
Growing Phylogenetic Trees in R with Treeline

Erik S. Wright

October 29, 2025

Contents
1 Introduction 1

2 Performance Considerations 2

3 Preparing the Input Data 3

4 Choosing a Method and Model of Evolution 4
4.1 Minimum Evolution . 5
4.2 Maximum Likelihood . 5
4.3 Maximum Parsimony . 5
4.4 Treatment of gaps . 6
4.5 Missing models . 6

5 Minimum Evolution Phylogenetic Trees 6

6 Maximum Likelihood Phylogenetic Trees 7
6.1 Plotting Branch Support Values . 9

7 Maximum Parsimony Phylogenetic Trees 11
7.1 Ancestral State Reconstruction . 13

8 Calculating Bootstrap Support Values 15

9 More Examples of Manipulating Dendrograms 17

10 Inspecting the Inputs and Outputs 19

11 Exporting the Tree 23

12 Session Information 23

1 Introduction
This document describes how to grow phylogenetic trees using the Treeline function in the DECIPHER package.
Treeline takes as input a set of aligned nucleotide or amino acid sequences and returns a phylogenetic tree (i.e.,
dendrogram object) as output. This vignette focuses on optimizing balanced minimum evolution (ME), maximum
likelihood (ML), and maximum parsimony (MP) phylogenetic trees starting from sequences.

1

Why is the function called Treeline? The goal of Treeline is to find the best tree according to an optimality
criterion. There are often many trees near the optimum. Therefore, Treeline seeks to find a tree as close as possible
to the treeline, analogous to how trees cannot grow above the treeline on a mountain.

Why use Treeline versus other programs? The Treeline function is designed to return an excellent phyloge-
netic tree with minimal user intervention. Many tree building programs have a large set of complex options for niche
applications. In contrast, Treeline simply builds a great tree by default. Treeline’s unified optimization strategy
also makes it easy to compare trees optimized under different optimality criteria. This vignette is intended to get you
started and introduce additional options/functions that might be useful.

Treeline uses multi-start optimization followed by hill-climbing to find the highest trees on the optimality land-
scape. Since Treeline is a stochastic optimizer, it optimizes many trees to prevent chance from influencing the final
result. With any luck it’ll find the treeline!

2 Performance Considerations
Finding an optimal tree is no easy feat. Treeline systematically optimizes many candidate trees before returning
the best one. This takes time, but there are things you can do to make it go faster.

• Only use the sequences you need: Treeline’s optimization runtime scales approximately quadratically with
the number of sequences. Hence, limiting the number of sequences is a worthwhile consideration. In particular,
always eliminate redundant sequences, as shown in the example below.

• Compile with OpenMP support: Significant speed-ups can be achieved with multi-threading using OpenMP,
particularly for ML and MP methods. See the “Getting Started DECIPHERing” vignette for how to enable
OpenMP on your computer. Then you will only need to set the argument processors=NULL and Treeline
will use all available processors.

• Compile for SIMD support: Treeline is configured to make use of SIMD operations, which are available on
most processors. The easiest way to enable SIMD is to add a line with “CFLAGS += -O3 -march=native” to your
∼/.R/Makevars text file. Then, after recompiling, there should be a speed-up on systems with SIMD support.
Note that enabling SIMD makes the compiled code non-portable, so the code always needs to be compiled on
the hardware being used.

• Set a timeout: The maxTime argument specifies the (approximate) maximum number of hours you are willing
to let Treeline run. If you are concerned about the code running for too long then simply set this argument.

• Limit iterations: Treeline will converge after minIterations when the score is expected to change less than
tolerance per iteration, unless maxIterations is met before convergence. A reasonable way to converge early is
to set minIterations to a lower value (e.g., 20). There is evidence supporting the notion that exhaustive searching
is unlikely to result in a significantly more correct tree [8], even as the score continues to improve.

• For ML, choose a model: Automatic model selection is a useful feature, but frequently this time-consuming step
can be skipped. For many nucleotide sequences the "GTR+G4" model will be automatically selected. Typical
amino acid sequences will tend to pick the "LG+G4" or "WAG+G4" models, unless the sequences are from a
particular origin (e.g., mitochondria). Pre-selecting a subset of the available MODELS and supplying this as the
model argument can save time.

Accuracy is another performance consideration. Treeline is a stochastic optimizer, so it will continue searching
the space of possible trees until convergence. It is possible to find the best tree on the first iteration, but most of the time
additional iterations will yield a better scoring tree. If you are feeling unlucky, you can simply increase the number
of iterations to ensure a good (scoring) tree is found. Increasing minIterations (e.g., to 100) will largely remove luck
from the equation. There is a decreasing marginal return to more iterations, and it’s probably not worth searching
(almost) endlessly for a slightly better tree. Treeline’s default settings are designed to balance runtime versus the
reward of better scoring trees.

2

3 Preparing the Input Data
Treeline takes as input a multiple sequence alignment and/or a distance matrix. All distance-based methods (in-
cluding ME) only require specification of myDistMatrix but will generate a distance matrix using DistanceMatrix
if myXStringSet is provided instead. The character-based methods (i.e., ML and MP) require a multiple sequence
alignment and will generate a distance matrix to construct the first candidate tree unless one is provided.

