

Junicode

the font for medievalists

specimens and user manual

for version 2.208

Contents

1 About Junicode 1

2 Specimens 3

3 Getting Started with Junicode 9

4 Feature Reference 14

4.1 Introduction . 14

4.2 Case-Related Features . 17

4.2.1 smcp – Small Capitals 17

4.2.2 c2sc – Small Capitals from Capitals 17

4.2.3 pcap – Petite Capitals 18

4.2.4 c2pc – Petite Capitals from Capitals 18

4.2.5 case – Case-Sensitive Forms 18

4.3 Alphabetic Variants . 18

4.3.1 cv01-cv52 – Basic Latin Variants 18

4.3.2 cv53-cv66, cv91 – Other Latin Letters 21

4.3.3 ss01 – Alternate thorn and eth 22

4.3.4 ss02 – Insular Letter-Forms 22

4.3.5 ss04 – High Overline 23

4.3.6 ss05 – Medium-High Overline 23

4.3.7 ss06 – Enlarged Minuscules 23

4.3.8 ss07 – Underdotted Text 24

4.3.9 ss08 – Contextual Long s 24

4.3.10 ss16 – Contextual r Rotunda 24

3

4.3.11 salt – Stylistic Alternates (medieval capitals, etc.) . . . 24

4.3.12 cv68 – Variant of ʔ (U+0294, glottal stop) 25

4.4 Greek . 25

4.4.1 ss03 – Alternate Greek 26

4.5 Gothic . 26

4.5.1 ss19 – Latin to Gothic Transliteration 26

4.6 Runic . 26

4.6.1 ss12 – Early English Futhorc 26

4.6.2 ss13 – Elder Futhark 27

4.6.3 ss14 – Younger Futhark 27

4.6.4 ss15 – Long Branch to Short Twig 27

4.6.5 rtlm – Right to Left Mirrored Forms 27

4.7 Ligatures and Digraphs . 27

4.7.1 hlig – Historic Ligatures 28

4.7.2 dlig – Discretionary Ligatures 29

4.7.3 ss17 – Rare Digraphs 29

4.8 Numbers and Sequencing . 29

4.8.1 frac – Fractions . 29

4.8.2 numr – Numerators . 30

4.8.3 dnom – Denominators 30

4.8.4 nalt – Alternate Annotation Forms 30

4.8.5 tnum – Tabular Figures 30

4.8.6 onum – Oldstyle Figures 30

4.8.7 pnum – Proportional Figures 31

4.8.8 lnum – Lining Figures 31

4.8.9 zero – Slashed Zero 31

4.8.10 ss09 – Alternate Figures 31

4.9 Superscripts and Subscripts 31

4.9.1 sups – Superscripts . 31

4.9.2 subs – Subscripts . 32

4.10 Punctuation and Symbols . 32

4.10.1 ss18 – Old-Style Punctuation Spacing 32

4.10.2 cv69 – Variants of ⁊⹒ (U+204A / U+2E52, Tironian nota) . 32

4.10.3 cv70 – Variants of . (period) 32

4.10.4 cv71 – Variant of · (U+00B7, middle dot) 33

4.10.5 cv72 – Variants of , (comma) 33

4.10.6 cv73 – Variants of ; (semicolon) 33

4.10.7 cv74 – Variants of ⹎ (U+2E4E, punctus elevatus) 33

4.10.8 cv75 – Variant of ! (exclamation mark) 33

4.10.9 cv76 – Variants of ? (question mark) 33

4.10.10 cv77 – Variant of ~ (ASCII tilde) 33

4.10.11 cv78 – Variant of * (asterisk) 34

4.10.12 cv79 – Variants of / (slash) 34

4.11 Spacing Abbreviations . 34

4.11.1 cv80 – Variant of ꝝ (U+A75D, rum abbreviation) 34

4.11.2 cv82 – Variants of spacing ꝰ (U+A770) 34

4.11.3 cv83 – Variants of ꝫ (U+A76B, “et” abbreviation) 34

4.11.4 cv67 – Spacing zigzag (variant of U+00AF, spacing macron) 34

4.11.5 cv99 – Word omitted symbol (variant of U+00B0, degree) 35

4.12 Combining Marks . 35

4.12.1 cv84 – MUFI combining marks (variants of U+0304) . . 35

4.12.2 cv81 – Variants of ◌͛ (U+035B, combining zigzag above) . 36

4.12.3 ss10 – Character Entities for Combining Marks 36

4.12.4 ss20 – Low Diacritics 37

4.12.5 cv85 – Variant of ◌ᷓ (U+1DD3, combining open a) 38

4.12.6 cv86 – Variant of ◌ᷘ (U+1DD8, combining insular d) . . . 38

4.12.7 cv87 – Variant of ◌ᷣ (U+1DE3, combining r rotunda) . . . 38

4.12.8 cv88 – Variant of combining dieresis (U+0308) 38

4.12.9 cv89 – Variant of ◌̅ (U+0305, combining overline) 38

4.12.10 cv90 – Variants of ◌͞◌ (U+035E, combining double macron) 38

4.12.11 cv92 – Variant of combining breve below (U+032E) . . . 38

4.13 Currency and Weights . 39

4.13.1 cv93 – Variants of ¤ (U+0044, generic currency sign) . . 39

4.13.2 cv94 – Variant of ℔ (U+2114) 39

4.13.3 cv95 – Variants of £ (U+00A3, British pound sign) 39

4.13.4 cv96 – Variant of ₰ (U+20B0, German penny sign) . . . 39

4.13.5 cv97 – Variant of ƒ (U+0192, florin) 39

4.13.6 cv98 – Variant of ℥ (U+2125, Ounce sign) 39

4.14 Ornaments . 40

4.14.1 ornm – Ornaments . 40

4.14.2 Lady Junicode . 40

4.15 Required Features . 41

5 Non-MUFI Code Points 42

6 Entering characters with tags 44

7 Transcribing records 66

7.1 A preliminary note on transcription 66

7.2 Common combining marks 68

7.3 Spacing characters . 70

7.4 Other formatting . 72

7.5 On the web . 72

8 The Enlarge Axis 74

9 Junicode on the Web 77

9.1 Subsetting Junicode . 77

9.2 Junicode and CSS/HTML . 80

10 Junicode and TEX 84

10.1 Loading the packages . 84

10.2 Advanced Options . 86

10.3 Selecting Alternate Styles . 88

10.4 The Enlarge Axis . 89

10.5 Other Commands . 90

11 Encoded Glyphs in Junicode 92

1. About Junicode

Junicode is modeled on the Pica Roman type purchased by Ox-

ford University in 1692 and used to set the bulk of the Latin

text of George Hickes, Linguarum vett. septentrionalium thesaurus

grammatico-criticus et archaeologicus (Oxford, 1703–5). This massive

two-volume folio is not only a major work of scholarship on the

languages and literatures of northern Europe in the Middle Ages,

but also a fine example of the work of the Oxford Press at this

period: printed in multiple types (for every language had to have its

proper type) and lavishly illustrated with engravings of manuscript

pages, coins and artifacts.

Junicode also includes two other typefaces from the Thesaurus:

Pica Saxon, used to set passages in the Old English language, and a

typeface reproducing the Gothic alphabet (“Gothic” here being not

the late medieval style, but rather the earliest extensively attested

Germanic language). These were commissioned by the literary

scholar Franciscus Junius (1591–1677) and bequeathed by him to

the University. Examples of all these typefaces can be found in A

Specimen of the Several Sorts of Letter Given to the University by Dr.

John Fell, Sometime Lord Bishop of Oxford. To Which Is Added the

1

2 ABOUT JUNICODE

Letter Given by Mr. F. Junius (Oxford, 1693).1

Junicode has two distinct Greek faces. The first, newly designed

to harmonize with the roman face, is upright and modern. The

other, accompanying the italic face, is based on type designed by

Alexander Wilson (1714–86) of Glasgow and used in numerous

books published by the Foulis Press, most notably the great Glas-

gow Homer of 1756–58.

The Junicode project began around 1998, when the developer

began to revise his older (early 1990s) “Junius” fonts for medieval-

ists to take account of the Unicode standard, then relatively new.

The font’s name, a contraction of “Junius Unicode,” was supposed

to be a stopgap, serving until a more suitable name could be found,

but “Junicode” quickly stuck, and it is now so well known that it

can’t be changed.2 The project has been active for its entire his-

tory, responding to frequent requests from users and changes in

font technology; a particular focus of recent versions of Junicode

(numbered 2.000 and higher) is the promotion of best practices in

the presentation of medieval texts, especially in the area of acces-

sibility. This aspect of the font is explored in the Introduction to

the Feature Reference.

1 There is a facsimile of this work at the Digital Bodleian.
2 An effort to change the name to “JuniusX” produced only confusion. If you find a font by

the name JuniusX on a free font site, that is nothing more than an early version of Junicode 2.

https://digital.bodleian.ox.ac.uk/objects/876b73f0-3e03-41c1-9fd1-0688a1785561/

2. Specimens

Old and Middle English

Wē æthrynon mid ūrum ārum þā ȳðan þæs dēopan wǣles; wē ġesāwon ēac þā muntas

ymbe þǣre sealtan sǣ strande, and wē mid āðēnedum hræġle and ġesundfullum win-

dum þǣr ġewīcodon on þām ġemǣrum þǣre fæġerestan þēode. Þā ȳðan ġetācniað þisne

dēopan cræft, and þā muntas ġetācniað ēac þā miċelnyssa þisses cræftes. (Regular)

SIþEN þe sege and þe assaut watz sesed at Troye,

Þe borȝ brittened and brent to brondez and askez,

Þe tulk þat þe trammes of tresoun þer wroȝt

Watz tried for his tricherie, þe trewest on erthe:

Hit watz Ennias þe athel, and his highe kynde,

Þat siþen depreced prouinces, and patrounes bicome

Welneȝe of al þe wele in þe west iles. (SemiExpanded)

Apply the OpenType feature ss02 (Stylistic Set 2) for insular letter-forms.

Her cynewulf benam sigebryht his rices & westseaxna wiotan for unryhtum dędū buton

hamtúnscire & he hæfde þa oþ he ofslog þone aldormon þe hī lengest wunode & hiene þa

cynewulf on andred adræfde & ħ þær wunade oþ þæt hine án swán ofstang æt pryfetesflodan

& he wręc þone aldormon cumbran & se cynewulf oft miclum gefeohtum feaht uuiþ bretwalū.

(SemiCondensed)

Old Irish

Fect n-oen do Ailill ⁊ do Meidb íar n-dergud a rígleptha dóib i Cruachanráith Chonnacht, arrecaim

3

4 SPECIMENS

comrad chind-cherchailli eturru. Fírbriathar, a ingen, bar Ailill, is maith ben ben dagfir. Maith omm,

bar ind ingen. Cid diatá latsu ón. Is de atá lim, bar Ailill, ar it ferr-su indiu indá in lá thucus-sa thu.

(Condensed Medium)

For insular letter-forms, apply the OpenType feature ss02 (Stylistic Set 2), making sure the language is set

to Irish.

Bamaith-se remut, ar Medb. Is maith nach cualammar ⁊ nach ꝼetammar,

ar Ailill, acht do bithsiu ar bantincur mnaa ⁊ bidba na crich ba nessom duit

oc breith do slait ⁊ do chrech i ꝼúatach úait. Ni samlaid bása, ar Medb, acht

m’athair i n-ardriᵹi hErenn .i. Eocho Feidlech mac Find meic Findomain

meic Findeoin meic Findᵹuni meic Roᵹein Rúaid meic Riᵹéoin meic Blath-

achta meic Beothechta meic Enna Aᵹniᵹ meic Oenᵹusa Turbiᵹ. Bátar aice

se inᵹena d’inᵹenaib: Derbriu, Ethi ⁊ Éle, Clothru, Muᵹain, Medb, messi ba

uasliu ⁊ ba urraitiu díb. (Regular)

For a (somewhat) uncial look, try combining ss02 with smcp (Small Caps), adding other variants as you see

fit.

BamaIth-se remUt, ar MedB. Is maIth NaCh CUalammar ⁊ NaCh fetam-

mar, ar AIlIll, aCht dO BIthsIU ar BaNtINCUr mNaa ⁊ BIdBa Na CrICh Ba

NessOm dUIt OC BreIth dO slaIt ⁊ dO ChreCh I fúataCh úaIt. NI samlaId

Ba ́ sa, ar MedB, aCht m’athaIr I N-ardrIgI hEreNN .I. EOChO FeIdleCh

maC FINd meIC FINdOmaIN meIC FINdeOIN meIC FINdgUNI meIC ROgeIN

RúaId meIC RIge ́ OIN meIC BlathaChta meIC BeOtheChta meIC ENNa

AgNIg meIC OeNgUsa TUrBIg. Ba ́ tar aICe se INgeNa d’INgeNaIB: DerBrIU,

EthI ⁊ Éle, ClOthrU, MUgaIN, MedB, messI Ba UaslIU ⁊ Ba UrraItIU díB.

(Regular)

Old Icelandic

For Nordic shapes of þ and ð in an English context, specify the appropriate language (e.g. Icelandic or

Norwegian); or apply the OpenType ss01 (Stylistic Set 1) feature.

Um haustit sendi Mǫrðr Valgarðsson orð at Gunnarr myndi vera einn heimi, en lið

alt myndi vera niðri í eyjum at lúka heyverkum. Riðu þeir Gizurr Hvíti ok Geirr Goði

austr yfir ár, þegar þeir spurðu þat, ok austr yfir sanda til Hofs. Þá sendu þeir orð

Starkaði undir Þríhyrningi; ok fundusk þeir þar allir er at Gunnari skyldu fara, ok

JUNICODE 5

réðu hversu at skyldi fara. (SemiExpanded Medium)

Runic

Junicode has features for automated transliteration of Latin letters into various runic systems.

ᚠᛁᛋᚳ ᚠᛚᚩᛞᚢ ᚪᚻᚩᚠ ᚩᚾ ᚠᛖᚱᚷᛖᚾᛒᛖᚱᛁᚷ ᚹᚪᚱᚦ ᚷᚪ᛬ᛇᚱᛁᚳ ᚷᚱᚩᚱᚾ ᚦᚨᚱ ᚻᛖ ᚩᚾ ᚷᚱᛖᚢᛏ

ᚷᛁᛇᚹᚩᛗ ᚻᚱᚩᚾᚨᛇ ᛒᚪᚾ

ᚱᚩᛗᚹᚪᛚᚢᛇ ᚪᚾᛞ ᚱᛖᚢᛗᚹᚪᛚᚢᛇ ᛏᚹᛟᚷᛖᚾ ᚷᛁᛒᚱᚩᚦᚫᚱ ᚪᚠᛟᛞᛞᚫ ᛞᛁᚫ ᚹᚣᛚᛁᚠ ᚩᚾ ᚱᚩᛗᚫ

ᚳᚫᛇᛏᛁ᛬ ᚩᚦᛚᚫ ᚢᚾᚾᛖᚷ (Expanded)

German

Ich ſag üch aber / minen fründen / Foͤꝛchtēd üch nit voꝛ denen die den lyb toͤdend / vnd darnach nichts

habennd das ſy mer thuͤgind. Ich wil üch aber zeigē voꝛ welchem ir üch foͤꝛchten ſollend. Foͤꝛchtend

üch voꝛ dem / der / nach dem er toͤdet hat / ouch macht hat zewerffen inn die hell: ja ich ſag üch / voꝛ

dem ſelben foͤꝛchtēd üch. Koufft man nit fünff Sparen vm̄ zween pfennig (Condensed)

Latin

Junicode contains the most common Latin abbreviations, making it suitable for diplomatic editions of Latin

texts.

Adiuuanos dſ ſ̄alutariſ noſter & ꝓpt̄ głam nominiſ tui dnē liƀanoſ· & ꝓpitiuſ eſto peccatiſ

noſtriſ ꝓpter nomen tuum· Ne forte dicant ingentib: ubi eſt dſ ̄eorum & innoteſcat

innationib: corā oculiſ nrīſ· Poſuerunt moſticina ſeruorū ruorū eſcaſ uolatilib: cęli carneſ

ſcōꝝ tuoꝝ beſtiiſ tenice· Facti ſumꝰ obꝓbrium uiciniſ nrīſ· (Light)

Gothic

jabai aukƕas gasaiƕiþ þuk þana habandan kunþi in galiuge stada anakumbjandan, niumiþwissei

is siukis wisandins timrjada du galiugagudam gasaliþ matjan? fraqistniþ auk sa unmahteiga ana

þeinamma witubnja broþar in þize Xristus gaswalt. swaþ þan frawaurkjandans wiþra broþruns,

slahandans ize gahugd siuka, du Xristau frawaurkeiþ. (SemiCondensed Light)

Use ss19 to produce Gothic letters automatically from transliterated text.

6 SPECIMENS

jabai auk ƕas gasaiƕiþ þuk þana habandan kunþi in galiuge stada

anakumbjandan, niu miþwissei is siukis wisandins timrjada du

galiugagudam gasaliþ matjan? jabai auk ƕas gasaiƕiþ þuk þana

habandan kunþi in galiuge stada anakumbjandan, niu miþwissei

is siukis wisandins timrjada du galiugagudam gasaliþ matjan?

