
Bioconductor RankProd Package Vignette

Fangxin Hong, fhong@salk.edu
Francesco Del Carratore, francescodc87@gmail.com

Ben Wittner, wittner.ben@mgh.harvard.edu
Rainer Breitling, rainer.breitling@manchester.ac.uk

Andris Janckevics, andris.jankevics@gmail.com

October 30, 2025

Contents

1 Introduction 2

2 Required arguments 3

3 Identification of differentially expressed genes – Affymetrix array 6
3.1 Data with single origin . 6
3.2 Data with multiple origins . 10

4 Identification of differentially expressed genes – cDNA array 12
4.1 Common Reference Design . 13
4.2 Direct two-color design . 14

5 Identification of differentially expressed metabolites - LC/MS based metabolomics
experiment 15

6 Advanced usage of the package 16
6.1 Identify genes with consistent down- or up-regulation upon drug-treatment 17
6.2 Simultaneously identify genes up-regulated under one condition and down-regulated

under another condition . 17

7 Changes introduced in the last version 21
7.1 Application to unpaired datasets . 21
7.2 Evaluation of the p-values for the RP . 22
7.3 Evaluation of the p-values for the RS . 22

1

1 Introduction

The RankProd package contains all the functions needed to apply the Rank Product (RP) and the
Rank Sum (RS) methods (Breitling et al., 2004, FEBS Letters 573:83) to omics datasets.
Both methods are a non-parametric statistical tests, derived from biological reasoning, able to detect
variables (e.g. genes or metabolites) that are consistently upregulated (or downregulated) in a number
of replicated experiments. In contrast to alternative approaches, both RP and RS are based on
relatively weak assumptions:

1. only a minority of all the features measured are upregulated (or downregulated);

2. the measurements are independent between replicate experiments;

3. most of the changes are independent with each other;

4. measurement variance is about equal for all measurements.

While the first three are biologically reasonable assumptions, the latter cannot be considered always
true, especially when dealing with metabolomics datasets. For this reason data preprocessing through
the use of a variance stabilization method is often required.

Brief description of the RP method. Suppose we have a differential expression data for a total
of N genes in K replicated experiments. Let ri,j be the position of the ith gene in the jth replicate
experiment in a list ordered according to fold changes (in a decreasing order if we are interested in
upreguleted genes, or in a increasing order vice versa). Under the null hypothesis (no differential
expressed genes are present in the dataset), the rank of a gene in the list generated, considering a
single replicate, comes from an uniform distribution (i.e. P (ri = x) = 1/N , where x ∈ {1, .., N}).
Considering all the K replicates, one should notice that is extremely unlikely to find the same gene
at the top of each list just by chance. In fact the exact probability of a gene being ranked 1 in each
replicate is exactly 1/NK . The RP statistic for the ith is defined as the geometric mean of all the
ranks of the gene obtained in each replicate:

RPi =

(
K∏
j=1

ri,j

)1/K

(1)

While the RS statistic is defined as the arithmetic mean of all the ranks:

RSi =
1

K

K∑
j=1

ri,j (2)

Genes with the smallest RP (or RS) values are the most likely to be upregulated or downregulated
(according to the order we chose when ranking the fold changes). The RP is equivalent to calculating
the geometric mean rank; replacing the product by the sum leads to a statistics (RS). This statistic
is slightly less sensitive to outliers and puts a higher premium on consistency between the ranks in
various lists. This can be useful in some applications as detailed below.
The package is able to analyse different kinds of data, such as: Affymetrix Genechip data, spotted
cDNA array data (after normalization) and metabolomics data (after variance stabilization). Both

2

methods are also able to combine datasets derived from different origins into one analysis, increasing
the power of the identification. Since the methods use the ranks of the variables in each replicated
experiment (instead of the actual values), it can be flexibly applied to many different situations, such
as identifying genes which are down-regulated under one condition while being up-regulated under
another condition.

This guide gives a tutorial-style introduction to the main features of RankProd and to the usage of
its functions. The presentation focuses on the analysis of Affymetrix array data, cDNA array data
and metabolomics data obtained from mass spectrometry.

First, it is necessary to load the package.

> library(RankProd)

In the following, we use the Arabidopsis dataset that is contained in this package to illustrate how
the RP and RS methods can be applied.

> data(arab)

data(arab) consists of a 500 × 10 matrix arab containing the expression levels of 500 genes in
10 samples, a vector arab.cl containing the class labels of the 10 samples, a vector arab.origin
containing the origin labels of the 10 samples (data were produced at two different laboratories), and
a vector arab.gnames containing the names(AffyID) of the 500 genes. The dataset is normalized by
RMA, thus it is in log2 scale.