Multiple sequence alignments can be constructed from a set of (unaligned) sequences using AlignSeqs or related
functions. Treeline will optimize trees for amino acid (i.e., AAStringSet) or nucleotide (i.e., DNAStringSet
or RNAStringSet) sequences. For coding sequences, it is intuitive to assume that nucleotide data would better
resolve close taxa, whereas amino acid data would be preferable to determine the branching order of deep taxa.
However, recent work challenges this assumption by showing nucleotide data is adequate for determining distant
relationships [7]. A good bet is to use nucleotide sequences with the "ME" method, possibly specifying a model (e.g.,
"F81+F" that corrects for multiple substitutions per site.

Here, we are going to use a set of sequences that is included with DECIPHER. These sequences are from the
internal transcribed spacer (ITS) between the 16S and 23S ribosomal RNA genes in several Streptomyces species. To
avoid letting the result come down to good old-fashioned luck, it is always best to compare multiple trees optimized
for different objectives (ME, ML, and MP) and alternative models of evolution. Treeline is designed to facilitate
this type of comparison, ideally across multiple loci.

> library(DECIPHER)
> # specify the path to your sequence file:
> fas <- "<<path to FASTA file>>"
> # OR find the example sequence file used in this tutorial:
> fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
> seqs <- readDNAStringSet(fas) # use readAAStringSet for amino acid sequences
> seqs # the aligned sequences

DNAStringSet object of length 88:
width seq names

[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.1 of S...
[2] 627 NNNNCACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont3.1 of S...
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
[4] 627 CGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC supercont1.1 of S...
...

[84] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC gi|297189896|ref|...
[85] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[86] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[87] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC gi|224581106|ref|...
[88] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC gi|224581108|ref|...

Many of these sequences are redundant or from the same genome. We can de-replicate the sequences to accelerate
tree building and simplify analyses:

> seqs <- unique(seqs) # remove duplicated sequences
> ns <- gsub("^.*Streptomyces(subsp\\. | sp\\. | | sp_)([^]+).*$",

"\\2",
names(seqs))

> names(seqs) <- ns # name by species (or any other preferred names)
> seqs <- seqs[!duplicated(ns)] # remove redundant sequences from the same species
> seqs

DNAStringSet object of length 19:
width seq names

3

*
*

*
*

A
G
C
T

JC69
* 𝜅

*
* 𝜅

*

K80
*

*
*

*
πA πG πC πT

F81
* 𝜅

*
* 𝜅

*
πA πG πC πT

HKY85
* 𝜅

*
* 𝜅

*
πR πR πY πY

T92
* 𝜅1

*
* 𝜅2

*
πA πG πC πT

TN93

πA πG πC πT

GTRSYM
* a b c

* d e
*

*

* a b c
* d e

*
*

Supported by DistanceMatrix: +F +F +F +F

Supported by Treeline (method ML):
- Models +F (fixed base frequencies)

- Any +Indels (insertion/deletion state)

- Any model +G# (gamma distribution)

ra
te

s
F

ra
te

s
F

πI

+Indels
* I

* I
* I

* I
*

rate

= number of bins to

 discretize 1 parameter

 gamma distribution

Figure 1: Free rates and frequencies in nucleotide models.

[1] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC albus
[2] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC clavuligerus
[3] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC ghanaensis
[4] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC griseoflavus
[5] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC lividans
...
[15] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC cattleya
[16] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC bingchenggensis
[17] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTTTCCGAATGGGGAAACC avermitilis
[18] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC C
[19] 627 TGTACACACCGCCCGTCA-CGTC...GGGGTGTCCGAATGGGGAAACC Tu6071

4 Choosing a Method and Model of Evolution
Before choosing a model of evolution, it is necessary to choose a method for optimizing the tree. The default method
is "ME" because it is fast and performs best on empirical datasets [4, 10]. The ME method accepts myDistMatrix as
input, or myXStringSet can be given with or without a model to use with DistanceMatrix for building a distance
matrix. For maximum likelihood, set method to "ML", which requires a model of sequence evolution. For maximum
parsimony, set method to "MP" and (optionally) specify a costMatrix.

Treeline supports many MODELS of evolution. In many cases, these MODELS can be extended by appending
the model with "+F", "+G#", or "+Indels". Here is the list of built-in MODELS:

> MODELS

$Nucleotide
[1] "JC69" "K80" "F81" "HKY85" "T92" "TN93" "SYM" "GTR"

4

$Protein
[1] "AB" "BLOSUM62" "cpREV" "cpREV64"
[5] "Dayhoff" "DCMut-Dayhoff" "DCMut-JTT" "DEN"
[9] "FLAVI" "FLU" "gcpREV" "HIVb"
[13] "HIVw" "JTT" "LG" "MtArt"
[17] "mtDeu" "mtInv" "mtMam" "mtMet"
[21] "mtOrt" "mtREV" "mtVer" "MtZoa"
[25] "PMB" "Q.bird" "Q.insect" "Q.LG"
[29] "Q.mammal" "Q.pfam" "Q.plant" "Q.yeast"
[33] "rtREV" "stmtREV" "VT" "WAG"
[37] "WAGstar"

The nucleotide models each have different numbers of free parameters (Fig. 1). The MODELS with few free
parameters are supported by DistanceMatrix and, therefore, method "ME". This is because distance for few-
parameter models can be analytically estimated from the sequences with relatively little error. High-parameter models,
such as "GTR", must be optimized and are only supported by Treeline method "ML". All base built-in amino acid
MODELS have no free parameters and are supported by DistanceMatrix and Treeline. See ?MODELS for more
information.