(SemiExpanded Bold)

Sanskrit Transliteration

mānaṁ dvividhaṁ viṣayadvai vidyātśaktyaśaktitaḥ

arthakriyāyāṁ keśadirnārtho ’narthādhimokṣataḥ

sadr̥śāsadr̥śatvācca viṣayāviṣayatvataḥ

śabdasyānyanimittānāṁ bhāve dhīsadasattvataḥ (SemiCondensed Medium)

International Phonetic Alphabet

hwɑn θɑt ɑːprɪl wiθ is ʃuːrəs soːtə θə drʊxt ɔf mɑrʧ hɑθ peːrsəd toː θə roːte ɑnd bɑːðəd

ɛvrɪ væɪn ɪn swɪʧ lɪkuːr ɔf hwɪʧ vɛrtɪu ɛnʤɛndrəd ɪs θə fluːr hwɑn zɛfɪrʊs eːk wɪθ hɪs

sweːtə bræːθ (Regular)

Greek

βίβλος γενέσεως ἰησοῦ χριστοῦ υἱοῦ δαυὶδ υἱοῦ ἀβραάμ. ἀβραὰμ ἐγέννησεν τὸν ἰσαάκ,

ἰσαὰκ δὲ ἐγέννησεν τὸν ἰακώβ, ἰακὼβ δὲ ἐγέννησεν τὸν ἰούδαν καὶ τοὺς ἀδελφοὺς αὐτοῦ,

ἰούδας δὲ ἐγέννησεν τὸν φάρες καὶ τὸν ζάρα ἐκ τῆς θαμάρ, φάρες δὲ ἐγέννησεν τὸν ἑσρώμ,

ἑσρὼμ δὲ ἐγέννησεν τὸν ἀράμ, ἀρὰμ δὲ ἐγέννησεν τὸν ἀμιναδάβ, ἀμιναδὰβ δὲ ἐγέννησεν

τὸν ναασσών, ναασσὼν δὲ ἐγέννησεν τὸν σαλμών, σαλμὼν δὲ ἐγέννησεν τὸν βόες ἐκ τῆς

ῥαχά (Regular)

βίβλος γενέσεως ἰησοῦ χριστοῦ υἱοῦ δαυὶδ υἱοῦ ἀβραάμ. ἀβραὰμ ἐγέννησεν τὸν ἰσαάκ,

ἰσαὰκ δὲ ἐγέννησεν τὸν ἰακώβ, ἰακὼβ δὲ ἐγέννησεν τὸν ἰούδαν καὶ τοὺς ἀδελφοὺς αὐτοῦ,

ἰούδας δὲ ἐγέννησεν τὸν φάρες καὶ τὸν ζάρα ἐκ τῆς θαμάρ, φάρες δὲ ἐγέννησεν τὸν ἑσρώμ,

ἑσρὼμ δὲ ἐγέννησεν τὸν ἀράμ, ἀρὰμ δὲ ἐγέννησεν τὸν ἀμιναδάβ, ἀμιναδὰβ δὲ ἐγέννησεν

τὸν ναασσών, ναασσὼν δὲ ἐγέννησεν τὸν σαλμών, σαλμὼν δὲ ἐγέννησεν τὸν βόες ἐκ τῆς

ῥαχά (Italic)

JUNICODE 7

Lithuanian

Lithuanian poses several typographical challenges. Make sure Contextual Alternates (calt) is turned on; for

í̇, use i followed by combining dot accent (U+0307) and acute (U+0301).

Visa žemė turėjo vieną kalbą ir tuos pačius žodžius. Kai žmonės kėlėsi iš

rytų, jie rado slėnį Šinaro krašte ir ten įsikūrė. Vieni kitiems sakė: Eime,

pasidirbkime plytų ir jas išdekime. – Vietoj akmens jie naudojo plytas, o

vietoj kalkių – bitumą. Eime, – jie sakė, – pasistatykime miestą ir bokštą su

dangų siekiančia viršūne ir pasidarykime sau vardą, kad nebūtume išblaškyti

po visą žemės veidą. (Expanded)

Polish

The default shape and position of ogonek in Junicode are suitable for modern Polish. For the medieval Latin

e-caudata, consider using cv62.

Mieszkańcy całej ziemi mieli jedną mowę, czyli jednakowe słowa. A gdy wędrowali ze wschodu,

napotkali równinę w kraju Szinear i tam zamieszkali. I mówili jeden do drugiego: Chodźcie, wyra-

biajmy cegłę i wypalmy ją w ogniu. A gdy już mieli cegłę zamiast kamieni i smołę zamiast zaprawy

murarskiej, rzekli: Chodźcie, zbudujemy sobie miasto i wieżę, której wierzchołek będzie sięgał nieba,

i w ten sposób uczynimy sobie znak, abyśmy się nie rozproszyli po całej ziemi. (Condensed

Medium)

8 SPECIMENS

Fleurons

Junicode contains a number of fleurons (floral ornaments) copied from a 1785 Caslon specimen book. Access

these via the OpenType feature ornm. Fleurons have only one weight and width, and they are the same in

roman and italic.

3. Getting Started with Junicode

Junicode comes in two flavors—static and variable. Static fonts are the ones users

are most familiar with, each font file supplying a single set of outlines that do not

change except in size. By contrast, a single variable font file stores a set of outlines

that can morph in various ways—for example, becoming bolder or lighter,

narrower or wider, and sometimes undergoing more complex transformations.

The static version of Junicode consists of thirty-eight font files, each providing

a distinct variation of the font’s style; the variable version consists of only two

(one each for roman and italic), but those two font files are capable of much

more than the static version’s thirty-eight.

Because the static and variable versions of Junicode are differently named

(“Junicode” and “Junicode VF”), both can be installed on the same system. How-

ever, you should choose one or the other for any particular project. Choose the

static version if the application you are using does not yet support variable fonts.

Such applications include Microsoft Word, Apple Pages, Quark Xpress, Google

Docs, Affinity Publisher, and most flavors of TEX (except for LuaTEX—see

below). Another reason to choose the static version is its familiarity: if you don’t

need the advanced capabilities of the variable version, it is perfectly all right to

stick with what you know.

All major web browsers (including browsers for mobile devices) support

variable fonts, and there are good reasons to choose the variable version of

Junicode for any web project. The greatest reason to go with the variable version

is to speed the loading of web pages: users will never have to download more

than two font files (the size of which can be radically reduced via subsetting,

explained in Section 9 of this Manual). Additionally, however, variable fonts can

make a page of text more dynamic and visually interesting. See Mozilla’s Variable

9

https://fonts.google.com/knowledge/introducing_type/introducing_variable_fonts
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_fonts/Variable_fonts_guide
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_fonts/Variable_fonts_guide

10 GETTING STARTED WITh JUNICODE

Fonts Guide for more information about using variable fonts on the web.

A growing number of desktop applications support variable fonts. Use the

variable version of Junicode in Adobe InDesign (always with the World-Ready

Paragraph Composer).1 LibreOffice has supported variable fonts since version

7.5 (2023). LuaTEX has excellent support for variable fonts: make sure your TEX

installation is up to date (since in recent years support for variable fonts has

improved with every release), and always choose “harf ” mode in your font-

selection code. For an example of font-selection code for a variable font, see

the file JunicodeManual.sty (part of the source for this manual) in the “docs”

directory of the GitHub Junicode site. You are welcome to copy and modify this

code. A number of graphical design apps also support variable fonts, including

Adobe Illustrator, PhotoShop, Figma, Sketch, and CorelDRAW.

The static version of Junicode has five weights and five widths, which are

combined in many ways for a total of nineteen styles in both roman and italic.2

It is not necessary to install all of these; in fact, your life will be simplified (font

menus easier to navigate) if you make a selection. You will probably want the

traditional Regular, Bold, Italic, and Bold Italic fonts, but you should survey

the styles displayed in the Specimen section of this booklet, choose the ones

that look best to you, and install only those. A reasonable selection for many

users will include the traditional four styles for main text, several SemiExpanded

styles for footnotes, and SemiCondensed for titles.

Junicode’s static fonts come in two types, TrueType (files with a .ttf extension)

and CFF (files with an .otf extension). These are functionally identical, but they

may look subtly different on your computer’s screen because of the different

technologies used to render glyphs. Choose the one you find most appealing.

With around 5,000 characters, Junicode is a large font. Finding the things you

1 The choice of a Composer is well hidden in the “Justification” section of the “Paragraph

Style Options” dialog. Use of the default “Adobe Paragraph Composer” with Junicode VF may

cause InDesign to crash or otherwise misbehave. To prevent crashes when using the variable

version of Junicode, it is also advisable to delete InDesign’s preferences when launching the

program after a font upgrade. To do this, press Shift-Alt-Control (on Windows) or Shift-

Control-Option-Command (on the Mac) all together, immediately after clicking to launch

InDesign.
2 Several of the twenty-five possible combinations (e.g. light expanded) have been omitted

as unlikely to be useful; however, these can be accessed via the variable font.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_fonts/Variable_fonts_guide
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_fonts/Variable_fonts_guide
https://github.com/psb1558/Junicode-font/blob/master/docs/JunicodeManual.sty

JUNICODE 11

want in a collection that size can be a challenge, and then entering them in your

documents is another challenge. This document will help, but it presupposes a

certain amount of knowledge—for example, how to install a font in Windows,

Mac OS or Linux and how to install and use different kinds of software.

Medievalists will find the MUFI Character Recommendation, version 4.0

(2015) an essential supplement to this document. The Recommendation lists

thousands of characters identified by the Medieval Unicode Font Initiative as

being of interest to medievalists. Junicode contains all of these characters. There

are two versions of the Recommendation: you will probably find the “Alphabetical

Order” version most helpful.

From the MUFI Character Recommendation and Chapter 10 (“Encoded

Glyphs in Junicode”) of this manual, you can find out the code points3 of the

characters you need. These code points can be used to enter characters in your

documents when they cannot be typed on the keyboard.

To enter any Unicode character in a Windows application, type its four-digit

code, followed by Alt-X. To do the same in the Mac OS, first install and switch

to the “Unicode Hex Input” keyboard, then type the code while holding down

the Option key. In most Linux distributions you can enter a code by typing

Shift-Control-U, then the code followed by Return or Enter.

Combining marks (diacritics and certain abbreviation signs) can pose special

problems for medievalists. Unicode contains a great many precomposed char-

acters consisting of a base letter plus one or more marks. If these are all you need

you’re fortunate—especially if they can be typed on an international keyboard

(not all can).4 But medieval manuscripts frequently contain combinations of

base + mark that are not used in modern written languages. For these, you’ll

have to enter bases and marks separately.

To position a mark correctly over a base character, first enter the base, fol-

lowed by the mark or marks. The sequence m + ◌ᷙ (U+1DD9) will make mᷙ; y + ◌̄

3 A Unicode code point is a numerical identifier for a character. It is generally expressed

as a four-digit hexadecimal (or base-16) number with a prefix of “U+”. The letter capital “A,”

for example, is U+0041 (65 in decimal notation), and lowercase “ȝ” (Middle English yogh) is

U+021D.
4 Both Windows and the Mac OS come with international keyboards that make it easy to

type special letters and diacritics. To find out how to enable these, search online for “Mac OS

International Keyboard” or “Windows International Keyboard.”

https://bora.uib.no/bora-xmlui/handle/1956/10699

12 GETTING STARTED WITh JUNICODE

(U+0304) + ◌̆ (U+0306) will make y̆̄; e + ◌̣ (U+0323) + ◌ᷠ (U+1DE0) will make ẹ.ᷠ

More than sixteen hundred characters in Junicode can only be accessed

via OpenType features—that is, by way of the programming built into the

font—and many others should be accessed that way for reasons explained in the

Introduction to the Feature Reference section of this document.

For example, some programs (including Microsoft Word) produce small

caps by scaling capitals down to approximately the height of lowercase letters.

These always look too thin and light. But Junicode contains hundreds of TRUE

SMAll CAPS designed to harmonize with the surrounding text. These can only

be accessed via the OpenType smcp feature, which you can apply to a run of

text much as you apply italic or bold styles: select some text and then apply the

feature.

Unfortunately, not every program supports OpenType features, and some

that do either support only a few or make them difficult to access. Programs that

support Junicode’s features fully include the free word processor LibreOffice

Writer, all major browsers (Firefox, Chrome, Safari and Edge), and the typeset-

ting programs LuaLATEX and X ELATEX. Adobe InDesign supports OpenType

features only partially, but all features can be accessed via Roland Dreger’s open-

type-features script, and InDesign provides access to all of Junicode’s characters

via its “Glyphs” dialog.

Microsoft Word, unfortunately, provides only limited support for OpenType

features. It supports the Required Features discussed below, and also variant

number forms and Stylistic Sets (though only one at a time). Many characters

(for example, TRUE SMAll CAPS and those accessible only via Character Variant

features) cannot be accessed at all. To activate Word’s OpenType support, you

must open the “Font” dialog, click over to the “Advanced” tab, and check the

“Kerning” box. (Oddly, the “Kerning” box enables all other OpenType features.)

Then, in the same tab, select Standard Ligatures, Contextual Alternates, and

any other features you want. OpenType features are best applied to character

styles rather than directly to text: this will save you from having to perform this

operation repeatedly.

It is also good to set the language properly for the text you’re working on.

Programs like Word will automatically set the language to the default for your

system. If you change to a language other than your own for a passage (or even a

https://www.libreoffice.org/
https://www.libreoffice.org/
https://github.com/RolandDreger/open-type-features
https://github.com/RolandDreger/open-type-features

JUNICODE 13

single word), you should set the language for that passage appropriately. This will

unlock a number of capabilities. For example, in Old and Middle English, Word

and other programs will use the English form of thorn and eth (þð) instead of

the modern Icelandic (þð), and in ancient Greek you will be able to type accents

after vowels instead of looking up the codes for hundreds of polytonic vowel +

accent combinations. But these and other capabilities are only available when

you set the language correctly.

In LibreOffice and InDesign you can set the language with a drop-down

menu in the “Character” dialog. In Word there is a separate “Language” dialog,

accessible from the “Tools” menu.

If you have questions about any aspect of Junicode, post a query in the Juni-

code discussion forum. If you notice a bug, or wish to request an enhancement

or other change, please open an issue at the font’s development site.

https://github.com/psb1558/Junicode-font/discussions
https://github.com/psb1558/Junicode-font/discussions
https://github.com/psb1558/Junicode-font/issues
https://github.com/psb1558/Junicode-font

4. Feature Reference

4.1. Introduction

The OpenType features of Junicode version 2 and its variable counterpart (here-

after referred to together as “Junicode”) have two purposes. One is to provide

convenient access to the rich character set of the Medieval Unicode Font Ini-

tiative (MUFI) recommendation. The other is to enable best practices in the

presentation of medieval text, promoting accessibility in electronic texts from

PDFs to e-books to web pages.

Each character in the MUFI recommendation has a code point associated

with it: either the one assigned by Unicode or, where the character is not

recognized by Unicode, in the Private Use Area (PUA) of the Basic Multilingual

Plane, a block of codes, running from U+E000 to U+F8FF, that are assigned no

value by Unicode but instead are available for font designers to use in any way

they please.

The problem with PUA code points is precisely their lack of any value.

Consider, as a point of comparison, the letter a (U+0061). Your computer, your

phone, and probably a good many other devices around the house store a good

bit of information about this a: that it’s a letter in the Latin script, that it’s

lowercase, and that the uppercase equivalent is A (U+0041). All this information

is available to word processors, browsers, and other applications running on your

computer.

Now suppose you’re preparing an electronic text containing what MUFI

calls lATIN SMAll lETTER NECklESS A (). It is assigned to code point U+F215,

which belongs to the PUA. Beyond that, your computer knows nothing about

it: not that it is a variant of a, or that it is lowercase, or a letter in the Latin

14

JUNICODE 15

alphabet, or even a character in a language system. A screen reader cannot read,

or even spell out, a word with U+F215 in it; a search engine will not recognize

the word as containing the letter a.

Junicode offers the full range of MUFI characters—you can enter the PUA

code points—but also a solution to the problems posed by those code points.

Think of an electronic text (a web page, perhaps, or a PDF) as having two layers:

an underlying text, stable and unchanging, and the displayed text, generated by

software at the instant it is needed and discarded when it is no longer on the

screen. For greatest accessibility the underlying text should contain the plain

letter a (U+0061) along with markup indicating how it should be displayed. To

generate the displayed text, a program called a “layout engine” will (simplifying

a bit here) read the markup and apply the OpenType feature cv02[5]1 to the

underlying a, bypassing the PUA code point, with the result that readers see

a—the “neckless a.” And yet the letter will still register as a with search engines,

screen readers, and so on.

This is the Junicode model for text display, but it is not peculiar to Junicode:

it is widely considered to be the best practice for displaying text using current

font technology.

The full range of OpenType features listed in this document is supported by

all major web browsers, LibreOffice, X ETEX, LuaTEX, and (presumably) other

document processing applications. All characters listed here are available in

Adobe InDesign, though that program supports only a selection of OpenType

features. Microsoft Word, unfortunately, supports only Stylistic Sets, ligatures

(all but the standard ones in peculiar and probably useless combinations), number

variants, and the Required Features. In terms of OpenType support, Word is

the most primitive of the major text processing applications.

Many MUFI characters cannot be produced by using the OpenType variants

of Junicode. These characters fall into three categories:

1 Many OpenType features produce different outcomes depending on an index passed to an

application’s layout engine along with the feature tag. Different applications have different ways

of entering this index: consult your application’s documentation. Here, the index is recorded

in brackets after the feature tag. Users of fontspec (with X ELATEX or LuaTEX) should also be

aware that fontspec indexes start at zero while OpenType indexes start at one. Therefore all

index numbers listed in this document must be reduced by one for use with fontspec.

