Using MLP

Nandini Raghavan, An De Bondt, Tobias Verbeke
October 30, 2025

Contents
(1__Introduction| 1
2 Example Use 2
I p |
2.1 Preliminariesl e e e 2
2.2 Prepare P Values| 2
2.3 Prepare Gene Sets| 2
DA Run MLPl . . . oo 4
2.5 Visualize MLP Resultsl e 6
[2.5.1 Quantile Curves| e 6
D52 _Bar PIOT . . . o o o e 7
[2.5.3 Gene Ontology Graph| 8
2.6 Visualize Individual Genes in a Gene Setl. 9
[B_References 10

1 Introduction

Profiling technologies like gene expression profiling made it possible to quantify and compare relative gene
expression profiles across a series of conditions and this for thousands of genes at a time. In order to under-
stand the biology behind the difference between e.g. treatment and control, one might look at the function
of individual genes which are differentially expressed. Another approach is to test which biological processes
are significantly affected. Genes can be grouped into gene sets e.g. based on the biological process they are
involved in. Coordinated differential expression of a set of functionally related genes could be more relevant
than differential expression of a few unrelated genes, scattered across multiple gene sets.

The idea of the MLP methodology is to test whether there are gene sets enriched in small p-values (MLP denotes
mean minus log p-value). The method does not require a cut-off value for significance at gene level. Also a
distinction between up- or downregulated genes is not needed. Both of these principles taken together makes it
possible to find, in one go, affected gene sets consisting of e.g. 50% inhibitors and 50% inducers.

The MLP methodology involves the use of (a) a test statistic to quantify the extent of the differential expression
and (b) a resampling scheme to judge whether the difference is possibly real or attributable to chance. This
process can be repeated for all gene sets of interest. The starting point for the MLP methodology is a list of
p-values, or any similar statistics, that can quantify the degree of differential expression for each gene measured.
These can be generated by a variety of methods used for calculating p-values based on gene expression data,
several of them have been incorporated in the limma package. [Smyth et al., 2003] Smyth, 2005

In this vignette, we show an example to identify biological processes that are affected in the considered experi-
ment. The |Gene Ontology Consortium|is dealing with the classification of genes based on 3 criteria:

e the biological process they are involved in
e the molecular function they have
e their cellular localisation

The analysis behind the results below is focussing on identifying affected gene sets based on biological processes.

http://www.statsci.org/smyth/pubs/limma-biocbook-reprint.pdf
http://www.geneontology.org/

2 Example Use

The example data is from an expression profiling experiment with 2 sample groups, comparing wild-type mice
with animals of which 1 gene has been knocked out. Each of the groups consist of 6 mice. The expression
array used is the Affymetrix’ Mouse430 2. The gene expression measurements have been summarized using
GC-RMA ([rizarry et al., 2003| and Wu et al., 2004) based on Entrez Gene probeset definitions

2.1 Preliminaries

> require (MLP)
require(limma)
library (AnnotationDbi)

\2Y

Load the needed libraries and the preprocessed data.

> pathExampleData <- system.file("exampleFiles", "expressionSetGcrma.rda", package = "MLP")
> load(pathExampleData)
> annotation(expressionSetGcrma) <- "mouse4302"

It is advisable to make use of the annotation packages of the BrainArray groupE] at the University of Michigan,
but as these packages are unfortunately not officially part of BioConductor (and on the build servers used to
build packages [and corresponding vignettes|), the code above allows for using the sub-optimal Affymetrix
annotation.