2 Required arguments

In order to run a RP analysis, users need to call either the function RankProducts or RP.advance
(is it also possible to use the two functions RP and RPadvance which have been kept in the package
for backward compatibility). RankProducts is a simpler version, which is specialized in handling
data sets from a single origin, while RP.advance is able to analyse data with single or multiple
origins, and also perform some advanced analysis. There are two required arguments for the function
RanksProducts: data and cl, which are identical to those required by the function SAM contained in
the package siggenes. The first required argument, data, is the matrix (or data frame) containing
the gene expression data that should be analysed. Each of its rows corresponds to a gene, and each
column corresponds to a sample, which would be obtained, for example, by

> Dilution <- ReadAffy()

> data<-exprs(rma(Dilution))

The second required argument, cl, is a vector of length ncol(data) containing the class labels of
the samples. In a RP analysis for a datasets containing samples from different origins, there is one
more required argument in the function RP.advance: origin, which is a vector of length ncol(data)
containing the origin labels of the samples.

3

One class data. In the one class case, cl is expected to be a vector of length n containing only 1’s,
where n denotes the number of samples. A label value other than 1 would also be accepted. In the
latter case, this value is automatically set to 1. So for n=5, the vector cl is given by

> n <- 5

> cl <- rep(1,5)

> cl

[1] 1 1 1 1 1

Note: for one class data, we usually refer it as the expression ratio of two channels. In the outputs
from the package, we call the channel used as the numerator as class 1 and the channel used as
denominator as class 2.

Two class data. In this case, the function expects a vector cl consisting only of 0’s and 1’s, where
all the samples with class label ‘0’ belong to the first group (e.g. the control group) and the samples
with class label ‘1’ belong to the second group (e.g. the treatment group). For example, the first
n1=5 columns belong to the first group, and the next n2=4 columns belong to the second group, the
cl is given by

> n1 <- 5

> n2 <- 4

> cl <- rep(c(0,1),c(n1,n2))

> cl

[1] 0 0 0 0 0 1 1 1 1

Identically to the behaviour of the SAM analysis, the function also accepts others values. In that case,
the smaller value is set to 0 to be the first class and the larger value to 1 as the second class.

Single origin: If the data were generated under identical or very similar conditions except the factor
of interest (e.g. control and treatment), it is considered to be data with a single origin. This is the
most common case of array analysis. In this case, the function RP.advance (and RPadvance) expects
a vector origin of length n with only 1’s. For example, for 9 samples generated at one time in one
laboratories, the first 5 columns in the data are class 1, and the next 4 are class 2, the cl and origin
are given by

> n1 <- 5

> n2 <- 4

> cl <- rep(c(0,1),c(n1,n2))

> cl

4

[1] 0 0 0 0 0 1 1 1 1

> origin <- rep(1, n1+n2)

> origin

[1] 1 1 1 1 1 1 1 1 1

If 9 samples are from one class, the cl and origin vectors are given by:

> n <- 9

> cl <- rep(1,n)

> cl

[1] 1 1 1 1 1 1 1 1 1

> origin <- rep(1, n)

> origin

[1] 1 1 1 1 1 1 1 1 1

Multiple origins: Sometimes happens that different laboratories conduct a very similar experiment
to study the effect of the same treatment (e.g. application of a certain drug). Datasets generated by
different laboratories are considered as data with different origin, as it is known that the resulting
data are not directly comparable. The RP can combine these datasets together to perform an overall
analysis. In this case, the vector origin should consist numbers 1 to L, where L is the number of
different origins. For example, if 3 laboratories performed the same study using respectively 6, 4 and
8 samples, the origin vector is given by

> origin <- c(rep(1, 6), rep(2,4), rep(3,8))

> origin

[1] 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3

The function also accepts other values in the origin labels. In that case, samples with the same
origin label will be treated as having the same origin.

Example: For the dataset arab which is included in the package, 6 samples are from laboratory 1,
and another 4 are from laboratory 2. Both laboratories compare wild type Arabidopsis plants with
and without treatment (i.e. brassinosteroid).

> colnames(arab)

[1] "Chory_mock_1" "Chory_mock_2" "Chory_mock_3" "Chory_BL_1" "Chory_BL_2"

[6] "Chory_BL_3" "Goda_mock_1" "Goda_mock_2" "Goda_BL_1" "Goda_BL_2"

5

> arab.cl

[1] 0 0 0 1 1 1 0 0 1 1

> arab.origin

[1] 1 1 1 1 1 1 2 2 2 2

3 Identification of differentially expressed genes – Affymetrix array

In this section, we show how the RP method can be applied to the dataset arab. One should notice
that RP identifies differentially expressed genes in two separate lists, up- and down-regulated genes
separately. For each variable, a pfp (percentage of false prediction) is computed and used to select
the differentially expressed variables. Alternatively, the p-values estimated by the function can be
used with the same purpose after a multiple test correction is performed (e.g. Benjamini-Hochberg).