16 FEATURE REFERENCE

• Those with Unicode (non-PUA) code points. MUFI has done valuable

work obtaining Unicode code points for medieval characters. All such

characters (those with hexadecimal codes that do not begin with E or F)

are presumed safe to use in accessible and searchable text. However, some

of these are covered by Junicode OpenType features for particular reasons.

• Precomposed characters—those consisting of base character + one or

more diacritics. For greatest accessibility, these should be entered not as

PUA code points, but rather as sequences consisting of base character + di-

acritics. For example, instead of MUFI U+E498 lATIN SMAll lETTER E WITh

DOT BElOW AND ACUTE, use e + U+0323 COMBINING DOT BElOW + U+0301

COMBINING ACUTE ACCENT: ẹ́ (when applying combining marks, start with

any marks below the character and work downwards, then continue with

any marks above the character and work upwards. For example, to make ǭ̣́,

place characters in this order: o, COMBINING OGONEk U+0328, COMBINING

DOT BElOW U+0323, COMBINING MACRON U+0304, COMBINING ACUTE U+0301).

Some MUFI characters have marks in unconventional positions, e.g. ȯ́

lATIN SMAll lETTER O WITh DOT ABOvE AND ACUTE, where the acute

appears beside the dot instead of above. This and other characters like it

should still be entered as a sequence of base character + marks (here o,

COMBINING DOT ABOvE U+0307, COMBINING ACUTE U+0301). Junicode will

position the marks in the manner prescribed by MUFI.

• Characters for which a base character (a Unicode character to which it can

be linked) cannot be identified, or for which there may be an inconsistency

in the MUFI recommendation. These include:

• U+E8AF. This is a ligature of long s and l with stroke, but there are

no base characters with this style of stroke.

• U+EFD8 and U+EFD9. MUFI lists these as ligatures (corre-

sponding to the historic ligatures uuUU, but they cannot be treated

as ligatures in the font because a single diacritic is positioned over

the glyphs as if they were digraphs like ꜳꜲ.

• U+EBE7 and U+EBE6, for the same reason.

JUNICODE 17

• U+F159 lATIN ABBREvIATION SIGN SMAll DE. Neither a variant of

d nor an eth (ð), this character may be a candidate for Unicode

encoding.

• Characters for which OpenType programming is not yet available. These

will be added as they are located and studied.

These characters should be avoided, even if you are otherwise using MUFI’s

PUA characters:

• U+F1C5 COMBINING CURl hIGh POSITION. Use U+1DCE COMBINING OGONEk

ABOvE. The positioning problem mentioned in the MUFI recommen-

dation is solved in Junicode (and, to be fair, many other fonts with Open-

Type programming).

• U+F1CA COMBINING DOT ABOvE hIGh POSITION. Use U+0307 COMBINING DOT

ABOvE. It will be positioned correctly on any character.

4.2. Case-Related Features

4.2.1. smcp – Small Capitals

Converts lowercase letters to small caps; also several symbols and combining

marks. All lower- and uppercase pairs (with exceptions noted below) have a small

cap equivalent. Lowercase letters without matching caps may lack matching

small caps. fghij → FGhIJ.

Note: Precomposed characters defined by MUFI in the Private Use Area

have no small cap equivalents. Instead, compose characters using combining

diacritics, as outlined in the introduction. For example, smcp applied to the

sequence t + COMBINING OGONEk (U+0328) + COMBINING ACUTE (U+0301) will

change t̨́ to t̨́.

4.2.2. c2sc – Small Capitals from Capitals

Use with smcp for all-small-cap text. ABCDE → ABCDE.

Note: The variants of Ŋ (U+014A—see Other Latin Letters) have no lowercase

equivalents. Their small capital forms can be accessed only through this feature.

18 FEATURE REFERENCE

4.2.3. pcap – Petite Capitals

Produces small caps in a smaller size than smcp. Use these when small caps have

to be mixed with lowercase letters. The whole of the basic Latin alphabet is

covered, plus a number of other letters, but fewer than half of Junicode’s small

caps have petite cap equivalents. klmnoþ → klmnoþ.

4.2.4. c2pc – Petite Capitals from Capitals

Produces petite capitals from capitals. Use with pcap to convert mixed-case texts

to petite capitals. PQRST → PQRST.

Note: The variants of Ŋ (U+014A—see Other Latin Letters) have no lowercase

equivalents. Their petite capital forms can be accessed only through this feature.

4.2.5. case – Case-Sensitive Forms

Produces combining marks that harmonize with capital letters: Ř, X̉, etc. Use

of this feature reduces the likelihood that a combining mark will collide with a

glyph in the line above. Some applications turn this feature on automatically for

runs of capitals, and precomposed characters (e.g. É U+00C9, Ū U+016A) already

use case-appropriate combining marks. This feature also changes oldstyle to

lining figures, since these harmonize better with uppercase letters.

4.3. Alphabetic Variants

4.3.1. cv01-cv52 – Basic Latin Variants

These features also affect small cap (smcp) and underdotted (ss07) forms, where

available. Variants in magenta are also available via ss06 “Enlarged Minuscules.”

Use the cvNN features instead of ss06 when you want to substitute an enlarged

minuscule for a capital (or, less likely, a lowercase) letter everywhere in a text.

Variant of cvNN Variants

JUNICODE 19

Variant of cvNN Variants

A cv01 1=A, 2=A, 3=A, 4=A

a cv02 1=a, 2=a, 3=a, 4=a, 5=a, 6=a, 7=a, 8=a, 9=a,

10=a

B cv03 1=B, 2=B

b cv04 1=b

C cv05 1=C, 2=C

c cv06 1=c, 2=c

D cv07 1=D, 2=D, 3=D

d cv08 1=ꝺ, 2=d, 3=d, 4=d, 5=d, 6=d (also affects

ḋ)

E cv09 1=E, 2=E, 3=E, 4=E

e cv10 1=e, 2=e, 3=e, 4=e, 5=e

F cv11 1=F, 2=F, 3=F

f cv12 1=ꝼ, 2=f, 3=f, 4=f, 5=f, 6=f, 7=f, 8=f, 9=f

G cv13 1=G, 2=G, 3=G, 4=G

g cv14 1=ᵹ, 2=ꟑ, 3=g, 4=g, 5=g, 6=g, 7=g, 8=g, 9=g

H cv15 1=H, 2=H, 3=H

h cv16 1=h, 2=h, 3=h, 4=h, 5=h, 6=h

I cv17 1=I, 2=I, 3=I, 4=I

i cv18 1=i, 2=i, 3=i, 4=ii, 5=i, 6=i*

J cv19 1=J, 2=J

j cv20 1=j, 2=j, 3=j, 4=j

K cv21 1=K

20 FEATURE REFERENCE

Variant of cvNN Variants

k cv22 1=k, 2=k, 3=k, 4=k, 5=k, 6=k

L cv23 1=L

l cv24 1=l, 2=l, 3=ꝉ, 4=l, 5=l, 6=l

M cv25 1=M, 2=M, 3=M, 4=M

m cv26 1=m, 2=m, 3=m, 4=m

N cv27 1=N, 2=N, 3=N

n cv28 1=n, 2=n, 3=n, 4=n, 5=n, 6=n, 7=n, 8=n

O cv29 1=O, 2=O

o cv30 1=o, 2=o

P cv31 1=P, 2=P

p cv32 1=p, 2=p**

Q cv33 1=Q, 2=Q, 3=Q◌, 4=Q◌◌

q cv34 1=q, 2=q

R cv35 1=R, 2=R, 3=R

r cv36 1=r, 2=r, 3=r, 4=r, 5=r

S cv37 1=S, 2=S, 3=S, 4=S, 5=S, 6=S, 7=S, 8=S

s cv38 1=s, 2=s, 3=ſ, 4=s, 5=s, 6=s, 7=s, 8=s, 9=s,

10=s, 11=s, 12=s, 13=s, 14=s

T cv39 1=T, 2=T

t cv40 1=t, 2=t, 3=t, 4=t, 5=t

U cv41 1=U, 2=U, 3=U

u cv42 1=u

V cv43 1=V

JUNICODE 21

Variant of cvNN Variants

v cv44 1=v, 2=v, 3=v, 4=v, 5=v, 6=v

W cv45 1=W, 2=W

w cv46 1=w, 2=w

X cv47 1=X

x cv48 1=x, 2=x, 3=x, 4=x, 5=x

Y cv49 1=Y, 2=Y

y cv50 1=y, 2=y, 3=y, 4=y, 5=y, 6=y

Z cv51 1=Z, 2=Z

z cv52 1=z, 2=z, 3=z

* cv18[4] changes ii to ij at the end of a word; cv18[5] changes i to j at the end

of a word whether another i precedes or not. These variants are chiefly useful

for roman numbers, but also for Latin words ending in -ii. The j produced by

this feature is searchable as i.

** cv32[2] should be on in any edition or extensive quotation of the Ormulum.

The feature produces a p that differs from the default only in the way it forms a

double-p ligature with hlig: pp, not pp.

4.3.2. cv53-cv66, cv91 – Other Latin Letters

Some features affect both upper- and lowercase forms. cv62 also affects combin-

ing e with ogonek, accessible via either cv84 or ss10 with the entity reference

&_eogo;.

Variant of cvNN Variants

Ą (U+0104) cv53 1=Ą, 2=Ą, 3=Ą

ą (U+0105) cv54 1=ą, 2=ą

ꜳ (U+A733) cv55 1=ꜳ, 2=ꜳ, 3=ꜳ, 4=æ

22 FEATURE REFERENCE

Variant of cvNN Variants

Æ (U+00C6) cv56 1=Æ, 2=Æ

æ (U+00E6) cv57 1=æ, 2=æ, 3=æ, 4=æ, 5=æ, 6=æ

Ꜵ (U+A734) cv58 1=Ꜵ, 2=Ꜵ, 3=Ꜵ

ꜵ (U+A735) cv59 1=ꜵ, 2=ꜵ, 3=ꜵ

ꜹ (U+A739) cv60 1=ꜹ

đ (U+0111) cv61 1=đ

Ę, ę ... (U+0118, U+0119) cv62 1=Ę, ę ...; 2=Ę, ę ...

Ȝ, ȝ (U+021C, U+021D) cv63 1=Ȝȝ, 2=Ȝȝ

ꝉ (U+A749) cv64 1=l

Ŋ (U+014A) cv91 1=Ŋ, 2=Ŋ

ꟁ (U+A7C1) cv65 1=ꟁ, 2=ꟁ, 3=ꟁ, 4=ꟁ

ꝥ, ꝥ (U+A765) cv66 1=ꝥ, ꝥ

4.3.3. ss01 – Alternate thorn and eth

Produces Nordic thorn and eth (þðÞ) when the language is English, and English

thorn and eth (þðÞ) with any other language, reversing the font’s ordinary usage.

This also affects small caps, crossed thorn (ꝥ ꝥ—see also cv66), combining mark

eth (U+1DD9, ◌ᷙ ◌ᷙ), and enlarged thorn and eth (see ss06). This feature depends

on loca (Localized Forms), which in most applications will always be enabled.

4.3.4. ss02 – Insular Letter-Forms

Produces insular letter-forms, e.g. dfgrsw. The result is different, depending

on whether the language is English or Irish (make sure the language for your

document is set properly). In English text, capitals are not affected (except W),

as these do not not commonly have insular shapes in early manuscripts; instead,

enter the Unicode code points or use the Character Variant (cvNN) features.

In English text, ss02 imitates the typography of the Old English passages of

Hickes’s Thesaurus, not the usage of Old English or Anglo-Latin manuscripts.

JUNICODE 23

In Irish texts, it imitates the distribution of insular characters but cannot imitate

the style of particular scribal hands or typefaces.

4.3.5. ss04 – High Overline

Produces a high overline over letters used as roman numbers: cdijlmvx CDI

JLMVXↃ.

4.3.6. ss05 – Medium-High Overline

Produces a medium-high overline over (or through the ascenders of) letters

used as roman numbers, and some others as well: bcdhijklmſvxþ.

4.3.7. ss06 – Enlarged Minuscules

Letters that are lowercase in form but uppercase in function, and between upper-

and lowercase in size, often used in medieval manuscripts as litterae notabiliores

to begin sentences, paragraphs, and other textual units. This feature covers the

whole of the basic Latin alphabet and a number of other letters that occur at

the beginnings of sentences, plus a few punctuation marks. Uppercase letters

are also covered by this feature so that enlarged minuscules can, if you like, be

searched as capitals. This is Junicode’s collection of enlarged minuscules:

a → a

á → á

a → a

ꜳ → ꜳ

æ → æ

ꜵ → ꜵ

b → b

c → c

d → d

ḋ → ḋ

d́ → d́

ḋ → ḋ

ꝺ → ꝺ

ꝺ́ → ꝺ́

ð → ð

ð → ð

e → e

e → e

é → é

ę → ę

ę → ę

f → f

ꝼ → ꝼ

g → g

ᵹ → ᵹ

ꟑ → ꟑ

h → h

h → h

h → h

ħ → ħ

i → i

ı → ı

j → j

ȷ → ȷ

k → k

l → l

m → m

m → m

n → n

o → o

œ → œ

p → p

q → q

r → r

s → s

ſ → ſ

t → t

u → u

v → v

w → w

ƿ → ƿ

x → x

y → y

z → z

þ → þ

þ → þ

⹎ → ⹎

⹎ → ⹎

⹎ → ⹎

⹎ → ⹎

If you are using the variable version of the font (Junicode VF), consider using

the Enlarge axis instead, for reasons of flexibility and accessibility.

24 FEATURE REFERENCE

4.3.8. ss07 – Underdotted Text

Produces underdotted text (indicating deletion in medieval manuscripts) for

most Latin and Greek letters, e.g. ạḅcḍ̣ẹfg̣̣ ḤIJ̣̣ḲḶṂ α̣β̣γ̣δ̣εζ̣η̣̣ Α̣Β̣Γ̣Δ̣Ε̣Ζ̣Η̣. This

also affects small caps, e.g. ḥ��̣�̣̣�̣�̣ṇ �̣��̣̣�̣�̣�̣�̣. If this feature fails for any letter,

use U+0323, combining dot below.

4.3.9. ss08 – Contextual Long s

In English, French, and Latin text only, varies s and s according to rules followed

by many early printers: sports, essence, stormy, disheveled, transfusions, slyness,

cliffside. For this feature to work properly, calt “Contextual Alternates” must

also be enabled (as it should be by default: see Required Features below). This

feature does not work in LuaTEX, except in harf mode.

4.3.10. ss16 – Contextual r Rotunda

Converts r to ꝛ (lowercase only) following the most common rules of medieval

manuscripts: priest, firmer, frost, ornament. For this feature to work properly,

calt “Contextual Alternates” must also be enabled (as it should be by default:

see Required Features below). This feature does not work in LuaTEX, except in

harf mode.

4.3.11. salt – Stylistic Alternates (medieval capitals, etc.)

Junicode has two series of decorative capitals in medieval scripts. These affect

only the letters A-Z and a-z. salt[1] provides rustic capitals, a script used for text

in the late ancient and early medieval periods and for display until around the

eleventh century: Gazifrequens Libycos duxit Karthago triumphos.

salt[2] provides Lombardic capitals, a style used mainly for what are now

called drop caps. Junicode’s Lombardic capitals are not suitable for running

text, titles, or headers: A B C D E F. Rustic capital Æ is available (Æ), but not

Lombardic. salt[3] provides variants of rustic G and Lombardic F and T: G F T.

Miscellaneous alternates (for which Character Variants are unavailable) are also

gathered here on salt[1]: ð → ð, ẏ → ẏ, ƚ → ƚ. Also miscellaneous non-

alphabetic characters: ⁓ → ⁓, - → -, ☞ → ☞ (a variant of the right index

JUNICODE 25

character used by Thomas Pynchon). Three variants of U+2E4D (⹍): 1=⹍, 2=⹍,

3=⹍.

4.3.12. cv68 – Variant of ʔ (U+0294, glottal stop)

1=ʔ.

4.4. Greek

Junicode has two distinct styles of Greek. In the roman face, it is upright and

modern, especially designed to harmonize with Junicode’s Latin letters. In the

italic, it is slanted and old-style, being based on the eighteenth-century Greek

type designed by Alexander Wilson and used by the Foulis Press in Glasgow.

Both Greek styles include the full polytonic and monotonic character sets: αβγδεζ

αβγδεζ.

To set Greek properly (especially polytonic text) requires that both locl and

ccmp be active, as they should be by default in most text processing applications

(but in MS Word they must be explicitly enabled by checking the “kerning” box

on the “Advanced” tab of the Font Dialog).

Modern monotonic Greek should be set using only characters from the

Unicode “Greek and Coptic” range (U+0370–U+03FF). When monotonic text

is set in all caps, Junicode suppresses accents automatically (except in single-

letter words, for which you must substitute unaccented forms manually). This

substitution is not performed on text containing visually identical letters from

the “Greek Extended” range (U+0F00–U+1FFF). Thus when setting polytonic

Greek, one should use (for example) Ά (U+1FBB), not Ά (U+0386), though they

look the same.