4.1 Minimum Evolution
Empirical benchmarks suggest ME with Hamming distance results in the most accurate trees, at least for align-
ments of single protein domains. Therefore, this is the default configuration when myXStringSet is supplied without
myDistMatrix, which returns branch lengths in units of differences per site. If you would prefer to have branch
lengths in units of substitutions per site, it is possible correct for multiple substitutions (e.g., A to G back to A) by setting
model to any of the MODELS of evolution supported by DistanceMatrix (e.g., "JC" or "F81+F" for nucleotides,
and "WAG" or "WAG+F" for amino acids). See Figure 1 for a list of models supported by DistanceMatrix. When
method is "ME", maximum control is gained by supplying myDistMatrix, which can be calculated with DistanceMatrix
beforehand.

For example, a standard model to select for nucleotide sequences would be "TN93+F" and for amino acid se-
quences would be "WAG". These models return trees with branch lengths in units of substitutions per site.

4.2 Maximum Likelihood
For ML trees, Treeline will automatically select an appropriate model according to Akaike information criterion
(by default). It is possible to choose specific model(s) (e.g., model="GTR+G4") to limit the possible selections and
test your luck with fewer options. There is evidence that the choice of nucleotide model does not substantially alter
tree accuracy [1,5,9], and picking the most complex model every time is a reasonable decision. All models can be used
with fixed (empirical) letter frequencies (i.e., by appending with +F) and/or gamma rate variation across sites (e.g.,
+G4). Note Treeline supports two discretizations of the gamma distribution: the default of equal binning, or the
Laguerre quadrature if quadrature is set to TRUE. The former will give likelihoods comparable with other programs,
but the latter is more accurate at representing the gamma distribution with limited bins.

For example, a standard model to select for nucleotide sequences would be "GTR+G4+F" and for amino acid
sequences would be "WAG+G4", with quadrature set to TRUE in both cases. These models return trees with branch
lengths in units of substitutions per site.

4.3 Maximum Parsimony
For MP trees, the best results are typically obtained by providing a costMatrix rather than relying on the default binary
costs. The choice of costMatrix is up to you, and several rational options are provided in the examples section of

5

the Treeline manual page (see ?Treeline). A more systematic approach to deriving a substitution matrix is
provided as an example below.

4.4 Treatment of gaps
The standard models of evolution described above all ignore gap (“-” and “.”) characters representing insertions
or deletions (indels). But you’re in luck — Treeline has the ability to incorporate gaps into all methods. For
ME trees, DistanceMatrix allows gaps to be penalized in Hamming distance or added to any distance corrected
from multiple substitutions per site. You can either specify a model with "+Indels" in Treeline, or supply
myDistMatrix after setting penalizeGapLetterMatches to TRUE or NA (see ?DistanceMatrix). For ML trees,
gaps can be added to any model of evolution as an additional state by specifying a model "+Indels", which adds
two free parameters (Fig. 1). Incorporating gaps results in branch lengths in units of changes per site, since both
substitutions and indels contribute to distance. For MP trees, gaps can be added as a character to the costMatrix. As
luck would have it, incorporating gaps tends to result in slightly better trees on empirical datasets, although the average
improvement is typically very small.

4.5 Missing models
There exists a plethora of published models representing sequence evolution, not all of which are supported. Two
notably absent MODELS are invariant and codon models. Models with a fraction of invariant sites, often represented
as +I, are biologically unrealistic and already captured by gamma rate variation across sites (e.g., +G4). Including
both +I and +G creates unnecessary over-parameterization. Similarly, empirical codon models are not offered because
they contain too many (2080) free parameters. It is hard to believe a single codon substitution matrix can adequately
capture variation in codon usage across organisms, when it is known generic amino acid matrices (210 parameters)
insufficiently represent many proteins. Nucleotide models have the advantage that their relatively low number of
parameters can be estimated from the data, and there is evidence nucleotide models can even be used for distant
relationships where amino acid models were traditionally thought to have an advantage [7].

5 Minimum Evolution Phylogenetic Trees
Now, it’s time to try our luck at finding the most likely tree. We will use the default settings, which returns a minimum
evolution tree based on a Hamming distance matrix. Simply specify a model to correct for multiple substitutions (e.g.,
"TN93+F" or "WAG").

Since Treeline is a stochastic optimizer, it is critical to always set the random number seed for reproducibility.
This will result in the same sequence of random numbers every time and, therefore, reproductibility. You can pick any
lucky number, and if you ever wonder how much you pushed your luck, you can try running again from a different
random number seed to see how much the result came down to luck of the draw. Note that setting a time limit, as
done below with maxTime, negates the purpose of setting a seed – never set a time limit if reproducibility is desired or
you’ll have no such luck.

> set.seed(123) # set the random number seed
> treeME <- Treeline(seqs, verbose=FALSE, processors=1)
> set.seed(NULL) # reset the seed

Treeline returns an object of class dendrogram that stores the tree in a nested list structure. We can take an
initial look at the tree and its attributes.