2.2 Prepare P Values

Estimate the fold changes and standard errors by fitting a linear model for each gene.

calculation of the statistics values via limma

group <- as.numeric(factor(pData(expressionSetGcrma)$subGroupl, levels = c("WT", "K0")))-1
design <- model.matrix(~group)

fit <- 1lmFit(exprs(expressionSetGcrma), design)

fit2 <- eBayes(fit)

results <- limma:::topTable(fit2, coef = "group", adjust.method = "fdr", number = Inf)
pvalues <- results[,"P.Value"]

names (pvalues) <- rownames (results)

since we moved towards using "_at", next step should be needed as well

names (pvalues) <- sub("_at", "", names(pvalues))

VVVVVVVVYVYV

2.3 Prepare Gene Sets

Create an object with the overview of the groups of genes you would like to consider. This object is a list of
class geneSetMLP, where the slot names correspond to the gene set identifier and the slot content is a character
vector of Entrez Gene identifiers for those genes belonging to that gene set. This object can be created using
the getGeneSets function. This function has 3 parameters:

e species = a string being 'Human’, "Mouse’, 'Rat’, 'Dog’ or 'Rhesus’
e geneSetSource = a string or a data.frame (more info below)
e entrezldentifiers = a character vector of Entrez Gene identifiers for which gene statistics are available

The geneSetSource can be a string, i.e. ?GOBP’, *GOMF’, >GOCC’, *KEGG’ or ’REACTOME’. The downstream
analysis in these cases will identify gene sets, publicly available, as defined by the Gene Ontology Consortium
for the first 3 , the [Kyoto Encyclopedia of Genes and Genomes and REACTOME! For the latter, species must
be one of 'Human’, ’Mouse’, 'Rat’ or 'Dog’. The geneSetSource can also be a data.frame with at least the
following 4 columns:

e PATHWAYID = identifier of the gene set
e PATHWAYNAME = description of the gene set

e TAXID = taxonomy identifier (9606, 10090, 10116 or 9615 for respectively Human, Mouse, Rat or Dog)

1See here.

http://www.bepress.com/jhubiostat/paper1/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.reactome.org
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp

e GENEID = Entrez Gene identifier belonging to that gene set

As an example, submitting the GO biological processes information as a data.drame would look like the
data.frame below. In such a data.frame, the details of each gene set (identifier and description), is repeated as
many times as the number of genes in that gene set and this for each species enclosed in the database.

PATHWAYID TAXID PATHWAYNAME GENEID
G0:0000002 10090 mitochondrial genome maintenance 18975
G0:0000002 10090 mitochondrial genome maintenance 19819
G0:0000002 10090 mitochondrial genome maintenance 27393
G0:0000002 10090 mitochondrial genome maintenance 27395
G0:0000002 10090 mitochondrial genome maintenance 27397
G0:0000002 10090 mitochondrial genome maintenance 57813
G0:0000002 10090 mitochondrial genome maintenance 83945
G0:0000002 10090 mitochondrial genome maintenance 226153
G0:0000002 10090 mitochondrial genome maintenance 382985
10 GO:0000002 10116 mitochondrial genome maintenance 83474
11 GO:0000002 10116 mitochondrial genome maintenance 291824
12 GO:0000002 10116 mitochondrial genome maintenance 298933
13 G0:0000002 10116 mitochondrial genome maintenance 309441
14 GO0:0000002 10116 mitochondrial genome maintenance 309762
15 GO:0000002 10116 mitochondrial genome maintenance 360481

© 00 ~NO O d W N -

> geneSet <- getGeneSets(species = "Mouse",

+ geneSetSource = "GOCC",

+ entrezIdentifiers = names(pvalues)
+)

> tail(geneSet, 3)

$°G0:1990923"
[1] "sB7746" "71981" "241624"

$°G0:1990971"
[1] "100952" "246707"

$°G0:1990972"
[1] "70945" "105450"

As mentioned above, the returned object is a list of class geneSetMLP. This object has attributes which are
used for the downstream analysis.