You can set polytonic Greek either by entering code points from the Greek

Extended range or by entering sequences of base characters and diacritics. When

using the latter method, you must first make sure the language for the text in

question (whether a single word, a short passage, or a complete document) is

set to Greek, and then enter characters in canonical order (that is, the sequence

defined by Unicode as equivalent to the composite character). The order is as

follows: 1. base character; 2. diacritics positioned either above or in front of the

26 FEATURE REFERENCE

base character, working from left to right or bottom to top; 3. the ypogegrammeni

(U+0345), or for capitals, if you prefer, the prosgegrammeni (U+1FBE).2

For example, the sequence ω (U+03C9) ◌̓ (U+0313) ◌́ (U+0301) ◌ͅ (U+0345)

produces ᾤ. Substitute capital Ω (U+03A9) and the result is ᾬ. Note that in a

number of applications the layout engine will perform these substitutions before

Junicode’s own programming is invoked. If either the layout engine or Junicode

fails to produce your preferred result, try placing U+034F COMBINING GRAPhEME

JOINER (don’t waste time puzzling over the name) somewhere in the sequence of

combining marks—for example, before the ypogegrammeni to make Ὤ ͅ .

4.4.1. ss03 – Alternate Greek

Provides alternate shapes of β γ θ π φ χ ω: β γ θ π φ χ ω. These are chiefly useful

in linguistics, as they harmonize with IPA characters.

4.5. Gothic

4.5.1. ss19 – Latin to Gothic Transliteration

Produces Gothic letters from Latin: Warþ þan in dagans jainans → Warþ þan

in dagans jainans. In web pages and PDFs, the letters will be searchable as

their Latin equivalents.

4.6. Runic

4.6.1. ss12 – Early English Futhorc

Changes Latin letters to their equivalents in the early English futhorc. Because

of the variability of the runic alphabet, this method of transliteration may not

produce the result you want. In that case, it may be necessary to manually edit

the result. fisc flodu ahof → fisc flodu ahof.

2 Some applications will automatically reorder sequences of letters and accents, sparing

you the trouble of remembering the canonical order.

JUNICODE 27

4.6.2. ss13 – Elder Futhark

Changes Latin letters to their equivalents in the Elder Futhark. Because of the

variability of the runic alphabet, this method of transliteration may not produce

the result you want. In that case, it may be necessary to manually edit the result.

ABCDEFG → ABCDEfG.

4.6.3. ss14 – Younger Futhark

Changes Latin letters to their equivalents in the Younger Futhark. Because of

the variability of the runic alphabet, this method of transliteration may not

produce the result you want. In that case, it may be necessary to manually edit

the result. ABCDEFG → ABCDifC.

4.6.4. ss15 – Long Branch to Short Twig

In combination with ss14, converts long branch (the default for the Younger

Futhark) to short twig runes: ABCDifC → ABCDifC.

4.6.5. rtlm – Right to Left Mirrored Forms

Produces mirrored runes, e.g. aBcdEfG → GFEdCBA. This feature cannot change

the direction of text or reverse its order.

4.7. Ligatures and Digraphs

Old-style fonts typically contain a standard collection of ligatures (conjoined

letters), including fi, fl, ff, ffi, and ffl. Most software will display these ligatures

automatically (except Microsoft Word, for which they must be enabled explicitly).

Junicode has a large number of ligatures, including the standard f-ligatures, a

similar set for long s, e.g. sl, ss, sſi, but also more unusual forms like ſꞇ, st, sw

(the last two with ss02 and cv38[11]).

Junicode also contains more specialized ligatures: for various enclosed al-

phanumerics, e.g. ❶ ❺ → ❶❺, ① ⑧ → ①⑧; for the five tone modifiers (U+02E5,

U+02E9, U+02E6, U+02E8, U+02E7), a large number of ligatures, e.g. ˥ ˦ → ˥˦, ˦ ˦ ˧

28 FEATURE REFERENCE

→ ˦˦˧; for combinations of vowel + rhotic hook (U+02DE), several more ligatures,

e.g. a ˞ → a˞, œ ˞ → œ˞. These, like the more common ligatures, are automatic.

Many of Junicode’s ligatures, however, are not automatic, but belong to the

set of either Historic Ligatures or Discretionary Ligatures, both of which must

be invoked explicitly. These are listed in the following sections.

4.7.1. hlig – Historic Ligatures

Produces ligatures for combinations that should not ordinarily be rendered as

ligatures in modern text.3 Most of these are from the MUFI recommendation,

ranges B.1.1(b) and B.1.4. This feature does not produce digraphs (which have a

phonetic value), for which see ss17. The ligatures:

a f → af

a ꝼ → aꝼ

a g → ag

a l → al

a n → an

a N → aN

a p → ap

a r → ar

a R → aR

a þ → aþ

a v → av

a v → av

b b → bb

b g → bg

b o → bo

c h → ch

c k → ck

ꝺ ꝺ → ꝺꝺ

d e → de

ꝺ e → ꝺe

e a → ea

e c → ec

e ꝼ → eꝼ

e ᵹ → eᵹ

e m → em

e n → en

e o → eo

e r → eꞃ

e s → eꞅ

e t → eꞇ

e x → ex

e y → ey

f ä → fä

g d → gd

g ð → gð

g ꝺ → gꝺ

g g → gg

ɡ ɡ → gg

g o → go

g p → gp

g r → gr

H r → Hr

h r → hr

h ſ → hſ

h ẝ → hẝ

k r → kr

k ſ → kſ

k ẝ → kẝ

l l → ll

n a → na

n i → ni

N ſ → nſ

n v → nv

o c → oc

O R → OꝚ

o r → oꝛ

O Ꝝ → OꝜ

o ꝝ → oꝝ

P P → PP

p p → pp

ꝓ p → ꝓp

P s → Ps

p e → pe

p s → ps

P si → Psi

p si → psi

q ꝩ → qꝩ

q ꝫ/qꝫ → qꝫ/qꝫ

ꝗ ꝗ → ꝗꝗ

Q R → QꝚ

q r → qꝛ

ſ ä → ſä

ſ c h → ſch

ſ t r → ſtr

ſ ꝩ → ſꝩ

ſ ƿ → ſƿ

t t → ꞇꞇ

U E → UE

u e → ue

U U → UU

u u → uu

ƿ ƿ → ƿƿ

þ r → þr

þ ẝ → þẝ

ð ð → ðð

þ þ → þþ

ƿ ƿ → ƿƿ

ꝥ ꝥ → ꝥꝥ

3 Some fonts define hlig differently, as including all ligatures in which at least one element

is an archaic character, e.g. those involving long s (ſ). In Junicode, however, a historic ligature

is defined not by the characters it is composed of, but rather by the join between them. If two

characters (though modern) should not be joined except in certain historic contexts, they

form a historic ligature. If they should be joined in all contexts (even if archaic), the ligature is

not historic and should be defined in liga.

JUNICODE 29

Note: For the ligature nſ to work properly, U+017F s must be entered directly, not

by applying an OpenType feature to s.

4.7.2. dlig – Discretionary Ligatures

Produces lesser-used ligatures: ct, ſp, str, st, tr, tt, ty. The collection of dis-

cretionary ligatures in the italic face also includes as, is, us.

4.7.3. ss17 – Rare Digraphs

By “digraph” we mean conjoined letters that represent a phonetic value: the most

common examples for western languages are æ and œ (though these, because

they are so common, are not included in this feature). Use of this feature in web

pages enables easier searches: for example, producing þau from þau allows the

word to be searched as “þau.” The digraphs covered by this feature are ꜳ, ꜵ, au, ꜹ,

ay, ꝺv, ðv, gv, oo, vy, plus capital and small cap equivalents and digraph + diacritic

combinations anticipated in the MUFI recommendation. To produce such a

digraph + diacritic combination, either type a letter + diacritic combination as

the second element of the digraph or type the diacritic after the second element.

For example, a + ú yields aú, and so does a + u + U+0301 (combining acute accent).

To produce a digraph + diacritic combination not covered by MUFI (e.g. ꜵ̀), you

may have to place U+034F COMBINING GRAPhEME JOINER (see cv84) between the

second element of the digraph and the combining mark.

4.8. Numbers and Sequencing

4.8.1. frac – Fractions

Applied to a slash and surrounding numbers, produces fractions with diagonal

slashes. 6/9 becomes 6/9, 16/91 becomes 16/91.

30 FEATURE REFERENCE

4.8.2. numr – Numerators

Changes numbers to those suitable for use on the left/upper side of fractions

with diagonal stroke (U+2044). This can be used, with dnom, to manually construct

fractions, but for most users frac will be a better solution.

4.8.3. dnom – Denominators

Changes numbers to those suitable for use on the right/lower side of fractions

with diagonal stroke (U+2044). This can be used, with numr, to manually construct

fractions, but for most users frac will be a better solution.

4.8.4. nalt – Alternate Annotation Forms

Produces letters and numbers circled, in parenthesis, or followed by periods, as

follows:

nalt[1], circled letters or numbers: a b . . . z; 0 1 2 . . . 20.

nalt[2], letter or numbers in parentheses: a . . . z; 0 1 . . . 20.

nalt[3], double-circled numbers: 0 1 . . . 10.

nalt[4], white numbers in black circles: 0 1 2 3 . . . 20.

nalt[5], numbers followed by period: 0 1 . . . 20

For enclosed figures 10 and higher, rlig (Required Ligatures) must also be

enabled (as it should be by default: see Required Features below).

4.8.5. tnum – Tabular Figures

Fixed-width figures: 0123456789 (with lnum), 0123456789 (default or with

onum).

4.8.6. onum – Oldstyle Figures

Junicode’s default figures are oldstyle and proportional, harmonizing with low-

ercase characters: 0123456789. Use this feature to switch temporarily to oldstyle

figures in a context where lnum is active.

JUNICODE 31

4.8.7. pnum – Proportional Figures

Junicode’s default figures are proportionally spaced: unlike tabular figures, they

are not all the same width: 0123456789. Use this feature to switch temporarily

to proportional figures in a context where tnum is active.

4.8.8. lnum – Lining Figures

Figures in a uniform height, harmonizing with uppercase letters: 0123456789

(with tnum), 0123456789 (default or with pnum).

4.8.9. zero – Slashed Zero

Produces slashed zero in all number styles, including superscripts, subscripts,

and fractions made with frac: 0 0 0 0 10/30.

4.8.10. ss09 – Alternate Figures

In the manner of old typefaces, Junicode’s default number one is shaped like a

small capital I and its zero is a plain ring. This feature provides more modern-

looking figures: 01. Only oldstyle figures are affected by this feature.

4.9. Superscripts and Subscripts

4.9.1. sups – Superscripts

Produces superscript numbers and letters. Superscript numbers are in one of two

styles: oldstyle proportional (from oldstyle numbers) and lining tabular (from

lining numbers). All lowercase letters of the basic Latin alphabet are covered, and

most uppercase letters: 0123 4567 abcde ABDEG. Wherever superscripts are needed

(e.g. for footnote numbers), use sups instead of the raised and scaled characters

generated by some programs. With sups: 4567. Scaled: 4567.

32 FEATURE REFERENCE

4.9.2. subs – Subscripts

Produces subscript numbers. Only produces oldstyle proportional and lining

tabular figures: 2345 8901.

4.10. Punctuation and Symbols

MUFI encodes nearly twenty marks of punctuation in the PUA. In Junicode

these can be accessed in either of two ways: all are indexed variants of . (pe-

riod), and all are associated with the Unicode marks of punctuation they most

resemble (but it should not be inferred that the medieval marks are semantically

identical with the Unicode marks, or that there is an etymological relationship

between them). The first method will be easier for most to use, but the second

is more likely to yield acceptable fallbacks in environments where Junicode is

not available.

Marks with Unicode encoding are not included here, as they can safely be

entered directly. In MUFI 4.0 several marks have PUA encodings, but have

since that release been assigned Unicode code points: paragraphus (⹍ U+2E4D),

medieval comma (⹌ U+2E4C), punctus elevatus (⹎ U+2E4E), virgula suspensiva (⹊

U+2E4A), triple dagger (⹋ U+2E4B).

4.10.1. ss18 – Old-Style Punctuation Spacing

Colons, semicolons, parentheses, quotation marks and several other glyphs are

spaced as in early printed books.

4.10.2. cv69 – Variants of ⁊⹒ (U+204A / U+2E52, Tironian nota)

1=⁊⹒, 2=⁊⹒, 3=⁊⹒, 4=⁊⹒, 5=⁊⹒, 6=⁊⹒, 7=⁊⹒, 8=⁊⹒, 9=⁊⹒.

4.10.3. cv70 – Variants of . (period)

1=., 2=., 3=., 4=., 5=., 6=., 7=., 8=., 9=., 10=., 11=., 12=., 13=., 14=., 15=.,

16=., 17=., 18=., 19=⹊, 20=., 21=⹎, 22=⹎, 23=⹎. This feature provides access to all

JUNICODE 33

non-Unicode MUFI punctuation marks. Some of them are available via other

features (see below).

4.10.4. cv71 – Variant of · (U+00B7, middle dot)

1=◌. (distinctio), 2=◌·.

4.10.5. cv72 – Variants of , (comma)

1=., 2=..

4.10.6. cv73 – Variants of ; (semicolon)

1=. (punctus versus), 2=., 3=., 4=., 5=., 6=;, 7=;, 8=;. Several complex punc-

tuation marks are gathered here. This does not imply that these marks are

variants of the semicolon.

4.10.7. cv74 – Variants of ⹎ (U+2E4E, punctus elevatus)

1=., 2=., 3=., 4=. (punctus flexus), 5=⹎, 6=⹎, 7=⹎. Some of these are affected by

ss06, Enlarged Minuscules.

4.10.8. cv75 – Variant of ! (exclamation mark)

1=. (punctus exclamativus).

4.10.9. cv76 – Variants of ? (question mark)

1=., 2=., 3=.. Shapes of the punctus interrogativus.

4.10.10. cv77 – Variant of ~ (ASCII tilde)

1=. (same as MUFI U+F1F9, “wavy line”).

34 FEATURE REFERENCE

4.10.11. cv78 – Variant of * (asterisk)

1=., 2=*, 3=*, 4=*, 5=*. MUFI defines U+F1EC as a signe de renvoi. Manuscripts

employ a number of shapes (of which this is one) for this purpose. Junicode

defines it as variant 1 of the asterisk—the most common modern signe de renvoi.

4.10.12. cv79 – Variants of / (slash)

1=⹊, 2=.. The first of these is Unicode, U+2E4E.

4.11. Spacing Abbreviations

4.11.1. cv80 – Variant of ꝝ (U+A75D, rum abbreviation)

1=ꝝ.

4.11.2. cv82 – Variants of spacing ꝰ (U+A770)

1=ꝰ, 2=ꝰ. cv82[1] produces the baseline -us abbreviation (same as MUFI U+F1A6).

MUFI also has an uppercase baseline -us abbreviation (U+F1A5), but as there is

no uppercase version of U+A770 to pair it with, it is indexed separately here.

4.11.3. cv83 – Variants of ꝫ (U+A76B, “et” abbreviation)

1=ꝫ, 2=ꝫ, 3=ꝫ, 4=ꝫ. [1] and [3] are identical in shape to a semicolon and a colon,

but as they are semantically the same as U+A76B, it is preferable to use those

characters with this feature. [2] produces a subscript version of the character, a

common variant in early printed books. [4] has a lower extension that crosses

the descender of a preceding q.

4.11.4. cv67 – Spacing zigzag (variant of U+00AF, spacing macron)

A spacing version of ◌͛ (U+035B, combining zigzag) appears in John Hutchins,

The History and Antiquities of the County of Dorset (London, 1774). It is not in

Unicode or MUFI. In the future this feature may be used, as necessary, for other

spacing marks of abbreviation.

JUNICODE 35

4.11.5. cv99 – Word omitted symbol (variant of U+00B0, degree)

The degree sign is often used as an editorial sign in editions of the Greek New

Testament. This feature scales and positions it to match other editorial signs

(U+2E00–u+2E0D).

4.12. Combining Marks

4.12.1. cv84 – MUFI combining marks (variants of U+0304)

MUFI encodes a number of combining marks in the PUA (with code points

between E000 and F8FF), but when these characters are entered directly, they can

interfere with searching and accessibility, and some important applications fail

to position them correctly over their base characters. To avoid these problems,

enter U+0304 (◌̄, COMBINING MACRON) and apply cv84, with the appropriate index,

to both mark and base character. This collection of marks does not include any

Unicode-encoded marks (from the “Combining Diacritical Marks” ranges), as

these can safely be entered directly. It does include three marks (cv84[30], [31]
and [32]) that lack MUFI code points but are used to form MUFI characters,

and three more ([2], [33], and [34]) that have no code points in Unicode or

MUFI.

This feature may often appear to have no effect. When this happens it is

because an application replaced a sequence like a U+0304 with a precomposed

character like ā (U+0101) before Junicode’s OpenType programming had a chance

to work. This process is called normalization, and it usually has the effect of

simplifying text processing tasks, but can sometimes prevent the proper function-

ing of OpenType features. To disable it, place the character U+034F COMBINING

GRAPhEME JOINER between the base character and the combining mark (or the

first combining mark). For example, to produce the combination u ̄ , enter u

U+034F U+0304.

These marks can sometimes be produced by other cvNN features, which may

be preferable to cv84 as providing more suitable fallbacks for applications that

do not support Character Variant (cvNN) features.

36 FEATURE REFERENCE

For some marks with PUA code points, users may find it easier to use entities

than this feature.