> treeME

'dendrogram' with 2 branches and 19 members total, at height 0.1533688

> attributes(treeME)

6

$members
[1] 19

$height
[1] 0.1533688

$class
[1] "dendrogram"

$method
[1] "ME"

$score
[1] 1.152586

$midpoint
[1] 11.03906

> str(treeME, max.level=4)

--[dendrogram w/ 2 branches and 19 members at h = 0.153]
|--[dendrogram w/ 2 branches and 18 members at h = 0.11]
| |--leaf "cattleya" (h= 0.0376)
| `--[dendrogram w/ 2 branches and 17 members at h = 0.0931]
| |--[dendrogram w/ 2 branches and 7 members at h = 0.087]
| | |--[dendrogram w/ 2 branches and 5 members at h = 0.0787] ..
| | `--[dendrogram w/ 2 branches and 2 members at h = 0.0686] ..
| `--[dendrogram w/ 2 branches and 10 members at h = 0.0849]
| |--[dendrogram w/ 2 branches and 2 members at h = 0.0779] ..
| `--[dendrogram w/ 2 branches and 8 members at h = 0.0764] ..
`--leaf "AA4" (h= 2.78e-17)

6 Maximum Likelihood Phylogenetic Trees
For the next example, we will grow a maximum likelihood phylogenetic tree, which is the most computationally
demanding optimization objective that is supported. We will set a stringent time limit (0.01 hours) to make this
example faster, although longer time limits (e.g., 24 hours) are advised because setting very short time limits leaves
the result partly up to luck.

7

> set.seed(123) # set the random number seed
> tree <- Treeline(seqs,

method="ML",
model="GTR+G4",
maxTime=0.01,
verbose=FALSE,
processors=1)

> set.seed(NULL) # reset the seed
> plot(tree)

0.
0

0.
5

1.
0

1.
5

2.
0

gh
an

ae
ns

is

sc
ab

ie
i

av
er

m
iti

lis

al
bu

s
gr

is
eu

s

S
ire

xA
A

−
E

S
P

B
74

Tu
60

71
M

g1 C S
P

B
78

gr
is

eo
fla

vu
s

co
el

ic
ol

or

liv
id

an
s

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

bi
ng

ch
en

gg
en

si
s

ca
ttl

ey
a

A
A

4

Figure 2: ML tree showing the relationships between Streptomyces species.

8

6.1 Plotting Branch Support Values
Maybe it was just beginner’s luck, but we already have a reasonable looking starting tree! Treeline automatically
returns a variety of information about the tree that can be accessed with the attributes and attr functions:

> attr(tree, "members") # number of leaves below this (root) node

[1] 19

> attr(tree, "height") # height of the node (in this case, the midpoint root)

[1] 2.334321

> attr(tree, "score") # best score (in this case, the -LnL)

[1] 4362.243

> attr(tree, "model") # either the specified or automatically select transition model

[1] "GTR+G4"

> attr(tree, "parameters") # the free model parameters (or NA if unoptimized)

FreqA FreqC FreqG FreqT FreqI A/G C/T A/C
0.1745036 0.2449681 0.3446113 NA NA 3.3716311 2.8969021 0.7314906

A/T C/G Indels alpha
1.1117488 0.6003882 NA 0.1902397

> attr(tree, "midpoint") # center of the edge (for plotting)

[1] 9.893555

The tree is (virtually) rooted at its midpoint by default. For maximum likelihood trees, all internal nodes include
aBayes branch support values [2]. These are given as probabilities that can be used in plotting on top of each edge.
We can also italicize the leaf labels (species names) and add a scale bar.

9

> plot(dendrapply(tree,
function(x) {

s <- attr(x, "probability") # choose "probability" (aBayes)
if (!is.null(s) && !is.na(s)) {

s <- formatC(as.numeric(s), digits=2, format="f")
attr(x, "edgetext") <- paste(s, "\n")

}
attr(x, "edgePar") <- list(p.col=NA, p.border=NA, t.col="#CC55AA", t.cex=0.7)
if (is.leaf(x))

attr(x, "nodePar") <- list(lab.font=3, pch=NA)
x

}),
horiz=TRUE,
yaxt='n')

> # add a scale bar (placed manually)
> arrows(2, 0, 2.4, 0, code=3, angle=90, len=0.05, xpd=TRUE)
> text(2.2, 0, "0.4 subs./site", pos=3, xpd=TRUE)

0.57

ghanaensis

1.00

scabiei

0.35

0.96

avermitilis

albus

1.00

1.00

1.00

1.00

griseus

SirexAA−E

1.00

SPB74

0.49

1.00

Tu6071

Mg1

C

SPB78

0.83

1.00

1.00

griseoflavus

coelicolor

lividans

0.37

0.85

clavuligerus

pristinaespiralis

bingchenggensis

cattleya

AA4

0.4 subs./site

Figure 3: ML tree with aBayes probabilities at each internal node.

10

7 Maximum Parsimony Phylogenetic Trees
While ME and ML trees are based on models of evolution, MP relies on a cost matrix giving the penalty for switching
characters along a branch. The default costMatrix is binary, which is biologically implausible and may invite bad luck.
Hence, we will construct a binary tree and use the result to infer a more appropriate costMatrix.

> set.seed(123) # set the random number seed
> tree_UniformCosts <- Treeline(seqs,

method="MP",
reconstruct=TRUE,
verbose=FALSE,
processors=1)

> set.seed(NULL) # reset the seed

Since we set reconstruct to TRUE, Treeline output the state transition matrix as an attribute of the tree. We will
use this to make our own luck by deriving a more biologically plausible costMatrix. It is apparent that transitions are
more frequent than transversions and, therefore, are presumably less costly.

