonlite::fromJSON(create_config(outdir, bambu_isoform_identification = TRUE, min_tr_coverage = 0.1, mi
file.copy(annotation, file.path(outdir, "isoform_annotated.gtf"))
Not run:
if (lany(is.na(find_bin(c("minimap2”, "k8"))))) {
minimap2_realign(
config = config, outdir = outdir,
fg_in = fastql
)

quantify_transcript_flames(annotation, outdir, config, pipeline = "bulk")

}

End(Not run)

scmixology_lib10 scMixology short-read gene counts - sample 2

Description

Short-read gene counts from long and short-read single cell RNA-seq profiling of human lung ade-
nocarcinoma cell lines using 10X version 2 chemstry. See Tian, L. et al. Comprehensive character-
ization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome
Biology 22, 310 (2021).

Usage

scmixology_lib10

Format

‘scmixology_lib10‘ A SingleCellExperiment with 7,240 rows and 60 columns:

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154869>

scmixology_lib10_transcripts 45

scmixology_lib1@_transcripts
scMixology long-read transcript counts - sample 2

Description

long-read transcript counts from long and short-read single cell RNA-seq profiling of human lung
adenocarcinoma cell lines using 10X version 2 chemstry. See Tian, L. et al. Comprehensive char-
acterization of single-cell full-length isoforms in human and mouse with long-read sequencing.
Genome Biology 22, 310 (2021).

Usage

scmixology_lib10@_transcripts

Format

‘scmixology_lib10_transcripts® A SingleCellExperiment with 7,240 rows and 60 columns:

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154869>

scmixology_1ib90 scMixology short-read gene counts - sample 1

Description

Short-read single cell RNA-seq profiling of human lung adenocarcinoma cell lines using 10X ver-
sion 2 chemstry. Single cells from five human lung adenocarcinoma cell lines (H2228, H1975,
A549, H838 and HCCS827) were mixed in equal proportions and processed using the Chromium
10X platform, then sequenced using Illumina HiSeq 2500. See Tian L, Dong X, Freytag S, Lé
Cao KA et al. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control
experiments. Nat Methods 2019 Jun;16(6):479-487. PMID: 31133762

Usage

scmixology_1ib90

Format

‘scmixology_lib90‘ A SingleCellExperiment

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126906>

46 sc_DTU_analysis

sc_DTU_analysis FLAMES Differential Transcript Usage Analysis

Description

Differential transcription usage testing for single cell data, using colLabels as cluster labels.

Usage
sc_DTU_analysis(
sce,
gene_col = "gene_id",
min_count = 15,
threads = 1,
method = "trascript usage permutation”,
permuations = 1000
)
Arguments
sce The SingleCellExperiment object, with transcript counts in the counts slot
and cluster labels in the collLabels slot.
gene_col The column name in the rowData slot of sce that contains the gene ID / name.
Default is "gene_id".
min_count The minimum total counts for a transcript to be tested.
threads Number of threads to use for parallel processing.
method The method to use for testing, listed in details.
permuations Number of permutations for permutation methods.
Details

Genes with more than 2 isoforms expressing more than min_count counts are selected for testing
with one of the following methods:

trascript usage permutation Transcript usage are taken as the test statistic, cluster labels are per-
muted to generate a null distribution.

chisq Chi-square test of the transcript count matrix for each gene.

Adjusted P-values were calculated by Benjamini—-Hochberg correction.

Value
a tibble containing the following columns:

p.value - the raw p-value

adj.p.value - multiple testing adjusted p-value

sc_DTU_analysis 47

cluster - the cluster where DTU was observed
transcript - rowname of sce, the DTU isoform

transcript_usage - the transcript usage of the isoform in the cluster
Additional columns from method = "trascript usage permutation”:

transcript_usage_elsewhere - transcript usage in other clusters
usage_difference - the difference between the two transcript usage

permuted_var - the variance of usage difference in the permuted data
Additional columns from method = "chisq":

X_value - the test statistic
df - the degrees of freedom
expected_usage - the expected usage (mean across all clusters)

usage_difference - the difference between the observed and expected usage

The table is sorted by P-values.

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

sce <- FLAMES: :sc_long_pipeline(
genome_fa = genome_fa,
fastq = system.file("extdata”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir,
barcodes_file = bc_allow,
config_file = create_config(outdir)
)
group_anno <- data.frame(barcode_seq = colnames(sce), groups = SingleCellExperiment: :counts(sce)["ENSMUSTQ000016
SingleCellExperiment::collLabels(sce) <- group_anno$groups
DTU with permutation testing:
sc_DTU_analysis(sce, min_count = 1, method = "trascript usage permutation”)
now try with chisq:
sc_DTU_analysis(sce, min_count

1, method = "chisq")

48 sc_impute_transcript

sc_impute_transcript Impute missing transcript counts

Description

Impute missing transcript counts using a shared nearest neighbor graph

Usage

sc_impute_transcript(combined_sce, dimred = "PCA", ...)