These marks are not affected by most other features. This is to preserve

flexibility, given the rule that the feature that produces them must be applied

to both the mark and the base character. For example, if you had to apply smcp
“Small Caps” to U+1DE8 ◌ ᷨ to get cv84[11] ◌ ̄ , it would be impossible to produce

the sequence na ̄a (or the reverse case naᷨa) with the diacritic properly positioned.

1 = ◌ ̄

2 = ◌ ̄

3 = ◌ ̄

4 = ◌ ̄

5 = ◌ ̄

6 = ◌ ̄

7 = ◌ ̄

8 = ◌ ̄

9 = ◌ ̄

10 = ◌ ̄

11 = ◌ ̄

12 = ◌ ̄

13 = ◌ ̄

14 = ◌ ̄

15 = ◌ ̄

16 = ◌ ̄

17 = ◌ ̄

18 = ◌ ̄

19 = ◌ ̄

20 = ◌ ̄

21 = ◌ ̄

22 = ◌ ̄

23 = ◌ ̄

24 = ◌ ̄

25 = ◌ ̄

26 = ◌ ̄

27 = ◌ ̄

28 = ◌ ̄

29 = ◌ ̄

30 = ◌ ̄

31 = ◌ ̄

32 = ◌ ̄

33 = ◌ ̄

34 = ◌ ̄

35 = ◌ ̄

36 = ◌ ̄

37 = ◌ ̄

4.12.2. cv81 – Variants of ◌͛ (U+035B, combining zigzag above)

1=◌̄, 2=◌̄, 3=◌̄. Positioning of the zigzag can differ from that of other combining

marks, e.g. b͛ f͛ d͛. If calt “Contextual Alternates” is enabled (as it is by default in

most apps), variant forms of cv81[2] will be used with several letters, e.g. d͛ f͛ k͛.

Enable case for forms that harmonize with capitals (A͛ B͛ C͛ D͛), smcp for forms

that harmonize with small caps (e͛ f͛ g͛ h͛).

4.12.3. ss10 – Character Entities for Combining Marks

Instead of cv84 for representing non-Unicode combining marks, some users may

wish to use XML/HTML-style entities. When ss10 is turned on (preferably

for the entire text), these entities appear as combining marks and are correctly

positioned over base characters. For example, the letter e followed by & _eogo;

will yield e&_eogo;. An advantage of entities is that they are (unlike the PUA code points

or the indexes of cv84) mnemonic and thus easy to use. A disadvantage is that

searches cannot ignore combining marks entered by this method as they can

using the cv84 method. (Every method of entering non-Unicode combining

JUNICODE 37

marks has disadvantages: users should weigh these, choose a method, and stick

with it.)

If you use any of these entities in a work intended for print publication, you

should call your publisher’s attention to them, since they will likely have their

own method of representing them.

& _ansc; → ◌̄

& _an; → ◌̄

& _ar; → ◌̄

& _arsc; → ◌̄

&_ as; → ◌&_as;

& _bsc; → ◌̄

& _dsc; → ◌̄

& _eogo; → ◌̄

& _emac; → ◌̄

&_ idotl; → ◌̄

&_ j; → ◌̄

&_ jdotl; → ◌̄

&_ ksc; → ◌̄

&_ munc; → ◌̄

&_ oogo; → ◌̄

&_ oslash; → ◌̄

&_ omac; → ◌̄

&_ orr; → ◌̄

&_ oru; → ◌̄

&_ q; → ◌̄

&_ ru; → ◌̄

&_ sa; → ◌&_sa;

&_ tsc; → ◌̄

&_ y; → ◌̄

&_ thorn; → ◌̄

For another function of Stylistic Set 10, see Chapter 6, Entering Characters with

Tags.

4.12.4. ss20 – Low Diacritics

The MUFI recommendation includes a number of precomposed characters with

base letters b, h, k, þ, ꝺ and ð and a number of combining marks. Instead of

being positioned above ascender height as usual (e.g. hͣ), the MUFI glyphs have

the marks positioned above the x-height (e.g. h)ͣ. Using the MUFI code points

for these precomposed glyphs can interfere with searching and drastically reduce

accessibility. Users of Junicode should instead use a sequence of base character +

combining mark, and apply ss20 to the two glyphs. Variant shapes of d and ð

that accommodate the combining mark will be substituted for the normal base

characters (but this is not necessary for the other base characters). Examples: bͦ

d ᷦ h̄ kͤ þͭ ð.ᷢ These marks are affected by this feature:

◌ͣ (U+0363)

◌ᷓ (U+1DD3)

◌ͤ (U+0364)

◌ ̄ (U+0304/cv84[15])

◌ᷞ (U+1DDE)

◌ ̄ (U+0304/cv84[19]).

◌ͦ (U+0366)

◌ͬ (U+036C)

◌ᷢ (U+1DE2)

◌ᷣ (U+1DE3)

◌ᷣ (U+1DE3/cv87[1])

◌ͭ (U+036D)

◌ᫎ (U+1ACE)

◌ͧ (U+0367)

◌ͮ (U+036E)

◌ᷦ (U+1DE6)

◌͛ (U+035B)

38 FEATURE REFERENCE

ss20 is intended for use only with the diacritics and base characters listed here;

other base+diacritic combinations may be disrupted by the feature. You should

therefore apply it only to relevant base+diacritic pairs (e.g. via a style in InDesign

or a word processor or a command in LuaTEX).

4.12.5. cv85 – Variant of ◌ᷓ (U+1DD3, combining open a)

1=◌ᷓ.

4.12.6. cv86 – Variant of ◌ᷘ (U+1DD8, combining insular d)

1=◌ᷘ.

4.12.7. cv87 – Variant of ◌ᷣ (U+1DE3, combining r rotunda)

1=◌ᷣ.

4.12.8. cv88 – Variant of combining dieresis (U+0308)

1=◌̄. This also affects precomposed characters on which this variant dieresis may

occur, e.g. ä.

4.12.9. cv89 – Variant of ◌̅ (U+0305, combining overline)

1=◌̄.

4.12.10. cv90 – Variants of ◌͞◌ (U+035E, combining double macron)

1=◌͞◌, 2=◌͞◌.

4.12.11. cv92 – Variant of combining breve below (U+032E)

1=◌◌̮◌. Position the mark after the middle of three glyphs, and apply cv92 to

both the mark and (at least) the middle glyph. This mark is not available via

cv84.

JUNICODE 39

4.13. Currency and Weights

4.13.1. cv93 – Variants of ¤ (U+0044, generic currency sign)

1 = ¤

2 = ¤

3 = ¤

4 = ¤

5 = ¤

6 = ¤

7 = ¤

8 = ¤

9 = ¤

10 = ¤

11 = ¤

12 = ¤

13 = ¤

14 = ¤

15 = ¤

16 = ¤

17 = ¤

18 = ¤

19=¤

20 = ¤

21 = ¤

22 = ¤

23 = ¤

24 = ¤

25 = ¤

26 = ¤

27 = ¤

All of MUFI’s currency and weight symbols (those that do not have Unicode

code points) are gathered here, but some are also variants of other currency signs

(see below).

4.13.2. cv94 – Variant of ℔ (U+2114)

1=¤. Same as MUFI U+F2EB (French Libra sign).

4.13.3. cv95 – Variants of £ (U+00A3, British pound sign)

1=¤, 2=¤, 3=¤, 4=¤, 5=¤, 6=¤. Same as MUFI U+F2EA, F2EB, F2EC, F2ED, F2EE,

F2EF, pound signs from various locales.

4.13.4. cv96 – Variant of ₰ (U+20B0, German penny sign)

1=¤. Same as MUFI U+F2F5.

4.13.5. cv97 – Variant of ƒ (U+0192, florin)

1=¤. Same as MUFI U+F2E8.

4.13.6. cv98 – Variant of ℥ (U+2125, Ounce sign)

1=¤. Same as MUFI U+F2FD, Script ounce sign.

40 FEATURE REFERENCE

4.14. Ornaments

4.14.1. ornm – Ornaments

Produces ornaments (fleurons) in either of two ways: as an indexed variant of

the bullet character (U+2022) or as variants of a-z, A-C:

a, 1 a

b, 2 b

c, 3 c

d, 4 d

e, 5 e

f, 6 f

g, 7 g

h, 8 h

i, 9 i

j, 10 j

k, 11 k

l, 12 l

m, 13 m

n, 14 n

o, 15 o

p, 16 p

q, 17 q

r, 18 r

s, 19 s

t, 20 t

u, 21 u

v, 22 v

w, 23 w

x, 24 x

y, 25

z, 26 z

A, 27 A

B, 28 B

C, 29 C

The method with letters of the alphabet is easier, but the method with bullets

will produce a more satisfactory result when text is displayed in an environment

where Junicode is not available or ornm is not implemented.

4.14.2. Lady Junicode

Lady Junicode cannot be produced by an OpenType feature, believing that it

would be vulgar to make herself so accessible. She has, indeed, commanded that

the author of this document not publish her code point, located in one of the

more private corners of the Private Use Area. She has, however, given permission

to publish her miniature:

If you encounter her while adventuring in her domains, greet her respectfully,

and she will welcome you graciously.

JUNICODE 41

4.15. Required Features

Required features, which provide some of the font’s most basic functional-

ity—ligatures, support for other features, kerning, and more—include ccmp
(Glyph Composition/Decomposition), calt (Contextual Alternates), liga (Stan-

dard Ligatures), loca (Localized Forms), rlig (Required Ligatures), kern (Hor-

izontal Kerning), and mark/mkmk (Mark Positioning). In MS Word these features

have to be explicitly enabled on the Advanced tab of the Font dialog (Ctrl-D or

Cmd-D: enable Kerning, Standard Ligatures, and Contextual Alternates, and

the others will be enabled automatically), but in most other applications they

are enabled by default.

5. Non-MUFI Code Points

Characters in Junicode that do not have Unicode code points should be accessed

via OpenType features whenever possible. MUFI/PUA code points should be

used only in applications that do not support OpenType, or that support it only

partially (for example, MS Word). For certain characters that lack either Unicode

or MUFI code points, code points in the Supplementary Private Use Area-A

(plane 15) are available.

U+F0000 Ą

U+F0001

U+F0002

U+F0003

U+F0004

U+F0005

U+F0006

U+F0007

U+F0008

U+F0009

U+F000A

U+F000B

U+F000C

U+F000D

U+F000E

U+F000F

U+F0010

U+F0011

U+F0012

U+F0013

U+F0014

U+F0015

U+F0016

U+F0017

U+F0018

U+F0019

U+F001A

U+F001B

U+F001C

U+F001D

U+F001E

U+F001F

U+F0020

U+F0021

U+F0030

U+F0031

U+F0032

U+F0033

U+F0034

U+F0035

U+F0036

U+F0037

U+F0038

U+F0039

U+F003A

U+F003B

U+F003C

U+F003D

U+F003E

U+F003F

U+F0040

U+F0041

U+F0042

U+F0043

U+F0044

U+F0045

U+F0046

U+F0047

U+F0048

U+F0049

U+F004A

U+F004B

U+F004C

U+F004D

U+F004E

U+F004F

U+F0050

U+F0051

U+F0052

U+F0053

U+F0054

U+F0055

42

JUNICODE 43

U+F0056

U+F0057

U+F0058

U+F0059

U+F005A

U+F005B

U+F005C

U+F005D

6. Entering characters with tags

Any character in Junicode that can be rendered using a Character Variant (cvNN)

feature can also be rendered using a sequence consisting of a base character and

two Unicode tags—that is, characters from the Unicode tag range. This range

duplicates the ASCII character set (which consists, roughly, of things that can

be typed on a U.S. English keyboard), but the characters it contains are normally

invisible. They are used as modifiers for a preceding character (in other fonts,

usually a flag symbol). Junicode contains a partial collection of tag characters:

&__a; U+E0061 &__b; U+E0062 &__c; U+E0063

&__d; U+E0064 &__e; U+E0065 &__f; U+E0066

&__g; U+E0067 &__h; U+E0068 &__i; U+E0069

&__j; U+E006A &__k; U+E006B &__l; U+E006C

&__m; U+E006D &__n; U+E006E &__o; U+E006F

&__p; U+E0070 &__q; U+E0071 &__r; U+E0072

&__s; U+E0073 &__t; U+E0074 &__u; U+E0075

&__v; U+E0076 &__w; U+E0077 &__x; U+E0078

&__y; U+E0079 &__z; U+E007A &__0; U+E0030

&__1; U+E0031 &__2; U+E0032 &__3; U+E0033

&__4; U+E0034 &__5; U+E0035 &__6; U+E0036

&__7; U+E0037 &__8; U+E0038 &__9; U+E0039

When creating web pages or XML documents, you can enter these using char-

acter entities (e.g. 󠁳 for &__s;); along the same lines, you can use the

44

JUNICODE 45

\char command (e.g. \char"0E0073) when composing TeX documents. But

such entities and commands are not generally available in editors and word

processors, and entering the tags themselves can be tricky because they are not

only invisible, but also ignored by the application (the cursor skips over them).

Instead of attempting to enter the code points for tags directly, use character

entities consisting of an ampersand, two underscores, the tag character, and

a semicolon. These will yield visible tags. For example, typing &__6; will yield

the tag &__6;.

To use the tag method of entering characters, first type the base character

from the table below, then the two tags. For example, to make a square C (C&__s;&__q;),

enter one of these sequences:

Web page: C󠁳󠁱

TeX: C\char"0E0073\char"0E0071

Word processor: C&__s ;&__q ; (appears as C&__s;&__q;)

Then apply the OpenType feature ss10 (Stylistic Set 10) to the passage or

passages containing the tags or, if tags occur throughout, to the whole document.

The tags will disappear and the preceding characters (the base characters) will

be transformed.

For variants of the combining macron (U+0304) and perhaps other combining

marks, it will often be necessary to place the COMBINING GRAPhEME JOINER

(U+034F) between the macron and the base character that precedes it. This will

prevent normalization (the shaping engine changing sequences of character

+ combining mark into precomposed characters), which interferes with the

operation of tags.

Most of the two-tag sequences documented here are designed to be

mnemonic. For example, the sequence in the example above stands for “square.”

However, two-tag sequences are not capable of describing characters in any

detail, and in some cases, where the number of variants is large (especially for

period, combining macron, and currency), the tags are not descriptive at all, but

rather an index (the same numbers used in the corresponding cvNN features).

These tags are compatible with Junicode’s other OpenType features, includ-

ing the cvNN features, and can be mixed with them. They will not interfere with

46 ENTERING ChARACTERS WITh TAGS

the placement of combining marks, which can come either before or after the

tag-pair. Use a cvNN feature when a variant should appear throughout the text,

repeatedly in a particular passage (for example, a block quotation), or in a style.

A tag sequence may be preferable for isolated forms or to override an OpenType

feature.

In the list below, records for each character are color-coded as follows:

green MUFI characters with PUA code points

yellow Other characters with PUA code points

blue Characters with Unicode code points

red Characters without code points

Tags or cvNN features are usually to be preferred to PUA code points, which

should be used only where accessibility and searchability are not issues (mainly

in printed texts). Unicode code points can safely be entered directly. Junicode

makes a few of them accessible via cvNN features and tags because it may often be

desirable to associate these characters with their bases rather than the Unicode

code points. For example, the insular T (T&__i;&__n;) is sure to be searchable as T if

entered with the sequence T&__i;&__n;, but if entered as U+A786 it may or may not

be searchable as T, depending on the application.

Characters without code points can only be entered via tags or OpenType

features.