3.1 Data with single origin

Here, we perform the analysis for the samples from the same origin. A subset data matrix is extracted
by selecting columns whose origin label is 1.

> arab.sub <- arab[,which(arab.origin==1)]

> arab.cl.sub <- arab.cl[which(arab.origin==1)]

> arab.origin.sub <- arab.origin[which(arab.origin==1)]

The RP analysis for single-origin data can be performed by either RankProducts or RP.advance(and
also by the two functions kept for backward compatibility RP and RPadvance). Initially, we use the
function RankProducts to look for differentially expressed genes between class 2 (class label=1)and
class 1 (class label=0).

> RP.out <- RankProducts(arab.sub,arab.cl.sub, logged=TRUE,

+ na.rm=FALSE,plot=FALSE, rand=123)

Rank Product analysis for unpaired case

done

Data in arab are already log-transformed, otherwise one should set logged=FALSE. The argument
plot=FALSE will prevent the graphical display of the estimated pfp vs. number of identified genes.
The argument rand sets the random seed number to 123 allowing the function to produce reproducible
results. Since some of the function parameters have a default value, we can use this function by simply
typing:

6

> RP.out <- RankProducts(arab.sub,arab.cl.sub,gene.names=arab.gnames,rand=123)

The same results could also be obtained by

> RP.out <- RP.advance(arab.sub, arab.cl.sub, arab.origin.sub,

+ logged = TRUE, na.rm = FALSE, gene.names = arab.gnames, plot = FALSE,

+ rand = 123)

or

> RP.out=RP.advance(arab.sub,arab.cl.sub,arab.origin.sub,gene.names=arab.gnames,rand=123)

or

> RP.out <- RP(arab.sub,arab.cl.sub,gene.names=arab.gnames,rand=123)

or

> RP.out=RPadvance(arab.sub,arab.cl.sub,arab.origin.sub,gene.names=arab.gnames,

+ rand=123)

The function plotRP can be used to plot a graphical display of the estimated pfp vs. number of
identified genes using the output from RankProducts or RP.advance (also for RP and RPadvance). If
cutoff (the maximum accepted pfp) is specified, identified genes are marked in red (see figure 1).
Note that the estimated pfps are not necessarily smaller than 1, but they will converge to 1. Two
plots will be generated on current graphic display, for identification of up- and down-regulated genes
under class 2, respectively.

> plotRP(RP.out, cutoff=0.05)

7

0 100 200 300 400 500

0.
0

0.
6

1.
2

number of identified genes

es
tim

at
ed

 P
F

P
Identification of Up−regulated genes under class 2

0 100 200 300 400 500

0.
0

0.
6

1.
2

0 100 200 300 400 500

0.
0

0.
6

1.
2

number of identified genes

es
tim

at
ed

 P
F

P

Identification of down−regulated genes under class 2

0 100 200 300 400 500

0.
0

0.
6

1.
2

The function topGene generates a table of the identified genes based on user-specified selection criteria.
One of the required argument is the output object from RankProducts or RP.advance (also for RP
and RPadvance). The user also needs to specify either the cutoff (the pfp or p value threshold)
or num.gene (the number of top genes identified), otherwise a error message will be printed and
the function will stop. If cutoff is specified, the function also requests user to select either pfp
(percentage of false prediction) or pval (p value) which is used to select genes. pfp is the default
setting.

> topGene(RP.out,gene.names=arab.gnames)

Error in topGene(RP.out, gene.names = arab.gnames) :

No selection criteria is input, please input either cutoff or num.gene

> topGene(RP.out,cutoff=0.05,method="pfp",

+ logged=TRUE,logbase=2,gene.names=arab.gnames)

8

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

$Table1

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245244_at 344 1.587 0.4327 4.875e-05 9.749e-08

245119_at 219 3.037 0.4783 5.211e-04 2.084e-06

245336_at 436 3.107 0.4773 3.840e-04 2.304e-06

245176_at 276 3.684 0.5038 5.970e-04 4.776e-06

245304_at 404 3.780 0.5011 5.320e-04 5.320e-06

245196_at 296 8.173 0.6035 9.557e-03 1.147e-04

245254_at 354 10.430 0.6469 1.931e-02 2.703e-04

245262_at 362 10.660 0.6667 1.820e-02 2.911e-04

245141_at 241 13.900 0.6971 3.931e-02 7.076e-04

245334_at 434 14.420 0.6994 3.985e-02 7.970e-04

245265_at 365 15.100 0.6888 4.203e-02 9.247e-04

245112_at 212 16.280 0.7112 4.892e-02 1.174e-03

$Table2

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245362_at 462 1.000 2.594 0.0000040 8.000e-09

245136_at 236 3.302 1.718 0.0007491 2.996e-06

245277_at 377 4.932 1.564 0.0026510 1.591e-05

245296_at 396 5.013 1.550 0.0021230 1.699e-05

245229_at 329 9.691 1.458 0.0209700 2.097e-04

245276_at 376 10.420 1.479 0.0224400 2.692e-04

245075_at 175 12.630 1.394 0.0368800 5.163e-04

Here the user can choose variables shown by controlling pfp < 0.05. If gene.names is provided the
output will also show the names of the selected genes. Since data set arab is in log based 2 scale, we
specified logged=TRUE and logbase=2, which are the default values.