Arguments

combined_sce A SingleCellExperiment object with gene counts and a "transcript" altExp
slot.

dimred The name of the reduced dimension to use for building the shared nearest neigh-
bor graph.

Additional arguments to pass to scran: :buildSNNGraph. E.g. k = 30.

Details

For cells with NA values in the "transcript" altExp slot, this function imputes the missing values from
cells with non-missing values. A shared nearest neighbor graph is built using reduced dimensions
from the SingleCellExperiment object, and the imputation is done where the imputed value for a
cell is the weighted sum of the transcript counts of its neighbors. Imputed values are stored in the
"logcounts" assay of the "transcript” altExp slot. The "counts" assay is used to obtain logcounts but
left unchanged.

Value

A SingleCellExperiment object with imputed logcounts assay in the "transcript" altExp slot.

Examples

sce <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(50, 5), ncol =10)))
long_read <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(4@, 5), ncol =10)))
SingleCellExperiment::altExp(sce, "transcript”) <- long_read
SingleCellExperiment::counts(SingleCellExperiment: :altExp(sce))[,1:2] <- NA

SingleCellExperiment: :counts(SingleCellExperiment::altExp(sce))

imputed_sce <- sc_impute_transcript(sce, k = 4)
SingleCellExperiment::logcounts(SingleCellExperiment::altExp(imputed_sce))

sc_long_multisample_pipeline 49

sc_long_multisample_pipeline
Pipeline for Multi-sample Single Cell Data

Description

Semi-supervised isoform detection and annotation for long read data. This variant is for multi-
sample single cell data. By default, this pipeline demultiplexes input fastq data (match_cell_barcode
= TRUE). Specific parameters relating to analysis can be changed either through function arguments,
or through a configuration JSON file.

Usage

sc_long_multisample_pipeline(
annotation,
fastgs,
outdir,
genome_fa,
minimap2 = NULL,
k8 = NULL,
barcodes_file = NULL,
expect_cell_numbers = NULL,
config_file = NULL

)
Arguments

annotation The file path to the annotation file in GFF3 format

fastgs The input fastq files for multiple samples. Should be a named vector of file paths
(eithr to FASTQ files or directories containing FASTQ files). The names of the
vector will be used as the sample names.

outdir The path to directory to store all output files.

genome_fa The file path to genome fasta file.

minimap2 Path to minimap2, if it is not in PATH. Only required if either or both of do_genome_align
and do_read_realign are TRUE.

k8 Path to the k8 Javascript shell binary. Only required if do_genome_align is

TRUE.

barcodes_file The file path to the reference csv used for demultiplexing in flexiplex. If not
specified, the demultiplexing will be performed using BLAZE. Default is NULL.
expect_cell_numbers
A vector of roughly expected numbers of cells in each sample E.g., the targeted
number of cells. Required if using BLAZE for demultiplexing, specifically,
when the do_barcode_demultiplex are TRUE in the the JSON configuration
file and barcodes_f1ile is not specified. Default is NULL.

config_file File path to the JSON configuration file. If specified, config_file overrides all
configuration parameters

50 sc_long_multisample_pipeline

Details

By default FLAMES use minimap?2 for read alignment. After the genome alignment step (do_genome_align),
FLAMES summarizes the alignment for each read in every sample by grouping reads with similar
splice junctions to get a raw isoform annotation (do_isoform_id). The raw isoform annotation is
compared against the reference annotation to correct potential splice site and transcript start/end
errors. Transcripts that have similar splice junctions and transcript start/end to the reference tran-
script are merged with the reference. This process will also collapse isoforms that are likely to be
truncated transcripts. If isoform_id_bambu is set to TRUE, bambu: : bambu will be used to generate
the updated annotations (Not implemented for multi-sample yet). Next is the read realignment step
(do_read_realign), where the sequence of each transcript from the update annotation is extracted,
and the reads are realigned to this updated transcript_assembly.fa by minimap2. The tran-
scripts with only a few full-length aligned reads are discarded (Not implemented for multi-sample
yet). The reads are assigned to transcripts based on both alignment score, fractions of reads aligned
and transcript coverage. Reads that cannot be uniquely assigned to transcripts or have low transcript
coverage are discarded. The UMI transcript count matrix is generated by collapsing the reads with
the same UMI in a similar way to what is done for short-read scRNA-seq data, but allowing for an
edit distance of up to 2 by default. Most of the parameters, such as the minimal distance to splice
site and minimal percentage of transcript coverage can be modified by the JSON configuration file
(config_file).