> mat <- attr(tree_UniformCosts, "transitions")
> mat # count of state transitions

A C G T
A 0 49 107 55
C 26 0 69 151
G 107 63 0 80
T 43 81 51 0

> mat <- mat + t(mat) # make symmetric
> mat <- mat/(sum(mat)/2) # normalize
> mat <- -log2(mat) # convert to bits
> diag(mat) <- 0 # reset diagonal
> mat # a derived cost matrix

A C G T
A 0.000000 3.555816 2.043168 3.169925
C 3.555816 0.000000 2.740241 1.926654
G 2.043168 2.740241 0.000000 2.751212
T 3.169925 1.926654 2.751212 0.000000

Now we can compare the two trees to see whether specifying a non-uniform cost matrix made a difference. We will
highlight different partitions between the trees with dashed edges. Ideally the two tree topologies would be identical,
implying the tree is robust to the specification of the cost matrix. The fact that this isn’t the case suggests the cost
matrix has a substantial influence over the tree, as might be expected. Note the scale of the two trees is different,
because branch lengths are in units of average cost (per site) according to each costMatrix.

11

> set.seed(123) # set the random number seed
> tree_NonUniformCosts <- Treeline(seqs,

method="MP",
costMatrix=mat,
reconstruct=TRUE,
verbose=FALSE,
processors=1)

> set.seed(NULL) # reset the seed
> splits <- function(x) {

y <- sapply(x, function(x) paste(sort(unlist(x)), collapse=" "))
if (!is.leaf(x))

y <- c(y, splits(x[[1]]), splits(x[[2]]))
y

}
> splits_UniformCosts <- splits(tree_UniformCosts)
> splits_NonUniformCosts <- splits(tree_NonUniformCosts)
> dashEdges <- function(x, splits) {

y <- paste(sort(unlist(x)), collapse=" ")
if (!y %in% splits)

attr(x, "edgePar") <- list(lty=2)
x

}
> layout(matrix(1:2, nrow=1))
> plot(dendrapply(tree_UniformCosts, dashEdges, splits_NonUniformCosts),

main="MP uniform costs")
> plot(dendrapply(tree_NonUniformCosts, dashEdges, splits_UniformCosts),

main="MP non-uniform costs")

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

MP uniform costs

ca
ttl

ey
a

A
A

4
S

P
B

74
Tu

60
71

S
P

B
78

M
g1 C
gr

is
eu

s
S

ire
xA

A
−

E
sc

ab
ie

i
gh

an
ae

ns
is

av
er

m
iti

lis
al

bu
s

gr
is

eo
fla

vu
s

co
el

ic
ol

or
liv

id
an

s
bi

ng
ch

en
gg

en
si

s
pr

is
tin

ae
sp

ira
lis

cl
av

ul
ig

er
us

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MP non−uniform costs

gh
an

ae
ns

is
sc

ab
ie

i
cl

av
ul

ig
er

us
pr

is
tin

ae
sp

ira
lis

bi
ng

ch
en

gg
en

si
s

co
el

ic
ol

or
liv

id
an

s
gr

is
eo

fla
vu

s
av

er
m

iti
lis

al
bu

s
gr

is
eu

s
S

ire
xA

A
−

E
S

P
B

74
Tu

60
71

S
P

B
78

M
g1 C ca

ttl
ey

a
A

A
4

Figure 4: Comparison of MP trees built with different cost matrices.

12

7.1 Ancestral State Reconstruction
We’re in luck —when reconstruct is TRUE, Treeline infers ancestors for each internal node on the tree [6]. These
character states can be used by the function MapCharacters to determine state transitions along each edge of
the tree. This information enables us to plot the total number of substitutions occurring along each edge. The state
transitions can be accessed along each edge by querying a new “change” attribute.

13

> new_tree <- MapCharacters(tree_NonUniformCosts, labelEdges=TRUE)
> plot(new_tree, edgePar=list(p.col=NA, p.border=NA, t.col="#55CC99", t.cex=0.7))
> attr(new_tree[[1]], "change") # state changes on first branch left of (virtual) root

[1] "A168T" "A177G" "A208T" "C269T" "A274G" "A275C" "A308G" "C333G" "A371T"
[10] "A375G" "C386G" "C395T" "A403G" "G405T" "A406G" "C417T" "G432T" "A453G"
[19] "G455T" "G598T"

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

20

12

17 19

18
20

25 24

47
52

gh
an

ae
ns

is

sc
ab

ie
i

22
15

17 13

27

9

cl
av

ul
ig

er
us

32 35

pr
is

tin
ae

sp
ira

lis

bi
ng

ch
en

gg
en

si
s

23 20

3

13

co
el

ic
ol

or

liv
id

an
s

gr
is

eo
fla

vu
s

19 21

av
er

m
iti

lis

al
bu

s

25 26

gr
is

eu
s

S
ire

xA
A

−
E

19

43

31
23

S
P

B
74

4 7

Tu
60

71

S
P

B
78

10 13
M

g1 C

36

123

ca
ttl

ey
a

A
A

4

Figure 5: Edges labeled with the number of state transitions.

14

8 Calculating Bootstrap Support Values
Phylogenetic trees output by Treeline contain information in both their topology and branch lengths. The goal
of phylogenetics is often to determine the branching order of a set of taxa, but this requires a test for statistical
significance. It is usually best to compare trees across different genes, such as how often trees constructed from
different genes support the same hypothesis. In the absence of multiple genes, another option is to quantify the
amount of support for each branch separating two sets of taxa.