The output consists of two tables, listing selected up- (Table1: class 1 < class 2) and down-
(Table2: class 1 > class 2) regulated genes. In the tables, there are 5 columns, the first one gene.index
contains the gene indexes; the second RP/Rsum contains the computed Rank Product (or RS) statistics;
the third FC:(class1/class2) contains the computed fold change of the average expression levels
under two conditions, which would be converted to the original scale using input logbase (default
value is 2) if logged=TRUE is specified; the fourth pfp contains the estimated pfp value for each gene
in the list; the last P.value contained the estimated P-values for each gene. If the user wants to use

9

a less stringent criterion, a cutoff on the p-value (pvalue < 0.05) can be specified as:

> topGene(RP.out,cutoff=0.05,method="pval",logged=TRUE,logbase=2,

+ gene.names=arab.gnames)

If the user is interested in the top 50 genes, he/she can type

> topGene(RP.out,num.gene=50,gene.names=arab.gnames)

3.2 Data with multiple origins

In this section, we will illustrate how the RP method can be applied to datasets containing samples
from multiple origins using the built-in data set arab. As mentioned before, arab consists of array
data measured by two different laboratories. Both laboratories measured gene expression under the
same two conditions.
Given the lack of experimental standards for microarray experiments, direct comparison is not feasible.
Instead of using actual expression data, our approach combines the gene rank from different origins
together (for details refer to Breitling et al. (2004)).

> ##identify differentially expressed genes

> RP.adv.out <- RP.advance(arab,arab.cl,arab.origin,

+ logged=TRUE,gene.names=arab.gnames,rand=123)

The data is from 2 different origins

Rank Product analysis for two-class case

Rank Product analysis for unpaired case

Rank Product analysis for unpaired case

done

> #The last command can also be written using the old syntax

> #RP.adv.out <- RPadvance(arab,arab.cl,arab.origin,

> #logged=TRUE,gene.names=arab.gnames,rand=123)

> plotRP(RP.adv.out, cutoff=0.05)

10

0 100 200 300 400 500

0.
0

0.
6

1.
2

number of identified genes

es
tim

at
ed

 P
F

P
Identification of Up−regulated genes under class 2

0 100 200 300 400 500

0.
0

0.
6

1.
2

0 100 200 300 400 500

0.
0

0.
6

1.
2

number of identified genes

es
tim

at
ed

 P
F

P

Identification of down−regulated genes under class 2

0 100 200 300 400 500

0.
0

0.
6

1.
2

By combining data from different origins, the power of the statistical test increases leading to an
higher number of selected genes, as shown in the following table.

> topGene(RP.adv.out,cutoff=0.05,method="pfp",logged=TRUE,logbase=2,

+ gene.names=arab.gnames)

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

$Table1

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245244_at 344 3.664 0.4968 2.087e-06 4.174e-09

245336_at 436 3.987 0.4860 1.928e-06 7.713e-09

11

245176_at 276 6.931 0.5630 5.324e-05 3.194e-07

245304_at 404 10.210 0.6286 4.213e-04 3.371e-06

245334_at 434 10.650 0.6085 4.315e-04 4.315e-06

245262_at 362 11.840 0.6292 6.588e-04 7.906e-06

245119_at 219 13.860 0.6609 1.353e-03 1.894e-05

245329_at 429 14.690 0.5018 1.624e-03 2.599e-05

245265_at 365 16.370 0.5769 2.566e-03 4.618e-05

245196_at 296 16.460 0.6775 2.378e-03 4.757e-05

245112_at 212 20.270 0.7120 6.301e-03 1.386e-04

245193_at 293 21.140 0.6884 7.127e-03 1.710e-04

245141_at 241 21.990 0.7203 8.003e-03 2.081e-04

245254_at 354 28.310 0.7845 2.494e-02 6.982e-04

245383_at 483 31.300 0.7652 3.685e-02 1.105e-03

245041_at 141 31.410 0.7600 3.511e-02 1.124e-03

245052_at 152 32.140 0.7524 3.666e-02 1.246e-03

$Table2

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245362_at 462 1.246 2.507 1.954e-10 3.908e-13