> str(attributes(geneSet))

List of 5
$ names : chr [1:1972] "G0:0000015" "GO:0000109" "GO:0000110" "GO:0000111"
$ species : chr "Mouse"

$ geneSetSource: chr "GOCC"

$ descriptions : Named chr [1:1972] "phosphopyruvate hydratase complex" "nucleotide-excision repair co
.- attr(*, "names")= chr [1:1972] "GO:0000015" "GO:0000109" "GO:0000110" "G0O:0000111"

$ class : chr [1:2] "geneSetMLP" "list"

2.4 Run MLP

Run the actual MLP. To retrieve exact reproducible results, the seed is set in advance. The MLP function has
10 parameters, many of them can remain on their default values:

geneSet = object of class geneSetMLP created by getGeneSets

geneStatistic = named numeric vector corresponding to a gene-specific statistic, such as a p-value. The
names are the corresponding Entrez Gene identifiers. This vector has the same length as the character
vector submitted as entrezIdentifiers to the getGeneSets function.

minGenes = minimal number of genes for a gene set to be considered in the analysis, default 5
maxGenes = maximal number of genes for a gene set to be considered in the analysis, default 100

rowPermutations = logical indicating whether critical values for the geneSet are computed using a per-
mutation of the geneStatistics, default TRUE. The alternative is column permutations which requires
a matrix of p-values corresponding to permutations of the original samples to be input. This latter option
has not been fully implemented.

nPermutations = number of permutations to be used for calculating the critical value for a certain
geneSet.

smoothPValues = logical indicating whether smoothing is desirable or not, default TRUE

probabilityVector = vector of probabilities at which critical value curves for the geneSet are to be
calculated. Default is ¢(0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999) corresponding to p-values of respectively
0.5, 0.1, 0.01, 0.001 etc.

df = degrees of freedom for the smoothing parameter used in smoothPValues. The higher, the more
smooth, default 9.

addGeneSetDescription = logical indicating whether adding gene sets annotation to the MLP output is
desirable or not, default TRUE.

> set.seed(111)
> mlpOut <- MLP(

+

+
+
+
+
+
+
+
+
>

GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:

geneSet = geneSet,
geneStatistic = pvalues,
minGenes = 5,
maxGenes = 100,
rowPermutations = TRUE,
nPermutations = 50,
smoothPValues = TRUE,
probabilityVector = ¢(0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999),
df = 9)
head (mlpOut)
totalGeneSetSize testedGeneSetSize geneSetStatistic geneSetPValue
10140095 5 5 1.6953984 0.0009659855
0106139 23 17 0.9155116 0.0073054318
1990917 10 10 0.9623629 0.0135806531
0005602 7 5 1.1808740 0.0140318885
0042613 12 10 0.9461005 0.0152960000
0044217 33 24 0.7292506 0.0268500788
geneSetDescription
0140095 cytoplasmic lattice
0106139 symbiont cell surface
1990917 ooplasm
0005602 complement component C1 complex
0042613 MHC class II protein complex
0044217 other organism part

Some properties of the MLP procedure , as well as some parts of the implemented procedure, assume that
the geneStatistic has a uniform distribution between 0 and 1 under the null hypothesis for a given analysis.
The returned object is a data.frame of class MLP with at least 4 columns:

totalGeneSetSize = total number of genes in the corresponding gene set

submitted

geneSetStatistic = mean of the -logl0 of the genes tested in that geneSet

geneSetPValue = p-value associated with the geneSetStatistic

This object has attributes which are used for visualising the analysis results.

> str(attributes (mlpOut))

testedGeneSetSize = number of genes in the corresponding geneSet for which a gene statistic has been

List of 6
$ names : chr [1:5] "totalGeneSetSize" "testedGeneSetSize" "geneSetStatistic"
$ class : chr [1:2] "MLP" "data.frame"
$ row.names : chr [1:915] "GO:0140095" "G0O:0106139" "G0:1990917" "GO:0005602"
$ species : chr "Mouse"
$ geneSetSource : chr "GOCC"
$ quantileCurveInformation:List of 5
.$ x0 : Named num [1:915] 3.61 8.54 8.6 4.47 2.45 ...
..- attr(*, "names")= chr [1:915] "G0:0000109" "GO0:0000118" "GO:0000123" "GO:0000124"
..$ yO : Named num [1:915] 0.502 0.439 0.417 0.46 0.42 ...
..- attr(*, "names")= chr [1:915] "GO:0000109" "G0O:0000118" "GO:0000123" "GO:0000124"

..$ xtp: num [1:915, 1:7] 0.433 0.441 0.441 0.436 0.424 ...