Base Sequence Result Description / Code point

period .&__0;&__1; . Distinctio / F1F8

period .&__0;&__2; . Comma positura / F1E2

period .&__0;&__3; . High comma positura / F1E3

period .&__0;&__4; . Punctus versus / F1EA

period .&__0;&__5; . Punctus with comma positura / F1E4

JUNICODE 47

Base Sequence Result Description / Code point

period .&__0;&__6; . Colon with middle comma positura / F1E5

period .&__0;&__7; . Two dots over comma positura / F1F2

period .&__0;&__8; . Three dots over comma positura / F1E6

period .&__0;&__9; . Punctus elevatus diagonal stroke / F1F0

period .&__1;&__0; . Punctus elevatus with high back / F1FA

period .&__1;&__1; . Punctus elevatus with onset / F1FB

period .&__1;&__2; . Punctus flexus / F1F5

period .&__2;&__2; ⹎ Dotless punctus elevatus / TBA

period .&__2;&__3; ⹎ Punctus elevatus with s-shaped top / TBA

period .&__2;&__4; ⹎ Dotless punctus elevatus with s-shaped top / TBA

period .&__2;&__5; ⹎ Enlarged punctus elevatus / TBA

period .&__2;&__6; ⹎ Enlarged dotless punctus elevatus / TBA

period .&__2;&__7; ⹎ Enlarged punctus elevatus with s-shaped top / TBA

period .&__2;&__8; ⹎ Enlarged dotless punctus elevatus with s-shaped top / TBA

period .&__1;&__3; . Punctus exclamativus / F1E7

period .&__1;&__4; . Punctus interrogativus / F160

period .&__1;&__5; . Punctus interrogativus horizontal tilde / F1E8

period .&__1;&__6; . Punctus interrogativus lemniskate / F1F1

period .&__1;&__7; . Wavy line / F1F9

period .&__1;&__8; . Signe de renvoi / F1EC

period .&__1;&__9; ⹊ Virgula suspensiva / F1F4

period .&__2;&__0; . Short virgula / F1F7

U+0304 ◌̄&__0;&__1; ◌̄ Combining curly bar above / F1CC

48 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

U+0304 ◌̄&__0;&__2; ◌̄ Combining diagonal macron

U+0304 ◌̄&__0;&__3; ◌̄ Combining bar above with dot / F1C0

U+0304 ◌̄&__0;&__4; ◌̄ Combining angular zigzag / F1C7

U+0304 ◌̄&__0;&__5; ◌̄ Combining curly zigzag / F1C8

U+0304 ◌̄&__0;&__6; ◌̄ Combining vertical tilde / 033E

U+0304 ◌̄&__0;&__7; ◌̄ Combining ligature an / F036

U+0304 ◌̄&__0;&__8; ◌̄ Combining ligature aN / F03A

U+0304 ◌̄&__0;&__9; ◌̄ Combining ligature ar / F038

U+0304 ◌̄&__1;&__0; ◌̄ Combining ligature aR / F130

U+0304 ◌̄&__1;&__1; ◌̄ Combining B / F013

U+0304 ◌̄&__1;&__2; ◌̄ Combining D / F016

U+0304 ◌̄&__1;&__3; ◌̄ Combining e with macron / F136

U+0304 ◌̄&__1;&__4; ◌̄ Combining e with ogonek / F135

U+0304 ◌̄&__1;&__5; ◌̄ Combining dotless i / F02F

U+0304 ◌̄&__1;&__6; ◌̄ Combining j / F030

U+0304 ◌̄&__1;&__7; ◌̄ Combining dotless j / F031

U+0304 ◌̄&__1;&__8; ◌̄ Combining K / F01C

U+0304 ◌̄&__1;&__9; ◌̄ Combining uncial m / F01F

U+0304 ◌̄&__2;&__0; ◌̄ Combining o with macron / F13F

U+0304 ◌̄&__2;&__1; ◌̄ Combining o with ogonek / F13E

U+0304 ◌̄&__2;&__2; ◌̄ Combining o with stroke / F032

U+0304 ◌̄&__2;&__3; ◌̄ Combining q / F033

U+0304 ◌̄&__2;&__4; ◌̄ Combining rum abbreviation / F040

JUNICODE 49

Base Sequence Result Description / Code point

U+0304 ◌̄&__2;&__5; ◌̄ Combining T / F02A

U+0304 ◌̄&__2;&__6; ◌̄ Combining y / F02B

U+0304 ◌̄&__2;&__7; ◌̄ Combining thorn / F03D

U+0304 ◌̄&__2;&__8; ◌̄ Combining ligature o r rotunda / F03E

U+0304 ◌̄&__2;&__9; ◌̄ Combining ligature letter o rum / F03F

U+0304 ◌̄&__3;&__0; ◌̄ Combining diagonal dieresis

U+0304 ◌̄&__3;&__1; ◌̄ Combining dot and acute

U+0304 ◌̄&__3;&__2; ◌̄ Combining ogonek and dot

U+0304 ◌̄&__3;&__3; ◌̄ Combining narrow macron

U+0304 ◌̄&__3;&__4; ◌̄ Combining macron with serifs

U+0304 ◌̄&__3;&__5; ◌̄ Combining et sign

U+0304 ◌̄&__3;&__6; ◌&_sa; Combining spiritus asper sign

U+0304 ◌̄&__3;&__7; ◌&_as; Attached subscript a

A A&__i;&__n; A Insular A / F201

A A&__s;&__q; A Square A / F13A

A A&__s;&__d; A A with diagonal stroke / E8DA

A A&__e;&__n; A Enlarged minuscule A

a a&__i;&__n; a Insular a / F200

a a&__u;&__n; a Uncial a / F214

a a&__o;&__p; a Open a / F202

a a&__c;&__l; a Closed a / F203

a a&__n;&__e; a Neckless a / F215

a a&__o;&__c; a oc-shaped a / TBD

50 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

a a&__h;&__c; a high caroline a / TBD

a a&__s;&__q; a Square a / TBD

a a&__p;&__o; a Pointed a / TBD

a a&__e;&__n; a Enlarged minuscule a / EEE0

a a&__o;&__n; a Enlarged oc-shaped a / TBD

B B&__e;&__n; B Enlarged minuscule B

B B&__i;&__n; B Insular B

b b&__e;&__n; b Enlarged minuscule b / EEE1

C C&__s;&__q; C Square C / F106

C C&__e;&__n; C Enlarged minuscule C

c c&__c;&__u; c c with curl / F198

c c&__e;&__n; c Enlarged minuscule c / EEE2

D D&__i;&__e; D Enlarged minuscule insular D

D D&__i;&__n; D Insular D / A779

D D&__e;&__n; D Enlarged minuscule D

d d&__i;&__1; ꝺ Insular d default form / A77A

d d&__i;&__2; d Insular d second form

d d&__i;&__3; d Insular d third form

d d&__i;&__e; d Enlarged minuscule insular d / EEE4

d d&__c;&__u; d d with curl / F193

d d&__e;&__n; d Enlarged minuscule d / EEE3

E E&__u;&__c; E Uncial closed E / F217

E E&__u;&__n; E Uncial E / F10A

JUNICODE 51

Base Sequence Result Description / Code point

E E&__e;&__n; E Insular E

E E&__e;&__n; E Enlarged minuscule E

e e&__u;&__n; e Uncial e / F218

e e&__b;&__a; e e with bar / F219

e e&__b;&__h; e High e with bar / F21A

e e&__e;&__n; e Enlarged minuscule e / EEE6

F F&__i;&__n; F Insular F / A77B

F F&__e;&__n; F Enlarged minuscule F / EEE7

F F&__i;&__e; F Enlarged minuscule insular F

f f&__i;&__n; ꝼ Insular f / A77C

f f&__i;&__s; f Insular f with split top / TBD

f f&__i;&__1; f Insular f with dotted hooks / F21C

f f&__i;&__2; f Semi-closed insular f / EBD5

f f&__i;&__3; f Closed insular f / EBD6

f f&__i;&__e; f Enlarged minuscule insular f / EEFF

f f&__n;&__a; f Narrow f / F000B

f f&__c;&__u; f f with curl / F194

f f&__e;&__n; f Enlarged minuscule f / EEE7

G G&__i;&__n; G Insular G / A77D

G G&__o;&__r; G Ormulum G with bar / A7D0

G G&__s;&__q; G Square G / F10E

G G&__e;&__n; G Enlarged minuscule G

g g&__i;&__n; ᵹ Insular g / 1D79

52 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

g g&__o;&__r; ꟑ Ormulum g with bar / A7D1

g g&__s;&__c; g Script g / 0261

g g&__c;&__u; g g with curl / F196

g g&__e;&__n; g Enlarged minuscule g / EEE8

g g&__n;&__e; g Enlarged insular g / TBD

g g&__c;&__1; g Closed g with separate loops / F21D

g g&__c;&__2; g Closed g with large lower loop / F21E

g g&__c;&__3; g Closed g with small lower loop / F21F

H H&__u;&__n; H Uncial H / F110

H H&__e;&__n; H Enlarged minuscule H

H H&__h;&__l; H H with high left stem / TBD

h h&__d;&__e; h h with descender / F23A

h h&__a;&__u; h h-shaped autem abbreviation / E8A3

h h&__e;&__n; h Enlarged minuscule h / EEE9

h h&__e;&__d; h Enlarged minuscule h with descender

h h&__c;&__a; h Caroline a

h h&__e;&__c; h Enlarged Caroline h / TBD

h h&__d;&__b; h Caroline h with right descender and bar / TBD

h h&__c;&__u; h h with curl / TBD

I I&__d;&__a; I I with dot above / 0130

I I&__d;&__e; I I with descender / A7FE

I I&__e;&__n; I Enlarged minuscule I

I I&__u;&__s; I I without serif / TBD

JUNICODE 53

Base Sequence Result Description / Code point

i i&__d;&__l; i Dotless i / 0131

i i&__l;&__o; i Long I / F220

i i&__b;&__d; i i with double bar / E8A1

i i&__f;&__1; ii i final form (when i precedes)

i i&__f;&__2; i i final form

i i&__e;&__n; i Enlarged minuscule i / EEEA

J J&__d;&__a; J J with dot above / E15C

J J&__e;&__n; J Enlarged minuscule J

j j&__d;&__l; j Dotless j / 0237

j j&__s;&__d; j j with double bar / E8A2

j j&__d;&__a; j j with dot accent / F000D

j j&__e;&__n; j Enlarged minuscule j / EEEB

K K&__e;&__n; K Enlarged minuscule K

k k&__u;&__n; k Uncial k / F208

k k&__u;&__d; k Uncial k with descender / TBD

k k&__c;&__1; k Closed k, one / F221

k k&__c;&__2; k Closed k, two / F209

k k&__c;&__u; k k with curl / F195

k k&__e;&__n; k Enlarged minuscule k / EEEC

L L&__e;&__n; L Enlarged minuscule L

l l&__d;&__e; l Descending l / F222

l l&__e;&__n; l Enlarged minuscule l / EEED

l l&__s;&__h; ꝉ l with high stroke / A749

54 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

l l&__s;&__f; l l with high stroke ending with flourish / F000F

l l&__i;&__n; l Insular l

U+019A ƚ&__c;&__u; ƚ barred l with curl

M M&__u;&__d; M Uncial M with descender / F224

M M&__u;&__n; M Uncial M / F11A

M M&__a;&__1; M Epigraphic M / A7FF

M M&__e;&__n; M Enlarged minuscule M

m m&__u;&__d; m Uncial m with descender / F23D

m m&__u;&__n; m Uncial m / F23C

m m&__d;&__e; m m with descender / F223

m m&__e;&__n; m Enlarged minuscule m / EEEE

N N&__d;&__e; N N with descender / F229

N N&__e;&__n; N Enlarged minuscule n / EEEF

N N&__l;&__d; N N with low bar and descender / TBD

n n&__d;&__e; n n with descender / F228

n n&__b;&__a; n n with bar / E7B2

n n&__c;&__u; n n with curl / F19A

n n&__e;&__n; n Enlarged minuscule n / EEEF

n n&__s;&__d; n Small cap n with descender / F22A

n n&__a;&__s; n n with attached subscript a

n n&__w;&__p; n Wide petite cap n with descender / TBD

n n&__e;&__m; n enim abbreviation / TBD

O O&__e;&__n; O Enlarged minuscule O

JUNICODE 55

Base Sequence Result Description / Code point

o o&__e;&__n; o Enlarged minuscule o / EEF0

P P&__r;&__e; P Reversed P / A7FC

P P&__e;&__n; P Enlarged minuscule P

p p&__e;&__n; p Enlarged minuscule p / EEF1

p p&__a;&__1; p Alternate p for Ormulum

Q Q&__s;&__m; Q Q with stem / F22C

Q Q&__l;&__1; Q◌ Q with long tail, one

Q Q&__l;&__2; Q◌◌ Q with long tail, two

Q Q&__e;&__n; Q Enlarged minuscule Q

q q&__s;&__d; q q with diagonal stroke / E8B4

q q&__e;&__n; q Enlarged minuscule q / EEF2

R R&__i;&__n; R Insular R / A783

R R&__r;&__o; R R rotunda / A75A

R R&__e;&__n; R Enlarged minuscule R

r r&__i;&__n; r Insular r / A782

r r&__r;&__o; r r rotunda / A75B

r r&__c;&__u; r r with curl / F19B

r r&__c;&__2; r r with alternate curl / TBA

r r&__e;&__n; r Enlarged minuscule r / EEF3

S S&__i;&__n; S Insular S / A784

S S&__s;&__g; S Sigmoid S / A7D8

S S&__a;&__d; S Ascending and descending S / TBD

S S&__r;&__z; S Reverse Z-shaped S / TBD

56 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

S S&__e;&__n; S Enlarged minuscule S

S S&__s;&__d; S S with diagonal stroke (Sanctus abbrev)