245136_at 236 5.993 1.598 3.131e-05 1.253e-07

245296_at 396 6.227 1.654 2.679e-05 1.607e-07

245276_at 376 8.756 1.582 1.693e-04 1.354e-06

245277_at 377 10.070 1.480 3.100e-04 3.100e-06

245229_at 329 15.700 1.391 3.085e-03 3.702e-05

245075_at 175 16.420 1.391 3.356e-03 4.699e-05

245319_at 419 22.050 1.421 1.319e-02 2.111e-04

245307_at 407 25.560 1.400 2.396e-02 4.312e-04

4 Identification of differentially expressed genes – cDNA array

When dealing with cDNA array data, the usage of the RP method has to change since gene expressions
of two conditions are measured from a single spot. Furthermore, the RP implementation will also
change according to the experimental design. The two most commonly encountered experimental
design are:

• common reference design, where two RNA samples are compared via a common reference;

• direct two-color design, where two RNA samples are directly compared without a common
reference.

12

4.1 Common Reference Design

This type of analysis is very similar to the analysis of Affymetrix Genechips. As an example, we will
have a look at the data lymphoma copied from the package vsn.

> data(lymphoma)

> pData(lymphoma)

name sample

1 lc7b047 reference

2 lc7b047 CLL-13

3 lc7b048 reference

4 lc7b048 CLL-13

5 lc7b069 reference

6 lc7b069 CLL-52

7 lc7b070 reference

8 lc7b070 CLL-39

9 lc7b019 reference

10 lc7b019 DLCL-0032

11 lc7b056 reference

12 lc7b056 DLCL-0024

13 lc7b057 reference

14 lc7b057 DLCL-0029

15 lc7b058 reference

16 lc7b058 DLCL-0023

As shown in the table, the 16 columns of the lymphoma object contain the red and green intensities
of the 8 slides. Thus, the Ch1 intensities are in columns 1,3,. . . ,15, while the Ch2 intensities are in
columns 2,4,. . . ,16. We can call vsn to normalize all of them at once.

> library(vsn)

> lym.vsn <- vsn(lymphoma)

> lym.exp <- exprs(lym.vsn)

Next, we can obtain the log-ratios for each slide by subtracting the common reference intensities
from the 8 samples. After a class label vector is created, the RankProducts function can be called to
perform a two-classes analysis.

> refrs <- (1:8)*2-1

> samps <- (1:8)*2

> M <- lym.exp[,samps]-lym.exp[,refrs]

> colnames(M)

13

[1] "CLL-13" "CLL-13" "CLL-52" "CLL-39" "DLCL-0032" "DLCL-0024"

[7] "DLCL-0029" "DLCL-0023"

> cl <- c(rep(0,4),rep(1,4))

> cl #"CLL" is class 1, and "DLCL" is class 2

[1] 0 0 0 0 1 1 1 1

> RP.out <- RankProducts(M,cl, logged=TRUE, rand=123)

Rank Product analysis for unpaired case

done

> #The last command can also be written using the old syntax

> # RP.out <- RP(M,cl,logged=TRUE,rand=123)

> topGene(RP.out,cutoff=0.05,logged=TRUE,logbase=exp(1))

Note that vsn normalized data is in log base e.

4.2 Direct two-color design

In this case, the gene expression ratio of the two dyes (classes) is measured for each spot. Here we
consider and experiment where two wild type (class1) and two mutant mice (class2) are compared.
The targets might be:

File name Cy3 Cy5 Ratio=wt/mu
File 1 wt mu Cy3/Cy5
File 2 mu wt Cy5/Cy3
File 3 wt mu Cy3/Cy5
File 4 mu wt Cy5/Cy3

The first required argument for the the RankProducts, data, is the matrix (or data frame) containing
the gene expression ratios. The rows correspond to the genes, while each column corresponds to the
ratio of one chip. Since the input data is already log-ratios, the second required argument, cl, has
to be a the vector of length ncol(data) containing only 1’s. Finally, a one-class RP analysis can be
performed in order to identify up- or down-regulated genes.

> cl=rep(1,4)

> RankProducts(data,cl, logged=TRUE, rand=123)

># or using the old syntax

># RP(data,cl, logged=TRUE, rand=123)

14

It should be noticed that for the direct two-color design, the RP will not distinguish the details
of different designs as done by limma (for example see the special designs discussed in section 9 of
the limma vignette including simple comparison and dye swaps). Furthermore, the differences among
biological or technical replicates are not an issue in the RP analysis.