..- attr(*, "dimnames")=List of 2
..$: chr [1:915] "GO:0000109" "GO:0000118" "GO:0000123" "G0O:0000124"
..$: chr [1:7] "Curve0.5" "Curve0.9" "Curve0.95" "Curve0.99"

..$ qi : num [1:7] 0.5 0.9 0.95 0.99 0.999 ...
..$ 1gi: NULL

"geneS

2.5 Visualize MLP Results

Three different types of plots are made available. The type of the plot is indicated with the type argument
which can be one of

plot(., type = "quantileCurves")
plot(., type = "barplot")
plot(., type = "GOgraph")

I

2.5.1 Quantile Curves

This visualisation shows the relationship between the geneSetStatistic and the size of the gene sets. It also
indicates the quantiles of interest as specified as probabilityVector in the MLP function. The most significant
gene sets are plotted above the smooth curve.

> pdf("mlpQuantileCurves.pdf", width = 10, height = 10)
> plot(mlpOut, type = "quantileCurves")
> tmp <- dev.off()

15
I

1.0

MLP

0.5
L

4 16 36 64 100

Figure 1: Example of a quantile curve for the MLP results. Every dot represents a gene set. Every line
represents a smoothing of the quantile per gene set size.

2.5.2 Bar Plot

For this type of plot there are some extra parameters of interest:
e nRow = number of gene sets to include in the graph, default is 20

e barColors = vector of colors, default is a shade of grey per bar. The 3 possible shadings correspond to
the % of genes in a gene set tested as compared to the total number of genes, the darker, the bigger the
portion of genes tested.

e ylab =label for the y-axis

> pdf("mlpBarplot.pdf", width = 10, height = 10)

> op <- par(mar = c(30, 10, 6, 2))

> plot(mlpOut, type = "barplot", ylab = "-logl0(gene set p-value)")
> par(op)

>

tmp <- dev.off()

-log10(gene set p-value)

00 05 10 15 20 25 30
1 1 1 1 1 |

cytoplasmic lattice (5-5)

symbiont cell surface (17-23)
ooplasm (10-10)

complement component C1 complex (5-7)
MHC class Il protein complex (10-12)
other organism part (24-33)
phagolysosome (6-6)

axonemal microtubule (51-59)
alveolar lamellar body (9-10)
manchette (27-28)

MHC protein complex (20-41)
cochlear hair cell ribbon synapse (7-7)
phagocytic vesicle membrane (59-81)

symbiont-containing vacuole (5-9)

s19s auab DO Uo WBWIEa) By} Jo 1983

symbiont-containing vacuole membrane (5-9)
filamentous actin (30-36)

Atg12-Atg5-Atg16 complex (6-6)

endoplasmic reticulum chaperone complex (11-12)

muscle tendon junction (5-6)

melanosome (98-108)

Figure 2: Example of a barplot for the MLP results. The height of a bar represents the significance (-
log10(geneSetPValue)) of the gene set indicated on the x-axis. The number between brackets represent the
number of genes within that gene set (number of genes for which a gene statistic has been submitted as well as
the total number of genes).