The aBayes probabilities are a good proxy for whether a partition in the tree is correct [3], but they are only
available for maximum likelihood trees. For the other trees we need to make our own luck by bootstrapping the
alignment. The idea behind bootstrapping is to resample columns (sites) of the alignment with replacement and
determine whether each partition was found in the original tree. Repeating this process allows us to measure the level
of support for each branch.

> reps <- 100 # number of bootstrap replicates
> tree1 <- Treeline(seqs, verbose=FALSE, processors=1)
> partitions <- function(x) {

if (is.leaf(x))
return(NULL)

x0 <- paste(sort(unlist(x)), collapse=" ")
x1 <- partitions(x[[1]])
x2 <- partitions(x[[2]])
return(list(x0, x1, x2))

}
> pBar <- txtProgressBar()
> bootstraps <- vector("list", reps)
> for (i in seq_len(reps)) {

r <- sample(width(seqs)[1], replace=TRUE)
at <- IRanges(r, width=1)
seqs2 <- extractAt(seqs, at)
seqs2 <- lapply(seqs2, unlist)
seqs2 <- DNAStringSet(seqs2)

temp <- Treeline(seqs2, verbose=FALSE)
bootstraps[[i]] <- unlist(partitions(temp))
setTxtProgressBar(pBar, i/reps)

}

==

> close(pBar)

Now we can label edges by the percentage of times each partition appeared among the bootstrap replicates.

15

> bootstraps <- table(unlist(bootstraps))
> original <- unlist(partitions(tree1))
> hits <- bootstraps[original]
> names(hits) <- original
> w <- which(is.na(hits))
> if (length(w) > 0)

hits[w] <- 0
> hits <- round(hits/reps*100)
> labelEdges <- function(x) {

if (is.null(attributes(x)$leaf)) {
part <- paste(sort(unlist(x)), collapse=" ")
attr(x, "edgetext") <- as.character(hits[part])

}
return(x)

}
> tree2 <- dendrapply(tree1, labelEdges)
> attr(tree2, "edgetext") <- NULL # remove text from (virtual) root branch
> plot(tree2, edgePar=list(t.cex=0.5), nodePar=list(lab.cex=0.7, pch=NA))

0.
00

0.
05

0.
10

0.
15

100

84

ca
ttl

ey
a

38 42

85

80

gr
is

eu
s

S
ire

xA
A

−
E

90

100
100

S
P

B
74

Tu
60

71

S
P

B
78

C

M
g1

50 35

sc
ab

ie
i

gh
an

ae
ns

is

36

100
84

60

99

co
el

ic
ol

or

liv
id

an
s

gr
is

eo
fla

vu
s

66

bi
ng

ch
en

gg
en

si
s

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

av
er

m
iti

lis

al
bu

s

A
A

4

Figure 6: Tree with bootstrap support probabilities at each internal node.

16

9 More Examples of Manipulating Dendrograms
It is sometimes useful to alter dendrogram objects output by Treeline. There are three main ways for working
with dendrograms: apply a function to each leaf with rapply, apply a function to every node with dendrapply,
or apply your own function recursively. The next examples will illustrate each of these approaches with increasing
complexity.

In the first example, we will use rapply to query and set attributes of each leaf.

> rapply(tree, attr, which="label") # label of each leaf (left to right)

[1] "ghanaensis" "scabiei" "avermitilis"
[4] "albus" "griseus" "SirexAA-E"
[7] "SPB74" "Tu6071" "Mg1"
[10] "C" "SPB78" "griseoflavus"
[13] "coelicolor" "lividans" "clavuligerus"
[16] "pristinaespiralis" "bingchenggensis" "cattleya"
[19] "AA4"

> labels(tree) # alternative

[1] "ghanaensis" "scabiei" "avermitilis"
[4] "albus" "griseus" "SirexAA-E"
[7] "SPB74" "Tu6071" "Mg1"
[10] "C" "SPB78" "griseoflavus"
[13] "coelicolor" "lividans" "clavuligerus"
[16] "pristinaespiralis" "bingchenggensis" "cattleya"
[19] "AA4"

> rapply(tree, attr, which="height") # height of each leaf (left to right)

[1] 0.908063545 0.627380134 0.660847681 0.626903672 0.450242437 0.367427654
[7] 0.402392768 0.369747760 0.005837176 0.000000000 0.369840640 0.510520784
[13] 0.505444865 0.464168726 0.421189049 0.406351086 0.386880787 0.022103915
[19] 0.000000000

> italicize <- function(x) {
if(is.leaf(x))

attr(x, "label") <- as.expression(substitute(italic(leaf),
list(leaf=attr(x, "label"))))

x
}
> rapply(tree, italicize, how="replace") # italicize leaf labels

'dendrogram' with 2 branches and 19 members total, at height 2.334321

In the second example, we will use dendrapply to identify exclusive groups wherein the members of each group
are more similar to each other than they are to those outside the group [11].