5 Identification of differentially expressed metabolites - LC/MS based
metabolomics experiment

As mentioned before, our methods (especially the RS) can be successfully used to analyse metabolomics
datasets. Testing biomarker selection methods on real data is problematic. In fact, we usually do
not know the "True" biomarkers a priori. In order to cope with this problem, a publicly available
UPLC-MS spike-in metabolomics dataset has been used (Franceschi P., et al. (2012)). This dataset
has been obtained from twenty apples, ten of which have been spiked with known compounds that
naturally occur in apples. The raw have been pre-processed allowing us to work with a data matrix
containing the basepeaks intensities of the identified metabolites. The dataset used in this example is
contained this package, but it can also be found in the BioMark package (Wehrens R., et al. (2011)).
The dataset can be loaded as follows:

> data(Apples)

The list of the features associated to the spiked-in biomarkers is contained in the Biom vector:

> Biom

463.09/414 227.07/418 273.08/434.1 435.13/434.1 447.09/438.3

118 120 140 142 152

While the apples.cl vector, contains the class labels of the samples. As mentioned before, it is
necessary to apply variance stabilization and normalization to the data. This can be easily done with
the vsn funciton.

> library(vsn)

> apples.data.exp<-vsn(apples.data)

> apples.data.vsn<-exprs(apples.data.exp)

In order to put an higher premium on consistency between replicates, the RS analysis is preferred
here.

> RS.apples<-RankProducts(apples.data.vsn, apples.cl,

+ gene.names = rownames(apples.data.vsn),

+ calculateProduct = FALSE, rand=123)

15

Rank Sum analysis for unpaired case

done

As shown in previous examples, the topGene function can be used in order to show the variables
presenting a pfp values smaller or equal than 0.05. It is also possible to store the indexes of the
selected variables in a vector called selected.

> topGene(RS.apples,cutoff = 0.05, method = "pfp",

+ gene.names = rownames(apples.data.vsn))

Table1: Genes called significant under class1 < class2

No genes called significant under class1 > class2

$Table1

gene.index RP/Rsum FC:(class1/class2) pfp P.value

227.07/418 120 4.0 0.4789 1.897e-12 9.629e-15

273.08/434.1 140 17.8 0.6633 7.610e-06 7.726e-08

435.13/434.1 142 20.4 0.6803 2.051e-05 3.123e-07

447.09/438.3 152 25.6 0.7060 1.560e-04 3.167e-06

869.21/433.6 137 34.8 0.6773 2.814e-03 7.142e-05

$Table2

NULL

> selected <- which(RS.apples$pfp[,1]<= 0.05)

Comparing the variables selected by out method with the list of the real biomarkers, it is easy
to see that the method is able to identify 4 true biomarkers out of 5, while finding only one False
positive.

> selected %in% Biom

[1] TRUE FALSE TRUE TRUE TRUE

6 Advanced usage of the package

Since the RP method uses ranks instead of actual expression to identify genes, the method can be
generally used in many other cases beside the simple two-class comparison. Evaluating the RP is

16

equivalent to calculating the geometric mean of Rank. Replacing the product with the sum (i.e.
replacing the geometric mean with the average) leads to the RS. Which is a statistic that is slightly
less sensitive to outliers and puts a higher premium on consistency between the ranks in various lists.
The RS analysis can be performed both by the RankProducts and RP.advance functions (the latter
can also cope with the multiple origins case). In fact, setting calculateProduct=FALSE the functions
will perform the RS instead of the RP. In order to guarantee the backward compatibility with the
previous version of the package, the function RSadvance has been kept allowing to perform the RS
analysis with the old syntax.

6.1 Identify genes with consistent down- or up-regulation upon drug-treatment

The following example has been inspired by a question posted in the BioC mailing-list. Suppose that
a comparative study (control against treated) has been performed 3 different times with a different
dosage of the same drug. The aim of such study is to investigate genes that are consistently up-
or down- regulated by the drug when compared to controls. Regardless the difference in the drug
dosage, one will expect that the genes up-regulated (down-regulated) by the drug will consistently
show an high (low) rank in all studies. Treating the 3 studies as 3 different origins (as shown in section
3.2), the RS method can be successfully performed. The identified genes will be good candidates for
consistent down- or up-regulation under various conditions.

6.2 Simultaneously identify genes up-regulated under one condition and down-
regulated under another condition

Usually, in a microarray study that considers the responses in two different conditions, two lists
of genes are identified independently:

• up-regulated genes under condition 1;

• down-regulated genes under condition 2.

Genes appearing in both lists are considered as the candidates. The rank-based method can be used
to identify the desired list of genes in a single analysis. This is another advantage of the rank-based
methods.
In fact, one can rank genes in ascending order under the first condition and in descending order
under the second one. The two lists, can be considered together as in a 2-origin study in order to
identify the candidate genes. Using the data arab, we now show a practical example. Suppose that
we want to verify the consistency of the datasets generated in two different laboratories. Specifically,
we want to look for genes that have been detected as up-regulated in class 2 at laboratory 1, but
down-regulated in class 2 at laboratory 2. This can be achieved switching class labels for laboratory
2. Thus, for laboratory 2 the hypothetical class1 represents the real class2.