S S&__m;&__s; S Middle Scots S

S S&__h;&__o; S Hollow S

s s&__i;&__n; s Insular s / A785

s s&__i;&__s; s Insular s with split top / TBD

s s&__s;&__g; s Sigmoid s / A7D9

s s&__a;&__d; s Ascending and descending s / TBD

s s&__l;&__o; ſ Long s / 017F

s s&__e;&__n; s Enlarged minuscule s / EEF4

s s&__l;&__d; s Long s with descender / F127

s s&__l;&__f; s Long s with flourish / E8B7

s s&__l;&__s; s Long s with diagonal stroke / E8B8

s s&__l;&__l; s Long s with loop

s s&__s;&__t; s Long s with short tail / TBD

s s&__m;&__s; s Middle Scots s

s s&__c;&__u; s s with curl

s s&__h;&__k; s s with hook

T T&__i;&__n; T Insular T / A786

T T&__e;&__n; T Enlarged minuscule T

t t&__i;&__n; t Insular t / A787

t t&__c;&__u; t t with curl / F199

t t&__e;&__n; t Enlarged minuscule t / EEF5

JUNICODE 57

Base Sequence Result Description / Code point

t t&__c;&__d; t Cap-like t with descender / TBD

t t&__a;&__p; t t with approach / TBD

U U&__e;&__n; U Enlarged minuscule U

U U&__l;&__c; U Lowercase-shaped U

U U&__l;&__d; U Lowercase-shaped U with descender / TBD

u u&__e;&__n; u Enlarged minuscule u / EEF7

V V&__e;&__n; V Enlarged minuscule V

v v&__s;&__1; v Enlarged minuscule v / EEF8

v v&__s;&__d; v v with diagonal stroke / E8BA

v v&__b;&__a; v v with bar / E74E

v v&__e;&__n; v Enlarged minuscule v / EEF8

v v&__s;&__2; v v with two bars / E8BC

v v&__e;&__l; v Enlarged minuscule v with low point / TBD

W W&__e;&__n; W Enlarged minuscule W

W W&__a;&__n; W W Anglicana

w w&__e;&__n; w Enlarged minuscule w / EEF9

w w&__a;&__n; w w Anglicana

ƿ ƿ&__e;&__n; ƿ Enlarged wynn / TBD

X X&__e;&__n; X Enlarged minuscule X

x x&__e;&__n; x Enlarged minuscule x / EEFA

x x&__l;&__o; x x with long left leg / AB57

x x&__s;&__1; x x with diagonal stroke (upper left) / E8BD

x x&__s;&__2; x x with diagonal stroke (lower right) / E8BE

58 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

x x&__s;&__3; x x with two diagonal strokes (lower right) / E8CE

Y Y&__s;&__d; Y Y with diagonal stroke (Hymnus abbrev) / E8DB

Y Y&__e;&__n; Y Enlarged minuscule Y

y y&__r;&__m; y y with main right stroke / F233

y y&__b;&__a; y y with bar / E77B

y y&__e;&__n; y Enlarged minuscule y / EEFB

y y&__c;&__u; y Curved y / TBD

y y&__s;&__c; y Short curved y / TBD

Z Z&__v;&__i; Z Visigothic Z / A762

Z Z&__e;&__n; Z Enlarged minuscule Z

z z&__v;&__i; z Visigothic z / A763

z z&__m;&__g; z Middle High German z / F238

z z&__e;&__n; z Enlarged minuscule z / EEFC

U+0104 Ą&__s;&__1; Ą A with short diagonal stroke / F0000

U+0104 Ą&__s;&__2; Ą A with long diagonal stroke / F001E

U+0104 Ą&__f;&__l; Ą A with flourish / F0002

U+0105 ą&__s;&__1; ą a with short diagonal stroke / F0001

U+0105 ą&__s;&__2; ą a with long diagonal stroke / F001F

U+A733 ꜳ&__u;&__n; ꜳ Uncial aa

U+A733 ꜳ&__c;&__l; ꜳ Closed aa / EFA0

U+A733 ꜳ&__e;&__n; ꜳ Enlarged minuscule aa / EFDF

U+00C6 Æ&__n;&__e; Æ Neckless Æ / EFAE

U+00C6 Æ&__e;&__n; Æ Enlarged minuscule Æ

JUNICODE 59

Base Sequence Result Description / Code point

U+00E6 æ&__n;&__e; æ Neckless æ / EFA1

U+00E6 æ&__e;&__n; æ Enlarged minuscule æ / EAF1

U+00E6 æ&__o;&__p; æ Open æ / F204

U+00E6 æ&__s;&__q; æ æ with square a / TBD

U+00E6 æ&__r;&__o; æ æ with round a / TBD

U+00E6 æ&__r;&__o; æ Uncial æ

U+A734 Ꜵ&__n;&__e; Ꜵ Neckless AO / F205

U+A734 Ꜵ&__e;&__1; Ꜵ Enlarged minuscule AO

U+A734 Ꜵ&__e;&__2; Ꜵ Enlarged minuscule AO with smaller O

U+A735 ꜵ&__e;&__1; ꜵ Enlarged minuscule ao / EFDE

U+A735 ꜵ&__e;&__2; ꜵ Enlarged minuscule ao with smaller o / EAF2

U+A735 ꜵ&__n;&__e; ꜵ Neckless ao / F206

U+A735 ꜵ&__u;&__n; ꜵ Uncial ao

U+A739 ꜹ&__n;&__e; ꜹ Neckless av / EFA2

U+0111 đ&__f;&__l; đ d with flourish / F0007

U+00F0 ð&__e;&__a; ð Enlarged eth alternate form / TBD

U+0118 Ę&__c;&__e; Ę E with centered ogonek

U+0118 Ę&__s;&__t; Ę E with diagonal stroke / F0009

U+0118 Ę̇́&__c;&__e; Ę̇́ E with dot, acute, and centered ogonek

U+0118 Ę̇́&__s;&__t; Ę̇́ E with dot, acute, and diagonal stroke

U+0119 ę&__c;&__e; ę e with centered ogonek

U+0119 ę&__s;&__t; ę e with diagonal stroke / F000A

U+0119 ę̇́&__c;&__e; ę̇́ e with dot, acute, and centered ogonek

60 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

U+0119 ę̇́&__s;&__t; ę̇́ e with dot, acute, and diagonal stroke

&_eogo; ◌&_eogo;&__c;&__e; ◌&_eogo; Combining e with centered ogonek

&_eogo; ◌&_eogo;&__s;&__t; ◌&_eogo; Combining e with diagonal stroke

U+021C Ȝ&__f;&__l; Ȝ Yogh with flat top

U+021C Ȝ&__i;&__n; Ȝ Yogh with insular shape

U+021D ȝ&__f;&__l; ȝ yogh with flat top

U+021D ȝ&__i;&__n; ȝ yogh with insular shape

U+014A Ŋ&__l;&__h; Ŋ Rounded Ŋ with low hook

U+014A Ŋ&__b;&__h; Ŋ Rounded Ŋ with baseline hook

U+A7C1 &__a;&__1;1 ꟁ Old Polish o with broken slash / F0011

U+A7C1 &__a;&__2; ꟁ Old Polish o with short slash / F0012

U+A7C1 &__a;&__3; ꟁ Old Polish o with lower left slash / F0013

U+A7C1 &__a;&__4; ꟁ Old Polish o with upper right slash / F0014

U+1E8F ẏ&__s;&__d; ẏ Short curved y with dot / TBD

U+A765 ꝥ&__a;&__1; ꝥ thorn with stroke with different slant / F149

U+A765/ENG ꝥ&__a;&__1; ꝥ thorn with stroke with different slant

U+0241 ʔ&__a;&__1; ʔ Alternate glottal stop / F001B

U+204A ⁊&__a;&__1; ⁊ Tironian et sign later form / F001D

U+204A ⁊&__a;&__2; ⁊ Tironian et sign later form with bar

U+204A ⁊&__a;&__3; ⁊ Tironian et sign without descender / TBD

U+204A ⁊&__a;&__4; ⁊ Tironian et sign with bar / TBD

U+204A ⁊&__a;&__5; ⁊ Tironian et sign round form / TBD

U+204A ⁊&__a;&__6; ⁊ Generic Tironian et sign / TBD

JUNICODE 61

Base Sequence Result Description / Code point

U+204A ⁊&__a;&__7; ⁊ Generic Tironian et sign with bar / TBD

U+204A ⁊&__a;&__8; ⁊ Generic Tironian et sign with curl / TBD

U+204A ⁊&__a;&__9; ⁊ Generic Tironian et sign with curl and bar / TBD

U+2E52 ⹒&__a;&__1; ⹒ Tironian Et sign later form / F001C

U+2E52 ⹒&__a;&__2; ⹒ Tironian Et sign later form with bar

U+2E52 ⹒&__a;&__3; ⹒ Tironian Et sign without descender / TBD

U+2E52 ⹒&__a;&__4; ⹒ Tironian Et sign with bar / TBD

U+2E52 ⹒&__a;&__5; ⹒ Tironian Et sign round form / TBD

U+2E52 ⹒&__a;&__6; ⹒ Generic Tironian Et sign / TBD

U+2E52 ⹒&__a;&__7; ⹒ Generic Tironian Et sign with bar / TBD

U+2E52 ⹒&__a;&__8; ⹒ Generic Tironian Et sign with curl / TBD

U+2E52 ⹒&__a;&__9; ⹒ Generic Tironian Et sign with curl and bar / TBD

U+2E52 ⹍&__s;&__s; ⹒ s-shaped paragraphus / TBD

U+2E52 ⹍&__c;&__c; ⹒ cc-shaped paragraphus / TBD

U+00AF ¯&__0;&__1; ¯ Spacing zigzag

U+035E ◌͞&__a;&__1;◌ ◌͞◌ Double macron with serifs

U+035E ◌͞&__a;&__2;◌ ◌͞◌ Shorter double macron with serifs

U+00B7 ·&__h;&__i; . Distinctio / F1F8

U+00B7 ·&__s;&__r; · Slightly raised period / TBD

comma ,&__a;&__1; . Comma positura / F1E2

comma ,&__a;&__2; . High comma positura / F1E3

semicolon ;&__a;&__1; . Punctus versus / F1EA

semicolon ;&__a;&__2; . Punctus with comma positura / F1E4

62 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

semicolon ;&__a;&__3; . Colon with middle comma positura / F1E5

semicolon ;&__a;&__4; . Two dots over comma positura / F1F2

semicolon ;&__a;&__5; . Three dots over comma positura / F1E6

semicolon ;&__a;&__6; ; Punctus with double comma positura / TBD

semicolon ;&__a;&__7; ; Hexagonal positura / TBD

semicolon ;&__a;&__8; ; Positura with two dots and tick / TBD

U+2E4E ⹎&__a;&__1; . Punctus elevatus diagonal stroke / F1F0

U+2E4E ⹎&__a;&__2; . Punctus elevatus with high back / F1FA

U+2E4E ⹎&__a;&__3; . Punctus elevatus with onset / F1FB

U+2E4E ⹎&__a;&__4; . Punctus flexus / F1F5

U+2E4E ⹎&__a;&__5; ⹎ Dotless punctus elevatus / TBA

U+2E4E ⹎&__a;&__6; ⹎ Punctus elevatus with s-shaped top / TBA

U+2E4E ⹎&__a;&__7; ⹎ Dotless punctus elevatus with s-shaped top / TBA

U+2E4E ⹎&__a;&__8; ⹎ Enlarged punctus elevatus / TBA

U+2E4E ⹎&__a;&__9; ⹎ Enlarged dotless punctus elevatus / F1F5

U+2E4E ⹎&__b;&__1; ⹎ Enlarged punctus elevatus with s-shaped top / F1F5

U+2E4E ⹎&__b;&__2; ⹎ Enlarged dotless punctus elevatus with s-shaped top / F1F5

exclam !&__a;&__1; . Punctus exlamativus / F1E7

question ?&__a;&__1; . Punctus interrogativus / F160

question ?&__a;&__2; . Punctus interrogativus horizontal tilde / F1E8

question ?&__a;&__3; . Punctus interrogativus lemniskate / F1F1

asciitilde ~&__a;&__1; . Wavy line / F1F9

asciitilde ~&__s;&__t; ~ Wavy line / F1F9

JUNICODE 63

Base Sequence Result Description / Code point

asterisk *&__a;&__1; . Signe de renvoi / F1EC

asterisk *&__a;&__2; * Aldine asterisk with long limb / F1EC

asterisk *&__a;&__3; * Five-spoked Aldine asterisk / F1EC

asterisk *&__a;&__4; * Eight-spoked Aldine asterisk / F1EC

asterisk *&__a;&__5; * Dotted Aldine asterisk / F1EC

slash /&__a;&__1; ⹊ Virgula suspensiva / F1F4

slash /&__a;&__2; . Short virgula / F1F7

hyphen -&__c;&__u; - Hyphen with curl / F1F7

U+A75D ꝝ&__a;&__1; ꝝ Alternate rum abbreviation / F0016

U+035B ◌͛&__a;&__n; ◌̄ Combining angular zigzag / F1C7

U+035B ◌͛&__c;&__u; ◌̄ Combining curly zigzag / F1C8

U+035B ◌͛&__v;&__e; ◌̄ Combining vertical zigzag (tilde) / 033E

U+A770 ꝰ&__a;&__1; ꝰ Baseline spacing us abbreviation / F1A6

U+A770 ꝰ&__a;&__2; ꝰ Uppercase us abbreviation / F1A5

U+A76B ꝫ&__a;&__1; ꝫ Semicolon-like et abbreviation / F1AC

U+A76B ꝫ&__a;&__2; ꝫ Subscript et abbreviation

U+A76B ꝫ&__a;&__3; ꝫ Colon-like et abbreviation / TBD

U+A76B ꝫ&__a;&__4; ꝫ et abbreviation crossing preceding q / TBD

U+1DD3 ◌ᷓ&__a;&__1; ◌ᷓ Combining flattened a with macron / F1C1

U+1DD8 ◌ᷘ&__a;&__1; ◌ᷘ Alternate combining insular d / F0005

U+1DE3 ◌ᷣ&__a;&__1; ◌ᷣ Combining ur abbreviation lemniskate / F1C2

U+00E4 ä&__d;&__i; ä a with diagonal dieresis / E8D5

U+00F6 ö&__d;&__i; ö o with diagonal dieresis / E8D7

64 ENTERING ChARACTERS WITh TAGS

Base Sequence Result Description / Code point

U+0308 ◌̈&__d;&__i; ◌̄ Combining diagonal dieresis

U+0305 ◌̅&__a;&__1; ◌̄ Combining horizontal stroke with dot / F1C0

U+032E ◌◌̮&__a;&__1;◌ ◌◌̮◌ Breve below three letters / F1FC

U+00A4 ¤&__0;&__1; ¤ Latin as libralis sign / F2E0

U+00A4 ¤&__0;&__2; ¤ Latin small capital letter x with bar / F2E2

U+00A4 ¤&__0;&__3; ¤ Latin small capital letter y with bar / F2E3

U+00A4 ¤&__0;&__4; ¤ Latin small capital letter d with slash / F2E4

U+00A4 ¤&__0;&__5; ¤ Pharmaceutical dram sign / F2E6

U+00A4 ¤&__0;&__6; ¤ Ecu sign / F2E7

U+00A4 ¤&__0;&__7; ¤ Floren sign with loop / F2E8

U+00A4 ¤&__0;&__8; ¤ Groschen sign / F2E9

U+00A4 ¤&__0;&__9; ¤ Helbing sign / F2FB

U+00A4 ¤&__1;&__0; ¤ Krone sign / F2FA

U+00A4 ¤&__1;&__1; ¤ Dutch libra sign / F2EA

U+00A4 ¤&__1;&__2; ¤ French libra sign / F2EB

U+00A4 ¤&__1;&__3; ¤ Italian libra sign / F2EC

U+00A4 ¤&__1;&__4; ¤ Flemish libra sign / F2ED

U+00A4 ¤&__1;&__5; ¤ Lira nuova sign / F2EE

U+00A4 ¤&__1;&__6; ¤ Lira sterlina sign / F2EF

U+00A4 ¤&__1;&__7; ¤ Old mark sign / F2F0

U+00A4 ¤&__1;&__8; ¤ Old flourish mark sign / F2F1

U+00A4 ¤&__1;&__9; ¤ Marked small letter m sign / F2F2

U+00A4 ¤&__2;&__0; ¤ Flourished small letter m sign / F2F3

JUNICODE 65

Base Sequence Result Description / Code point

U+00A4 ¤&__2;&__1; ¤ Pharmaceutical obelus sign / F2F4

U+00A4 ¤&__2;&__2; ¤ Penning sign / F2F5

U+00A4 ¤&__2;&__3; ¤ Old Reichstaler sign / F2F6

U+00A4 ¤&__2;&__4; ¤ German schilling sign / F2F7

U+00A4 ¤&__2;&__5; ¤ German script schilling sign / F2F8

U+00A4 ¤&__2;&__6; ¤ Scudi sign / F2F9

U+00A4 ¤&__2;&__7; ¤ Script ounce sign / F2FD

U+2114 ℔&__a;&__1; ¤ French libra sign / F2EB

U+00A3 £&__a;&__1; ¤ Dutch libra sign / F2EA

U+00A3 £&__a;&__2; ¤ French libra sign / F2EB

U+00A3 £&__a;&__3; ¤ Italian libra sign / F2EC

U+00A3 £&__a;&__4; ¤ Flemish libra sign / F2ED

U+00A3 £&__a;&__5; ¤ Lira nuova sign / F2EE

U+00A3 £&__a;&__6; ¤ Lira sterlina sign / F2EF

U+20B1 ₰&__a;&__1; ¤ Penning sign / F2F5

U+0192 ƒ&__a;&__1; ¤ Floren sign with loop / F2E8

U+2125 ℥&__a;&__1; ¤ Script ounce sign / F2FD

1 Junicode entities (like &__a ;) following U+A7C1 (Old Polish o) are not properly displayed

or resolved for technical reasons related to U+A7C1 having very recently been added to Unicode.

However, tags entered directly (as here) or via HTML/XML entity references and TeX

commands will still work, and the Junicode entity will work once applications are updated

with the latest additions to the Unicode standard.

7. Transcribing records

This chapter provides guidance for persons transcribing records (laws and other

public documents) in the style of Charles Trice Martin’s The Record Interpreter,

Statutes of the Realm, and similar guides and editions. Unlike most editions of

early texts, these retain (or recommend retaining) the capitalization, punctuation,

and abbreviations of their manuscript sources.

7.1. A preliminary note on transcription

Here are a few observations, based on a long career as a scholarly editor of

medieval and eighteenth-century texts.

Before embarking on the task of transcribing an old document, ask yourself

what value you want to add to the document as it already exists, because different

kinds of transcription add different kinds of value. The kind of transcription that

adds the least is that which aims at the exact visual reproduction of a document.

A transcript is not a facsimile: it needs to do something that a photograph can’t

do.

Converting a document from visual image to Unicode-encoded text adds a

good bit of value all by itself, but only if done with due regard for the semantics of

Unicode characters. Every Unicode character has a meaning, and that meaning

is a help to readers. Using the wrong character is a hinderance to readers, even

it if looks right.

For example, in transcribing a Middle English text, you may decide that

the Unicode ezh (ʒ, U+0292) looks more like the yogh in your source than the

Unicode yogh (ȝ, U+021D) and therefore decide to use it for yogh. But the ezh

is not a yogh! It is a character in the International Phonetic Alphabet and a

66

JUNICODE 67

letter in the alphabets of several minor languages—but not a letter in the Middle

English language. If you use it where the yogh is called for, it will make your text

less accessible and less searchable. Indexing, concordance and bibliographical

programs may be misled by it; screen readers will misinterpret it. To solve one

problem (that of visual representation), you may well have introduced a host of

far more serious problems.

Fortunately, Junicode offers a solution for this particular problem. The Open-

Type feature cv63 substitutes for the yogh a character that looks like the ezh but

is semantically a yogh and therefore will be handled correctly by applications.

But neither Junicode nor any other font can solve every problem of this kind.

Sometimes you will have to call to mind the important principle stated above: A

transcript is not a facsimile. It is much more important that it should have the

same meaning as the original than that it should have the same look.

This chapter concerns the transcription of texts in Latin (and to some

extent, other archaic languages, e.g. Old and Middle English, Old French). It is

long-standing custom, when transcribing certain kinds of documents, to retain

marks of abbreviation—for example, the ꝓpͣ you may find in a manuscript or

printed edition representing the word propterea. This is okay—and Junicode can

help with the task. But when dealing with the abbreviations, punctuation, and

diacritics of an old text it is more important than ever that you use semantically

correct characters for your transcription, as this will help readers who already

face significant challenges.

For example, the abbreviation ꝓpͣ as printed here consists of an underlying

sequence of Unicode characters: ꝓ (U+A753, the common abbreviation for pro) +

p + ◌ͣ (U+0363, the combining small a). The OpenType feature hlig (Historical

Ligatures) has been applied to this sequence, changing its appearance but not its

underlying value. That underlying value is intelligible to computer applications

in the sense that they can recognize each character.

This doesn’t mean, though, that computer programs can correctly interpret

ꝓpͣ as propterea. Many (probably most) Latin abbreviations are ambiguous: this

one, for example, can mean propterea or propria. Some abbreviations (most

notoriously ◌͛ U+035B) can mean many things, depending on context. It takes a

human being with a knowledge of Latin to interpret them correctly.

So another way you can add value in your transcript is by interpreting ab-

68 TRANSCRIBING RECORDS

breviations like ꝓpͣ and supplying expansions of them. Fortunately, systems for

representing texts often offer ways to handle this task gracefully. For example,

in a TEI (Text Encoding Initiative) text, you would use this construction:

<choice>
<abbr rend="hlig">ꝓpͣ</abbr>
<expan>propterea</expan>

</choice>

This kind of structure can be approximated in HTML, with supporting CSS

and scripting to allow readers to choose between a “diplomatic” version, with

unexpanded abbreviations, and a “reading” version, with expanded abbreviations

and perhaps other amenities, such as modern punctuation and capitalization.

There are other ways to add value to a transcript—for example, by correcting

errors, annotating the content, or writing textual notes. Each of these operations

takes your transcript farther from the facsimile and closer to the edition.

7.2. Common combining marks

A combining mark is a character that combines with another character (called

the base) to form a character with accent (e.g. é) or an abbreviation (e.g. p͛ for

prae). Unicode and the Medieval Unicode Font Initiative (MUFI) offer code

points for many precomposed combinations of base + combining mark, but it

is also possible to place any mark over any base character by entering first the

base and then the combining mark. It is also possible to place a combining mark

over another combining mark. For example, to produce q̄ͣ, enter this sequence: q

(U+0071) + U+0363 + U+0304.