17

> d <- DistanceMatrix(seqs, correction="F81+F", verbose=FALSE, processors=1)
> exclusive <- function(x) {

if (!is.leaf(x)) { # leaves are trivially exclusive
leaves <- unlist(x)
max_dist <- max(d[leaves, leaves]) # max within group
if (all(max_dist < d[-leaves, leaves]))

attr(x, "edgePar") <- list(col="orange")
}
x

}
> plot(dendrapply(tree, exclusive))

0.
0

0.
5

1.
0

1.
5

2.
0

gh
an

ae
ns

is

sc
ab

ie
i

av
er

m
iti

lis

al
bu

s
gr

is
eu

s

S
ire

xA
A

−
E

S
P

B
74

Tu
60

71
M

g1 C

S
P

B
78

gr
is

eo
fla

vu
s

co
el

ic
ol

or

liv
id

an
s

cl
av

ul
ig

er
us

pr
is

tin
ae

sp
ira

lis

bi
ng

ch
en

gg
en

si
s

ca
ttl

ey
a

A
A

4

Figure 7: Tree with colored branches above exclusive groups.

18

In the third example, we will extract the branching order of five species of interest using a recursive function. This
might be useful if we wanted to count how many times different topologies occurred among a set of trees. Recursion
is the most flexible approach and can be applied with more sophisticated functions to accomplish goals beyond what
is possible with dendrapply.

> Spp <- c("coelicolor", "lividans", "AA4", "Mg1", "scabiei") # species to retain
> extractClade <- function(x) {

if (is.leaf(x)) {
if (sum(Spp %in% labels(x)) > 0L) {

labels(x)
} else {

NULL
}

} else {
x <- lapply(x, extractClade)
x <- x[lengths(x) > 0]
if (length(x) == 1)

x <- x[[1]]
x

}
}
> extractClade(tree)

[[1]]
[[1]][[1]]
[1] "scabiei"

[[1]][[2]]
[[1]][[2]][[1]]
[1] "Mg1"

[[1]][[2]][[2]]
[[1]][[2]][[2]][[1]]
[1] "coelicolor"

[[1]][[2]][[2]][[2]]
[1] "lividans"

[[2]]
[1] "AA4"

10 Inspecting the Inputs and Outputs
If you are feeling down on your luck, you might want to double-check the inputs and outputs for any issues. First,
we can check for any input sequences with unexpectedly few or many characters by comparing character frequen-
cies across all input sequences. Next, we can look for input sequences that significantly deviate from the expected
background frequencies using Pearson’s chi-squared test. We can also check for sequences with extreme distances

19

that might be incorrectly aligned. Outliers in any of these checks may point to spurious sequences that should be
double-checked for correctness or completion.

> freqs <- alphabetFrequency(seqs, baseOnly=TRUE)
> head(freqs)

A C G T other
[1,] 110 139 206 136 36
[2,] 101 137 207 123 59
[3,] 107 166 222 108 24
[4,] 112 151 207 124 33
[5,] 116 138 196 114 63
[6,] 112 139 195 115 66

> # summarize the number of non-base characters (gaps/ambiguities)
> summary(freqs) # "other" is non-base characters

A C G T
Min. :101.0 Min. :132.0 Min. :192.0 Min. :108.0
1st Qu.:110.0 1st Qu.:137.5 1st Qu.:197.0 1st Qu.:114.5
Median :114.0 Median :139.0 Median :206.0 Median :123.0
Mean :113.0 Mean :141.8 Mean :204.6 Mean :121.6
3rd Qu.:116.5 3rd Qu.:144.0 3rd Qu.:210.5 3rd Qu.:126.5
Max. :120.0 Max. :166.0 Max. :222.0 Max. :136.0

other
Min. :24.00
1st Qu.:32.00
Median :45.00
Mean :45.95
3rd Qu.:60.00
Max. :69.00

> # index of sequence with the most non-base characters
> which.max(freqs[, "other"])

[1] 15

> freqs <- freqs[, DNA_BASES]
> background <- colMeans(freqs)
> background

A C G T
113.0000 141.7895 204.6316 121.6316

> # look for sequences deviating from background frequencies
> chi2 <- colSums((t(freqs) - background)^2/background)
> pval <- pchisq(chi2, length(background) - 1, lower.tail=FALSE)
> w <- which(pval < 0.05)
> seqs[w] # outlier sequences

DNAStringSet object of length 0

> freqs[w,] # frequencies of outliers

A C G T

> # get sequence index of any very distant outlier sequences
> D <- DistanceMatrix(seqs, verbose=FALSE, processors=1)
> t <- table(which(D > 0.9, arr.ind=TRUE)) # choose a cutoff
> head(sort(t, decreasing=TRUE)) # index of top outliers, if any

integer(0)

20

It is also possible to check whether the output tree reasonably represents the distances between sequences. For
ME trees, the tree should explain greater than 0.9 of the variance in the distance matrix used to construct the tree.
We can use Pearson’s correlation for trees with branch lengths in different units than the distance matrix (i.e., ML
or MP). Lower correlations may result from alignments with sites having different genealogies, such as concatenated
alignments or non-orthologous sequences.

21

> P <- Cophenetic(treeME) # patristic distances
> D <- as.dist(D) # conver to 'dist' object
> plot(D, P, xlab="Pairwise distance", ylab="Patristic distance", log="xy")
> abline(a=0, b=1)
> # for ME trees we want explained variance > 0.9
> V <- 1 - sum((P - D)^2)/sum((D - mean(D))^2)
> V # check the input data if V << 1

[1] 0.9441992

> cor(P, D) # should be >> 0

[1] 0.9725586

> cor(log(P), log(D)) # should be >> 0

[1] 0.973351

0.02 0.05 0.10 0.20

0.
02

0.
05

0.
10

0.
20

Pairwise distance

P
at

ris
tic

 d
is

ta
nc

e

Figure 8: Confirming correlation between input distances and output patristic distances.