2.5.3 Gene Ontology Graph

As the title indicates, this type of plot is only possible if the geneSetSource was ’‘GOBP’, 'GOMF’ or ‘GOCC’.
Also for this type of plot there is some extra parameters:

e nRow — number of gene sets as basis to create the graph, default is low, i.e. 5. The higher this number,
the more populated the graph gets.

e nCutDescPath = number of characters at which the pathway description should be cut (depends on figure
size)

pdf ("mlpGOgraph.pdf", width = 8, height = 6)

op <- par(mar = c(0, 0, 0, 0))

plot(mlpOut, type = "GOgraph", nRow = 10, nCutDescPath = 15)
par (op)

tmp <- dev.off()

vV V. Vv Vv VvV

G0:0002177
manchette

O least (scores 0.6)

O medium (scores 1.5)

B most (scores 2.4)

G0:0097208
alveolar lamell
ar body
9-10
G0:0042599
lamellar body

microt

G0:0005879
ubule
51-59

ome
24-26

G0:0032010
G0:0005767
secondary lysos

Go graph

1)
3
g S

|
=] =)
o 1
o

23
=3
z
“e
e
e
g3
EO

GO0:0042611

£
o

8

s do
2
)
5 %9
(s}

I

=

G0:0005602

complement comp
onent C1 comple
B=7

G0:0106139
symbiont cell s
urface
17-23
G0:0044217
other organism
part
24-33

G0:1990917
ooplasm

Figure 3: Example of a GOgraph for the MLP results. Every elipse represents a gene set. The color indicates
the significance, the more green, the more significant. The connectors indicate the parent - child relationship.
The number between brackets represent the number of genes within that gene set (number of genes for which
a gene statistic has been submitted as well as the total number of genes)

2.6 Visualize Individual Genes in a Gene Set

To know which genes contribute most to the significance of a gene set or to focus on a certain gene set of
interest, you can plot the significance of each gene beloning to that gene set. This plot shows the significance
(-logl0(geneStatistic)) of the genes within the gene set of interest. The plotGeneSetSignificance function
needs 4 parameters and there is also one optional parameter:

e geneSet = object of class geneSetMLP created by getGeneSets
e geneSetIdentifier = identifier of the gene set of interest

e geneStatistic = named numeric vector which should have a uniform distribution between 0 and 1. The
names are the corresponding Entrez Gene identifiers.

e annotationPackage = string representing the annotation package used to retrieve gene symbols and gene
descriptions

e barColors = optional color vector

> geneSetID <- rownames (mlpOut) [1]

> pdf ("geneSignificance.pdf", width

> op <- par(mar = c(25, 10, 6, 2))

> plotGeneSetSignificance(

+ geneSet = geneSet,

+ geneSetIdentifier = geneSetlID,
+
+
+
>
>

10, height = 10)

geneStatistic = pvalues,

annotationPackage = annotation(expressionSetGcrma)
)
par (op)
tmp <- dev.off()

Significance

NA:NA

NA:NA

NA:NA

NA:NA

NA:NA

901e| olwse|doiAd G600 TO:09D 19S aual ul panjoAul sauab paisal Jo aouedlIubIS

Figure 4: Example of a gene significance plot for a gene set of interest. The height of a bar represents the
significance (-logl0(geneStatistic)) of the gene indicated on the x-axis.

3 References

Raghavan N, De Bondt AM, Talloen W, Moechars D, G6hlmann HW, Amaratunga D. The high-level similarity
of some disparate gene expression measures. Bioinformatics. 2007 Nov 15;23(22):3032-8. Epub 2007 Sep
24.PMID: 17893087

Raghavan N, Amaratunga D, Cabrera J, Nie A, Qin J, McMillian M. On methods for gene function scoring as
a means of facilitating the interpretation of microarray results. J Comput Biol. 2006 Apr; 13(3):798-809.PMID:
16706726

10

	Introduction
	Example Use
	Preliminaries
	Prepare P Values
	Prepare Gene Sets
	Run MLP
	Visualize MLP Results
	Quantile Curves
	Bar Plot
	Gene Ontology Graph

	Visualize Individual Genes in a Gene Set

	References