The default parameters can be changed either through the function arguments are through the con-
figuration JSON file config_file. the pipeline_parameters section specifies which steps are to
be executed in the pipeline - by default, all steps are executed. The isoform_parameters section
affects isoform detection - key parameters include:

Min_sup_cnt which causes transcripts with less reads aligned than it’s value to be discarded

MAX_TS_DIST which merges transcripts with the same intron chain and TSS/TES distace less than
MAX_TS_DIST

strand_specific which specifies if reads are in the same strand as the mRNA (1), or the reverse
complemented (-1) or not strand specific (0), which results in strand information being based
on reference annotation.

Value

If "do_transcript_quantification" set to true, a list with two elements:

metadata A list of metadata from the pipeline run.

sces A list of SingleCellExperiment objects, one for each sample.

See Also

bulk_long_pipeline() for bulk long data, SingleCellExperiment() for how data is outputted

Examples

reads <- ShortRead: :readFastq(

system.file("extdata"”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES")
)
outdir <- tempfile()

sc_long_pipeline 51

dir.create(outdir)

dir.create(file.path(outdir, "fastq"))

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/samplel.fq.gz"), mode = "w", full = FALSE)

reads <- reads[-(1:100)]

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/sample2.fq.gz"), mode = "w", full = FALSE)

reads <- reads[-(1:100)]

ShortRead: :writeFastq(reads,
file.path(outdir, "fastq/sample3.fq.gz"), mode = "w", full

FALSE)

sce_list <- FLAMES::sc_long_multisample_pipeline(
annotation = system.file("extdata"”, "rps24.gtf.gz", package = "FLAMES"),
fastgs = c("sampleA” = file.path(outdir, "fastq"),
"samplel” = file.path(outdir, "fastq", "samplel.fq.gz"),
"sample2" = file.path(outdir, "fastq", "sample2.fq.gz"),
"sample3” = file.path(outdir, "fastq", "sample3.fq.gz")),
outdir = outdir,
genome_fa = genome_fa,
barcodes_file = rep(bc_allow, 4)

)

sc_long_pipeline Pipeline for Single Cell Data

Description

Semi-supervised isoform detection and annotation for long read data. This variant is for single cell
data. By default, this pipeline demultiplexes input fastq data (match_cell_barcode = TRUE). Spe-
cific parameters relating to analysis can be changed either through function arguments, or through
a configuration JSON file.

Usage

sc_long_pipeline(
annotation,
fastq,
genome_bam = NULL,
outdir,

52 sc_long_pipeline

genome_fa,

minimap2 = NULL,

k8 = NULL,

barcodes_file = NULL,
expect_cell_number = NULL,
config_file = NULL

)
Arguments

annotation The file path to the annotation file in GFF3 format

fastq The file path to input fastq file

genome_bam Optional file path to a bam file to use instead of fastq file (skips initial alignment
step)

outdir The path to directory to store all output files.

genome_fa The file path to genome fasta file.

minimap2 Path to minimap?2, if it is not in PATH. Only required if either or both of do_genome_align
and do_read_realign are TRUE.

k8 Path to the k8 Javascript shell binary. Only required if do_genome_align is

TRUE.

barcodes_file The file path to the reference csv used for demultiplexing in flexiplex. If not
specified, the demultiplexing will be performed using BLAZE. Default is NULL.
expect_cell_number
Expected number of cells for identifying the barcode list in BLAZE. This could
be just a rough estimate. E.g., the targeted number of cells. Required if the
do_barcode_demultiplex are TRUE in the the JSON configuration file and
barcodes_file is not specified. Default is NULL.

config_file File path to the JSON configuration file. If specified, config_file overrides all
configuration parameters