> arab.cl2 <- arab.cl

> arab.cl2[arab.cl==0 &arab.origin==2] <- 1

> arab.cl2[arab.cl==1 &arab.origin==2] <- 0

> arab.cl2

17

[1] 0 0 0 1 1 1 1 1 0 0

If the measurements in the two laboratories are consistent, the genes will have very different ranks in
the two origins. The RS analysis is preferred here, in order to emphasise consistency for the candidate
genes. In the following example, we used only the first 500 genes to perform a fast analysis.

> Rsum.adv.out <- RP.advance(arab,arab.cl2,arab.origin,calculateProduct=FALSE,

+ logged=TRUE,gene.names=arab.gnames,rand=123)

The data is from 2 different origins

Rank Sum analysis for two-class case

Rank Sum analysis for unpaired case

Rank Sum analysis for unpaired case

done

> # also the old syntax can be used

> #Rsum.adv.out <- RSadvance(arab,arab.cl2,arab.origin,

> #logged=TRUE,gene.names=arab.gnames,rand=123)

> topGene(Rsum.adv.out,cutoff=0.05,gene.names=arab.gnames)

No genes called significant under class1 < class2

No genes called significant under class1 > class2

$Table1

NULL

$Table2

NULL

No gene was found to be differentially expressed (FDR=0.05), indicating a relative good consistency
of the experiments conducted by the two laboratories. Looking at the top 10 genes in the lists, it
easy to realise that they are indeed very similar.

> topGene(Rsum.adv.out,num.gene=10,gene.names=arab.gnames)

18

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

$Table1

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245181_at 281 69.2 0.8253 0.6423 0.001285

245392_at 492 75.6 0.8302 0.5010 0.002004

245233_at 333 85.8 0.8589 0.6309 0.003785

245305_at 405 90.4 0.8603 0.6151 0.004921

244951_s_at 51 100.2 0.8757 0.8250 0.008250

245381_at 481 113.2 0.8788 1.2680 0.015220

245380_at 480 116.8 0.8924 1.2720 0.017800

245082_at 182 117.8 0.8583 1.1610 0.018580

245212_at 312 118.2 0.8780 1.0500 0.018900

245269_at 369 120.0 0.8857 1.0190 0.020380

$Table2

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245252_at 352 104.6 1.184 5.118 0.01024

245338_at 438 107.4 1.166 2.922 0.01169

245259_at 359 115.2 1.130 2.769 0.01661

245343_at 443 117.2 1.124 2.264 0.01811

245080_at 180 118.6 1.120 1.922 0.01922

244990_s_at 90 125.8 1.222 2.150 0.02580

245021_at 121 128.2 1.205 2.024 0.02834

244986_at 86 132.8 1.153 2.110 0.03376

244981_at 81 139.2 1.161 2.365 0.04256

245018_at 118 144.6 1.131 2.563 0.05125

> plotRP(Rsum.adv.out,cutoff=0.05)

No genes found using the input cutoff class 1 < class 2

No genes found using the input cutoff: class 1 > class 2

19

0 100 200 300 400 500

0.
6

1.
0

1.
4

number of identified genes

es
tim

at
ed

 P
F

P
Identification of Up−regulated genes under class 2

0 100 200 300 400 500

1
2

3
4

5

number of identified genes

es
tim

at
ed

 P
F

P

Identification of down−regulated genes under class 2

The abnormal patterns shown in figure 3 (compared with figure 1) reveal a meaningless identification.
However, due to its stability, the RP statistics is still able to identify some genes.

> RP.adv.out <- RP.advance(arab,arab.cl2,arab.origin,calculateProduct=TRUE,

+ logged=TRUE,gene.names=arab.gnames,rand=123)

The data is from 2 different origins

Rank Product analysis for two-class case

Rank Product analysis for unpaired case

Rank Product analysis for unpaired case

20

done

> # also the old syntax can be used

> #RP.adv.out <- RPadvance(arab,arab.cl2,arab.origin,

> #logged=TRUE,gene.names=arab.gnames,rand=123)

> topGene(RP.adv.out,cutoff=0.05,gene.names=arab.gnames)

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

$Table1

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245244_at 344 16.34 0.8710 0.02285 4.569e-05

245119_at 219 20.04 0.7238 0.03277 1.311e-04

245304_at 404 21.25 0.7973 0.02925 1.755e-04

245336_at 436 22.61 0.9822 0.02980 2.384e-04

245176_at 276 26.18 0.8950 0.04836 4.836e-04

$Table2

gene.index RP/Rsum FC:(class1/class2) pfp P.value

245362_at 462 12 1.034 0.004258 8.517e-06

Nevertheless, the log fold-changes show that these findings are not significant. This is also confirmed
by the comparison of the ranks under 13 pairings for one gene (first 9 in laboratory 1, next 4 in from
laboratory 2).