22

11 Exporting the Tree
We’ve had a run of good luck with this tree, so we’d better save it before our luck runs out! The functions ReadDendrogram
and WriteDendrogram will import and export trees in Newick file format. If we leave the file argument blank then
it will print the output to the console for our viewing:

> WriteDendrogram(tree, file="")

(('ghanaensis':0.07259308,('scabiei':0.1913004,(('avermitilis':0.0308232,'albus':0.06476721):0.004343379,((('griseus':0.02881901,'SirexAA-E':0.1116338):0.07908638,('SPB74':0.06229955,(('Tu6071':0.005458132,('Mg1':0.02547268,'C':0.03130986):0.343896):0.005896503,'SPB78':0.01126175):0.08358993):0.09345551):0.09325045,(('griseoflavus':0.05730091,('coelicolor':2.502e-07,'lividans':0.04127639):0.06237658):0.02608275,(('clavuligerus':0.09683626,'pristinaespiralis':0.1116742):0.009283364,('bingchenggensis':0.1017325,'cattleya':0.4665094):0.03869535):0.06659577):0.05749384):0.04461598):0.1226663):0.1619761):1.353665,'AA4':2.334321);

To keep up our lucky streak, we should probably include any model parameters in the output along with the tree.
Luckily, Newick format supports square brackets (i.e., “[]”) for comments, which we can append to the end of the file
for good luck:

> params <- attr(tree, "parameters")
> cat("[", paste(names(params), params, sep="=", collapse=","), "]",

sep="", append=TRUE, file="")

[FreqA=0.174503586360288,FreqC=0.244968086988985,FreqG=0.34461133418661,FreqT=NA,FreqI=NA,A/G=3.37163107073859,C/T=2.89690211487474,A/C=0.731490574617125,A/T=1.11174879791308,C/G=0.600388193952289,Indels=NA,alpha=0.190239668528819]

12 Session Information
All of the output in this vignette was produced under the following conditions:

• R version 4.5.1 Patched (2025-08-23 r88802), x86_64-pc-linux-gnu

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.56.0, Biostrings 2.78.0, DECIPHER 3.6.0, IRanges 2.44.0, S4Vectors 0.48.0,
Seqinfo 1.0.0, XVector 0.50.0, generics 0.1.4

• Loaded via a namespace (and not attached): DBI 1.2.3, KernSmooth 2.23-26, compiler 4.5.1, crayon 1.5.3,
tools 4.5.1

References
[1] Abadi, S., Azouri, D., Pupko, T., & Mayrose, I. Model selection may not be a mandatory step for phylogeny

reconstruction. Nat. Comm., 10(1).

[2] Anisimova, M., Gil, M., Dufayard, J., Dessimoz, C., & Gascuel, O. Survey of branch support methods demon-
strates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol., 60(5), 685-699.

[3] Ecker, N., Huchon, D., Mansour, Y., Mayrose, I., & Pupko, T. A machine-learning-based alternative to phyloge-
netic bootstrap. Bioinformatics, 40, i208-i217.

[4] Gonnet, G. Surprising results on phylogenetic tree building methods based on molecular sequences. BMC Bioin-
formatics, 13(148).

23

[5] Hoff, M., Orf, S., Riehm, B., Darriba, D., & Stamatakis, A. Does the choice of nucleotide substitution models
matter topologically? BMC Bioinformatics, 17(143).

[6] Joy, J., Liang, R., McCloskey, R., Nguyen, T., & Poon, A. Ancestral Reconstruction. PLoS Comp. Biol., 12(7),
e1004763.

[7] Kapli, P., Kotari, I., Telford, M., Goldman, N., & Yang, Z. DNA Sequences Are as Useful as Protein Sequences
for Inferring Deep Phylogenies. Syst. Biol., 72(5), 1119-1135.

[8] Kumar, S., Tao, Q., Lamarca, A., & Tamura, K. Computational Reproducibility of Molecular Phylogenies. Mol.
Biol. Evol., 40(7).

[9] Ripplinger, J. & Sullivan, J. Does Choice in Model Selection Affect Maximum Likelihood Analysis? Syst. Biol.,
57(1), 76-85.

[10] Ripplinger, S., Sigorskikh, A., Efremov, A., Penzar, D., & Karyagina, A. PhyloBench: A Benchmark for
Evaluating Phylogenetic Programs. Mol. Biol. Evol., 41(6).

[11] Wright, E. & Baum, D. Exclusivity offers a sound yet practical species criterion for bacteria despite abundant
gene flow. BMC Genomics, 19(724).

24

	Introduction
	Performance Considerations
	Preparing the Input Data
	Choosing a Method and Model of Evolution
	Minimum Evolution
	Maximum Likelihood
	Maximum Parsimony
	Treatment of gaps
	Missing models

	Minimum Evolution Phylogenetic Trees
	Maximum Likelihood Phylogenetic Trees
	Plotting Branch Support Values

	Maximum Parsimony Phylogenetic Trees
	Ancestral State Reconstruction

	Calculating Bootstrap Support Values
	More Examples of Manipulating Dendrograms
	Inspecting the Inputs and Outputs
	Exporting the Tree
	Session Information