Details

By default FLAMES use minimap?2 for read alignment. After the genome alignment step (do_genome_align),
FLAMES summarizes the alignment for each read by grouping reads with similar splice junctions
to get a raw isoform annotation (do_isoform_id). The raw isoform annotation is compared against
the reference annotation to correct potential splice site and transcript start/end errors. Transcripts
that have similar splice junctions and transcript start/end to the reference transcript are merged
with the reference. This process will also collapse isoforms that are likely to be truncated tran-
scripts. If isoform_id_bambu is set to TRUE, bambu: :bambu will be used to generate the up-
dated annotations. Next is the read realignment step (do_read_realign), where the sequence of
each transcript from the update annotation is extracted, and the reads are realigned to this updated
transcript_assembly. fa by minimap2. The transcripts with only a few full-length aligned reads
are discarded. The reads are assigned to transcripts based on both alignment score, fractions of
reads aligned and transcript coverage. Reads that cannot be uniquely assigned to transcripts or have
low transcript coverage are discarded. The UMI transcript count matrix is generated by collapsing
the reads with the same UMI in a similar way to what is done for short-read scRNA-seq data, but

sc_long_pipeline 53

allowing for an edit distance of up to 2 by default. Most of the parameters, such as the minimal
distance to splice site and minimal percentage of transcript coverage can be modified by the JSON
configuration file (config_file).

The default parameters can be changed either through the function arguments are through the con-
figuration JSON file config_file. the pipeline_parameters section specifies which steps are to
be executed in the pipeline - by default, all steps are executed. The isoform_parameters section
affects isoform detection - key parameters include:

Min_sup_cnt which causes transcripts with less reads aligned than it’s value to be discarded

MAX_TS_DIST which merges transcripts with the same intron chain and TSS/TES distace less than
MAX_TS_DIST

strand_specific which specifies if reads are in the same strand as the mRNA (1), or the reverse
complemented (-1) or not strand specific (0), which results in strand information being based
on reference annotation.

Value

if do_transcript_quantification setto true, sc_long_pipelinereturnsa SingleCellExperiment
object, containing a count matrix as an assay, gene annotations under metadata, as well as a list of
the other output files generated by the pipeline. The pipeline also outputs a number of output files
into the given outdir directory. These output files generated by the pipeline are:

transcript_count.csv.gz - a transcript count matrix (also contained in the SingleCellExperiment)

isoform_annotated.filtered.gff3 - isoforms in gff3 format (also contained in the SingleCellExper-
iment)

transcript_assembly.fa - transcript sequence from the isoforms

align2genome.bam - sorted BAM file with reads aligned to genome

realign2transcript.bam - sorted realigned BAM file using the transcript_assembly.fa as reference
tss_tes.bedgraph - TSS TES enrichment for all reads (for QC)

if do_transcript_quantification set to false, nothing will be returned

See Also

bulk_long_pipeline() for bulk long data, SingleCellExperiment() for how data is outputted

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

54 sc_mutations

)
if (lany(is.na(find_bin(c("minimap2”, "k8"))))) {
sce <- FLAMES::sc_long_pipeline(

genome_fa = genome_fa,
fastq = system.file("extdata”, "fastq”, "musc_rps24.fastq.gz", package = "FLAMES"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir,
barcodes_file = bc_allow

sc_mutations Variant count for single-cell data

Description

Count the number of reads supporting each variants at the given positions for each cell.

Usage

sc_mutations(bam_path, seqnames, positions, indel = FALSE, threads = 1)

Arguments
bam_path character(1) or character(n): path to the bam file(s) aligned to the reference
genome (NOT the transcriptome! Unless the postions are also from the tran-
scriptome).
segnames character(n): chromosome names of the postions to count alleles.
positions integer(n): positions, 1-based, same length as seqnames. The positions to count
alleles.
indel logical(1): whether to count indels (TRUE) or SNPs (FALSE).
threads integer(1): number of threads to use. Maximum number of threads is the number
of bam files * number of positions.
Value

A tibble with columns: allele, barcode, allele_count, cell_total_reads, pct, pos, seqname.

Examples

outdir <- tempfile()

dir.create(outdir)

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

minimap2_align(# align to genome

weight_transcripts 55

config = jsonlite::fromJSON(
system.file("extdata”, "config_sclr_nanopore_3end.json”, package = "FLAMES")
),
fa_file = genome_fa,
fg_in = system.file("extdata”, "fastq"”, "demultiplexed.fq.gz", package = "FLAMES"),
annot = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir
)
snps_tb <- sc_mutations(
bam_path = file.path(outdir, "align2genome.bam"),
seqgnames = c("chr14”, "chr14"),
positions = c(1260, 2714), # positions of interest
indel = FALSE
)
head(snps_tb)
snps_tb |>
dplyr::filter(pos == 1260) |>
dplyr::group_by(allele) |>
dplyr::summarise(count = sum(allele_count)) # should be identical to samtools pileup

weight_transcripts Weight transcripts by read counts

Description

Given a vector of read counts, return a vector of weights. The weights could be either the read
counts themselves (type = 'counts'), a binary vector of Os and 1s where s are assigned to tran-
scripts with read counts above a threshold (type = 'equal', min_counts = 1000), or a sigmoid
function of the read counts (type = 'sigmoid'). The sigmoid function is defined as 1/ (1 +
exp(-steepness/inflection * (x - inflection))).