> RP.adv.out$Orirank[[1]][344,]

[1] 3 4 3 1 1 1 1 1 1 495 496 453 492

7 Changes introduced in the last version

In this section changes introduced in the new version of the package are briefly summarized.

7.1 Application to unpaired datasets

Let T and C stand for two experimental conditions (e.g. treatment versus control), while nT and nC

are the number of replicates in the two conditions. In the old package the RP (RS) analysis for the
unpaired case was performed according the ad hoc procedure decribed here:

21

1. all the possible K = nT ×nC pair-wise comparisons are considered and K lists of ratios FC are
evaluated;

2. the ratios are ranked within each comparison (rgi is the rank of the gth gene in the ith com-
parison);

3. the RP for each gene is determined as RPg = (
∏

i rgi)
1/K ;

4. alternatively, the RS is determined as RPg = (
∑

i rgi)/K.

Apparently, such approach leads to an increase of the False Discovery Rate. In the new package,
a new and more principled method has been developed. This method is described below:

1. the number of pairs (npairs) is defined as the number of the samples in the smallest class;

2. if not defined by the user, the number of Random Pairings that will be generated (nrp) is set
to npairs× npairs (if this number is not odd nrp = npairs× npairs+ 1);

3. Sampling from the original dataset, nrp new datasets of dimension (ngenes × npairs) are
generated;

4. the RP (RS) is evaluated nrp times considering each Random Pairing as a paired experiment;

5. per each gene, the final RPg (or RSg) is estimated as the median of the nrp values evaluated in
the step before.

7.2 Evaluation of the p-values for the RP

Instead of the permutation approach used in the old version of the package, the pvalues for the RP
are now evaluated through the fast algorithm described in Heskes et al. 2014, which allows a very
accurate approximation of the p-values in a computationally fast manner. This approach significantly
speeds up the RP analysis. When considering a typical paired dataset (N = 1000 and K = 10), the
computation time is now reduced by a factor of ∼ 500, when compared with the analysis performed
with the previous approach (using 10, 000 permutations).

7.3 Evaluation of the p-values for the RS

Also in this case, the permutation approach was abbandoned. We have developed a novel method
able to compute the exact p-values for the RS in a fast manner. This method is straightforward
and based on a very simple analogy. It is easy to understand that, under the null hypothesis, the
probability distribution of the RS, in an experiment with N features and K replicates, is exactly
the same as the probability distribution of the sum of the outcomes obtained by rolling K dice
with N faces (http://mathworld.wolfram.com/Dice.html). The numerical error generated by our
fast algorithm increases with the the size of the dataset. For this reason we developed a more
accurate implementation of the same algoritm, which is able to cope with extremely large datasets.
Unfortunately, this leads to an increase of the computational time. When the size of the dataset
is such that the use of the accurate implementation is needed and the time needed to evaluate the
exact p-values becomes unacceptable, the new package computes the exact p-values for the smallest

22

RS values for tail.time minutes. The rest of the p-values are approximated with the following
gaussian:

N (µ =
K(N + 1)

2
, σ2 =

K(N2 − 1)

12
) (3)

It should be noticed that with such large datasets, this approximation is extremely accurate. Never-
theless, in this case the fuction shows the highest p-values exactly computed, so the user can play with
the tail.time parameter if not satisfied. In most of the cases, this approach significantly speeds up the
RS analysis. When considering a typical paired dataset (N = 1000 and K = 10), the computation
time is now reduced by a factor of ∼ 1200, when compared with the analysis performed with the
previous approach (using 10, 000 permutations).

Reference

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.(2004) Rank Products: A simple, yet
powerful, new method to detect differentially regulated genes in replicated microarray experi-
ments. FEBS Letter, 57383-92

Nemhauser JL, Mockler TC, Chory J. (2004) Interdependency of brassinosteroid and auxin signaling
in Arabidopsis. PLoS Biol. 21460

http://arabidopsis.org/info/expression/ATGenExpress.jsp

Heskes, T.,Eisinga, R., and Breitling, R.(2014) A fast algorithm for determining bounds and accurate
approximate p-values of the rank product statistic for replicate experiments. BMC bioinfor-
matics, 15.1: 367.

Franceschi, P., Masuero, D., Vrhovsek, U., Mattivi, F. and Wehrens R. (2012) A benchmark spike-in
data set for biomarker identification in metabolomics. Journal of chemometrics, 26(1-2):16-24.

Wehrens, R., Franceschi, P., Vrhovsek, U. and Mattivi, F. Stability-based biomarker selection. Ana-
lytica chimica acta, 705(1):15-23.

23