Usage

weight_transcripts(
counts,
type = "sigmoid”,
min_counts = 1000,
inflection_idx = 10,
inflection_max = 1000,
steepness = 5

Arguments
counts numeric vector of read counts
type string, one of ’counts’, ’sigmoid’, or "equal’

min_counts numeric, the threshold for the equal’ type

56

weight_transcripts

inflection_idx numeric, the index of the read counts to determine the inflection point for the

sigmoid function. The default is 10, i.e. the 10th highest read count will be the
inflection point.

inflection_max numeric, the maximum value for the inflection point. If the inflection point

according to the inflection_idx is higher than this value, the inflection point will
be set to this value instead.

steepness numeric, the steepness of the sigmoid function

Value

numeric vector of weights

Examples

weight_transcripts(1:2000)
par(mfrow = c(2, 2))
plot(

)

1:2000, weight_transcripts(1:2000, type = 'sigmoid'),
type = 'l', xlab = 'Read counts', ylab = 'Sigmoid weight'

plot(

)

1:2000, weight_transcripts(1:2000, type = 'counts'),
type = '1l', xlab = 'Read counts', ylab = 'Weight by counts'

plot(

)

1:2000, weight_transcripts(1:2000, type = 'equal'),
type = 'l', xlab = 'Read counts', ylab = 'Equal weights'

Index

+ datasets
scmixology_lib10, 44
scmixology_lib1@_transcripts, 45
scmixology_1ib90, 45

+ internal
addRowRanges, 3
fake_stranded_gff, 16
mutation_positions_single, 31
plot_spatial_pie, 40

add_gene_counts, 4
addRowRanges, 3
annotation_to_fasta, 5

blaze, 5
bulk_long_pipeline, 6
bulk_long_pipeline(), 50, 53

combine_sce, 8
convolution_filter,9, 17
create_config, 10
create_sce_from_dir, 12
create_se_from_dir, 13
create_spe, 14
cutadapt, 15

demultiplex_sockeye, 15

fake_stranded_gff, 16
filter_annotation, 16
filter_coverage, 17, 32
find_barcode, 18, 33
find_bin, 20
find_isoform, 21
find_variants, 22
FLAMES, 23
flexiplex, 24

geom_point, 39
get_coverage, 17,25, 32
get_GRangesList, 26

Heatmap, 36

minimap2_align, 27
minimap2_realign, 28
mutation_positions, 29
mutation_positions_single, 31

plot_coverage, 31
plot_demultiplex, 33
plot_isoform_heatmap, 35
plot_isoform_reduced_dim, 36
plot_isoforms, 34
plot_spatial_feature, 38
plot_spatial_isoform, 39
plot_spatial_pie, 39, 40

quantify_gene, 40
quantify_transcript, 42
quantify_transcript_flames, 43

sc_DTU_analysis, 46
sc_impute_transcript, 48
sc_long_multisample_pipeline, 49
sc_long_pipeline, 14, 51
sc_long_pipeline(), 8
sc_mutations, 54
scmixology_1ib10, 44
scmixology_lib1@_transcripts, 45
scmixology_1ib90, 45
SingleCellExperiment(), 50, 53
SummarizedExperiment(), 8

weight_transcripts, 32, 55

57

	addRowRanges
	add_gene_counts
	annotation_to_fasta
	blaze
	bulk_long_pipeline
	combine_sce
	convolution_filter
	create_config
	create_sce_from_dir
	create_se_from_dir
	create_spe
	cutadapt
	demultiplex_sockeye
	fake_stranded_gff
	filter_annotation
	filter_coverage
	find_barcode
	find_bin
	find_isoform
	find_variants
	FLAMES
	flexiplex
	get_coverage
	get_GRangesList
	minimap2_align
	minimap2_realign
	mutation_positions
	mutation_positions_single
	plot_coverage
	plot_demultiplex
	plot_isoforms
	plot_isoform_heatmap
	plot_isoform_reduced_dim
	plot_spatial_feature
	plot_spatial_isoform
	plot_spatial_pie
	quantify_gene
	quantify_transcript
	quantify_transcript_flames
	scmixology_lib10
	scmixology_lib10_transcripts
	scmixology_lib90
	sc_DTU_analysis
	sc_impute_transcript
	sc_long_multisample_pipeline
	sc_long_pipeline
	sc_mutations
	weight_transcripts
	Index