Junicode 2 contains many variants of combining marks: for example the

curly zigzag ◌̄ is a variant of Unicode’s angular zigzag ◌͛ (U+035B), produced by

applying the OpenType feature cv81[2] to both the base character and the

combining mark. Sometimes the combination of base + combining mark +

OpenType feature will not produce the desired effect. When this happens, place

U+034F (a special invisible combining mark, included in Unicode for exactly this

purpose) between the base and the (visible) mark.

a. For a straight stroke over any letter, use the COMBINING MACRON (U+0304):

JUNICODE 69

ōnis omnis; om̄is omnis; dāpna dampna; damp̄a dampna.

The combining macron can also be applied above superscripts and combining

marks. Apply the OpenType feature cv84[33] for a narrower macron:

antiqua ̄ antiquam; q̄ͣ quam.

For the superscript a, use the OpenType feature sups (see r. below).

b. For a straight stroke through a tall letter, use the COMBINING ShORT STROkE

OvERlAy (U+0335): f̵ d̵ l̵. But Unicode also has precomposed versions of d, l and

other characters with stroke, e.g. đ (U+0111), ƚ (U+019A).

c. For ~ above any character, use the COMBINING TIlDE (U+0303):

ã ac, apud; ã alias.

dñs dominus; carĩna carmina; fcĩs factis.

põita posita.

d. For ~ through a vertical stroke, use the TIlDE OvERlAy (U+0334): l̴ d̴ (U+0303

would be positioned above the letter, e.g. l,̃ d̃). For the ligatures l̴l̴, b̴b̴, and f̴f̴,

type the sequence for l̴, etc. twice.

e. For the tilde positioned above two letters, use COMBINING DOUBlE TIlDE

(U+0360) between the letters. It is automatically repositioned to clear tall char-

acters: c͠o t͠o d͠o o͠l. The same is true of DOUBlE BREvE (U+035D) c͝o d͝o, DOUBlE

MACRON (U+035E) c͞o d͞o, DOUBlE INvERTED BREvE (U+0361) c͡o d͡o, and DOUBlE

CIRCUMFlEx (U+1DCD) c᷍o d᷍o.

f. The figure used to represent er (and other similar combinations) is a com-

mon medieval abbreviation which takes many forms. The semantically correct

Unicode character is the COMBINING zIGzAG (◌͛, U+035B), but the best match in

Junicode 2 for the figure as it appears in the Record Interpreter and the Statutes is

a gothic variant of this, which MUFI encodes as U+F1C8 (the curly form zigzag).

However, because for technical reasons many applications will not position the

MUFI character correctly over the base, that code point should be avoided. The

best way to access this variant is to apply cv81[2] to U+035B, as here:

deb͛e debere; int ̄ inter; f͛ rū ferrum; gn̄o generatio; p̄; prae; serūe servire.

70 TRANSCRIBING RECORDS

The curly form of the combining zigzag may be attached to any letter, and it

may change shape depending on the letter it is attached to (including caps, for

which use the case feature, and small caps: A͛B͛cd͛͛).

g. All letters a–z, and several others too, have combining forms. You may

access these via their code points, when they are standard Unicode, via the

cv84 feature, or via Junicode’s special entity references. For details, see 4.10.3,

Character Entities for Combining Marks.

qͦ quo; qͥ qui; quatt̄ quattuor.

7.3. Spacing characters

h. The symbol for is, es and a number of other abbreviations is the IS-SIGN

(U+A76D):

forꝭ foris; om̄ꝭ omnes; ꝯtꝭ competentes; infꝭ infortunium.

This character will sometimes ligature with the preceding letter. The italic

version differs from the roman stylistically (forꝭ om̄ꝭ ꝯtꝭ infꝭ), but it will be

intelligible to informed readers.

i. There are two characters for -us in Unicode: SPACING US U+A770 (do not confuse

this with CON U+A76F) and COMBINING US U+1DD2. The Record Interpreter and

Statutes appear to use only the spacing character:

ip̃iꝰ ipsius; ūsꝰ uersus; pꝰtea postea; pꝰ post.

j. The three-like sign is the ET SIGN (◌ꝫ, U+A76B, also used for us in the Latin

ending -ibus). Do not use the numeral three (3) or the Middle English yogh (ȝ,

U+021D):

quibꝫ quibus; licꝫ licet; sꝫ sed.

k. For -rum the Unicode RUM ROTUNDA (U+A75D) is like the one in MUFI/Juni-

code. The one in the Record Interpreter and Statutes is a late stylized version of

this. Use U+A75D and apply OpenType feature cv80 to obtain the correct shape:

aĩaꝝ animarum; coꝝpere corrumpere; beatoꝝ beatorum.

JUNICODE 71

l. For cum, con, etc. use SMAll lETTER CON (U+A76F):

ꝯputus computus; ꝯa contra; ꝯnouit cognouit.

m. For per (or sometimes par and other similar sequences), use P WITh STROkE

U+A751:

ꝑsōa persona; ꝯꝑet comparet.

n. For pro, use P WITh FlOURISh U+A753:

ꝓceres proceres.

o. For prae, præ, pre, there is no separate character; use a variant of the zIGzAG

(f. above) with p:

p̄sẽs praesens.

p. For q with stroke through the descender, there are two Unicode points:

U+A757 for a straight stroke, and U+A759 for a diagonal stroke (the Record Inter-

preter appears to use only the former, and neither is listed among the Statutes

abbreviations):

ꝗ quod; ꝗd quid; ꝗbꝫ quibus.

q. For quae, que, use q followed by ET (U+A76B) with or without hlig: qꝫ qꝫ. For

the semicolon-like ET sign (qꝫ), use cv83[1]; for the subscripted version (which

can also form a ligature via hlig), use cv83[2]: qꝫ qꝫ.

r. All of the letters a-z are available in superscript form. Access with the sups

OpenType feature:

qos quos; cilo circulo; capi capituli.

The basic Latin letters a–z have anchors that allow you to position combining

marks over them (see a. above)

s. Tironian ET sign ⁊ U+204A, cap ⹒ U+2E52. With cv69[1] ⁊⹒; with cv69[2] ⁊⹒.

t. For est, use ∻ U+223B hOMOThETIC. Use of a mathematical sign for this purpose

is not ideal, but Unicode offers no better solution.

72 TRANSCRIBING RECORDS

u. For tz (Old French), use ƶ U+01B6 z WITh STROkE.

v. For an abbreviation for Rex, use ℞ U+211E or ℟ U+211F.

w. At least one edition uses a spacing version of the COMBINING zIGzAG (f. above).

Neither Unicode nor MUFI has a matching character: with Junicode, apply cv67
to the spacing MACRON (U+00AF): ◌¯.

7.4. Other formatting

x. For underdotted text, use Stylistic Set 7, Underdotted. For letters that lack

an underdotted form, use U+0323 COMBINING DOT BElOW.

7.5. On the web

Because Junicode is a very large font, web pages should use a subsetted version

to speed loading (see Chapter 9, Junicode on the Web, for instructions). The

variable version of the font is better for web use than the static fonts, since one

variable font file can do the work of many static font files.

All major web browsers (Firefox, Chrome, Safari, Edge) are capable of access-

ing all of Junicode’s characters via OpenType features, use of which promotes

accessibility and searchability. When building a web page, study which features

will be needed and write them into the appropriate element or class definition of

the page’s CSS style sheet. For example, if you use the curly form of the zigzag

(U+035B) anywhere, you are likely to want it everywhere, and so it should be

included in the CSS styling for the <body> element:

body {
font-family: Junicode;
font-feature-settings: "cv81" 2;

}

But the hlig feature, if applied to the whole text, will produce many unwanted

effects, so it should be included in a class definition to be used in a

applied just to the target sequence:

JUNICODE 73

.que {
font-feature-settings: "hlig" on;

}
filioqꝫ

The illustrations here use the low-level CSS font-feature-settings property. There

are higher-level properties for some OpenType features, but as these are not

(yet) universally supported by browsers, and some implementations are buggy,

it is best to stick with font-feature-settings for now.

For the purposes addressed in this document, the font-feature-settings for

the <body> element should probably be as follows:

font-feature-settings: 'cv69' 2, 'cv80' 1, 'cv81' 2;

And the following classes should be defined:

.super {
font-feature-settings: 'sups' on, 'cv84' 39;

}

.que {
font-feature-settings: 'hlig' on;

}

.deleted {
font-feature-settings: 'ss07' on;

}

8. The Enlarge Axis

The character recommendation of the Medieval Unicode Font Initiative (MUFI)

includes a class of characters called “Enlarged Minuscules,” for representing

characters that are lowercase in shape but intermediate between lowercase and

uppercase in size: these are often used to begin sentences in medieval manuscripts.

MUFI encodes these characters in the Private Use Area, posing accessibility

and searchability problems, as explained in the introduction to the “Feature

Reference” chapter of this manual.

Junicode provides a solution to these problems via the OpenType feature

Stylistic Set 6 (ss06, “Enlarged minuscules”). This feature also works in Junicode

VF, the variable version of Junicode, which in addition offers a far more flexible

way of representing enlarged minuscules—the Enlarge axis.

An “axis” is an aspect of a font that can be varied along a numerical range.

A family of traditional fonts like Times New Roman has a weight axis with a

font file on either end: Regular and Bold. Other font families have more weights

along this axis: for example, Light, Medium, ExtraBold. Most variable fonts also

have a weight axis, but all weights are contained in a single file, and users are not

restricted to just a few weights, but can select any weight between the extremes.

Because almost every font family has at least two weights, Weight is the

most familiar axis. But several other axes are frequently found in both variable

fonts and extended font families. Junicode has Weight and Width axes (Width

varying from 75 Condensed to 125 Expanded, with 100 Regular in the middle),

and the variable font also has an Enlarge axis, which can vary the size of many

lowercase letters from that of the font’s capitals to that of the lowercase letters:

Just as the size of these sentence-initial letters varies widely in manuscripts, so

it can vary on web pages and in print (though few applications for producing

74

JUNICODE 75

printed documents currently support variable fonts). Notice that the letters are

not simply scaled: the proportions change and the weight remains consistent

(a lowercase letter scaled up would look too heavy, but a letter scaled via the

Enlarged axis will have its original weight at the lower end of the axis and the

same weight as a capital at the top).

The Enlarge axis runs from 0 to 100. You can choose any number in that

range: to match the effect of ss06 precisely, choose 32. To ensure that the xheight

of all letters matches, choose 47 or less: above that value, the xheight of letters

like e increases at a higher rate than that of letters like b.

To use the axis in a web page, declare a CSS class specifying the value for

the axis. For example, the second of the examples in the figure above has the

axis set to 75:

.SentenceInitial {
font-variation-settings: "wght" 400, "wdth" 100, "ENLA" 75;

}

In the text, enclose the first letter of a sentence in a with the class

“SentenceInitial” (the entity is for insular d):

ꝺñs

The result will be an abbreviation that begins with an “Enlarged Minuscule”

insular d, precisely matching the look of the second example in the figure above.

These lowercase letters are affected by the Enlarge axis:1

a → a

a → a

ꜳ → ꜳ

ꜳ → ꜳ

æ → æ

æ → æ

ꜵ → ꜵ

ꜵ → ꜵ

ꜵ → ꜵ

au → ꜷ

ꜹ → ꜹ

ꜻ → ꜻ

ay → ꜽ

b → b

c → c

d → d

đ → đ

ꝺ → ꝺ

ð → ð

ð → ð

e → e

ȩ → ȩ

ę → ę

ę → ę

1 Note that all composite characters (e.g. á, ü) based on these are also affected, so that the

actual number of affected characters is much greater than shown here.

76 ThE ENlARGE AxIS

ę → ę

f → f

f → f

ꝼ → ꝼ

g → g

ꟑ → ꟑ

ᵹ → ᵹ

h → h

h → h

h → h

ħ → ħ

h → h

i → i

ı → ı

j → j

ȷ → ȷ

k → k

l → l

ł → ł

m → m

n → n

o → o

ɵ → ɵ

ơ → ơ

ƣ → ƣ

ꝋ → ꝋ

oo →ꝏ

ǫ → ǫ

ø → ø

œ → œ

p → p

ꝓ → ꝓ

ꝕ → ꝕ

ꝑ → ꝑ

q → q

ꝙ → ꝙ

r → r

r → ꞃ

r → ꝛ

ꝝ → ꝝ

s → s

s → ꞅ

t → t

t → ꞇ

u → u

v → v

w → w

ƿ → ƿ

x → x

y → y

z → z

þ → þ

þ → þ

ꝥ → ꝥ

ꝥ → ꝥ

ꝥ → ꝥ

ꝥ → ꝥ

ꝧ → ꝧ

9. Junicode on the Web

If you are using Junicode on a web page, you should prefer the variable fonts

(those with “VF” in the family name and filename) to the static fonts. One

variable font file can do the work of many traditional font files. For example, the

Test of High-Level CSS Properties web page displays Junicode in regular, bold

and semicondensed styles. It used to be that your user would have to download

three font files, one for each style, but one variable font will display all three.

But you may be thinking, That font is big! It’s true: even the compressed

webfont (.woff2) is nearly a megabyte in size—enough to seriously slow down

the loading of a web page.

To solve this problem, you’ll need to subset the font—that is, produce a copy

that contains only what you need. The subsetted font that downloads with the

property test web page is approximately 275k in size—almost thirty percent of

the size of the full webfont. It’s still a pretty big download, but that’s because the

page displays a lot of the font’s features. If I were displaying, say, a diplomatic

transcript of a Latin text, the font would be much smaller.

So the first section of this chapter will talk about how to subset the Junicode

font.

9.1. Subsetting Junicode

First the legalities. It is perfectly all right to create a modified version of Junicode

via subsetting, compress it into a webfont (almost certainly in woff2 format), and

host it on your web server. This is because “Junicode” is not a “Reserved Font

Name” (which complicates web use of many fonts licensed under the Open Font

License). If you are nevertheless nervous about the legal requirements of the

77

https://psb1558.github.io/Junicode-font/Junicode-2-feature-test.html

78 JUNICODE ON ThE WEB

Open Font License, you can change the font name to something arbitrary with

the - -obfuscate-names option of the pyftsubset program, and you can embed

the Open Font License, or a link to it, in your CSS. These steps should settle

any ambiguity about whether you are in compliance with the license.

Generating a subsetted version of Junicode should be one of the last tasks

you perform before deploying your web page(s). Until then, it is recommended

that you work with the unmodified font. After subsetting, review your pages

thoroughly to make sure everything is displayed properly. If you have forgotten to

include a glyph in your subsetted font, you will see little boxes where characters

should be or, perhaps, the correct characters displayed in the wrong typeface. If

you have omitted features, you will see default instead of transformed characters.

There are many subsetting programs, some online and very easy to use.

But for maximum control (and thus the smallest fonts), you should choose

pyftsubset, a part of the fontTools library, which runs under Python 3.7 or

higher. This is a command-line tool which takes a long list of arguments; you

should create a shell script to run it.

Here is the script used to create the subsetted font for the property test web

page mentioned above:

#!/bin/zsh

pyftsubset JunicodeVF-Roman.ttf \

--flavor=woff2 --output-file=JunicodeVFsubset.woff2 \

--recommended-glyphs \

--text="jq" --text-file=Junicode-2-feature-test.html \

--layout-features+=liga,ss01,ss02,ss03,ss04,ss05,ss06,ss07,ss08,\

ss10,ss12,ss13,ss14,ss15,ss16,ss17,ss18,ss19,ss20,cv01,cv02,cv05,\

cv06,cv07,cv08,cv09,cv10,dlig,hlig,onum,pnum,pcap,smcp,c2sc,subs,\

sups,zero \

--layout-features-=rlig

For those unfamiliar with shell scripts, the first line specifies the shell the script

is to run under (in this case the default shell for Mac OS, but bash is another

possible choice), and the backslashes mean that the command continues on the

next line. The rest of the file is a list of arguments passed to pyftsubset. Let’s

walk through them.

https://github.com/fonttools/fonttools

JUNICODE 79

First after the program name comes the name of the unsubsetted, uncom-

pressed font file. After that, the --flavor argument tells the program that you

want a webfont in woff2 format, and --output is the name of the font file you

want the program to save.

Having taken care of this preliminary business, we tell pyftsubset what we

want the font to contain.

--recommended-glyphs includes a few characters that every font should have,

according to the OpenType specification—though in fact modern browsers don’t

care. It’s best, however, to conform to the specification, since it’s impossible to

say with absolute certainty that no program will ever reject the font because of

the absence of these few characters.

--text-file is the name of a file to treat as a list of characters that must be

included in the font. In this case I have simply used the html file for the web

page for this purpose. If your site contains multiple web pages, your job will be

more complicated. You must make sure the text file contains all the characters

used on the site—either that or supplement the text file with a --text argument

(which here adds two lowercase letters that don’t appear in the web page—just

in case). The text file will contain only encoded characters—you don’t have to

worry here about unencoded characters produced by OpenType features.

--layout-features+ tells the program which OpenType features you want

to retain in the font. All others, except for the Required Features, are discarded.

All of the characters referenced in these features will also be included in the

output file, as long as those characters are variants of characters in your text file.

For example, the smcp (Small Caps) feature has many more small caps than there

are letters of the alphabet, but most of them are not included in the subsetted

font. The program’s parsimony with characters keeps the font file as small as

possible. Note that some features are included automatically: ccmp, locl, calt,

liga, rlig, kern, mark, and mkmk.

--layout-features- tells the program which OpenType features to omit.

Normally, rlig (Required Ligtures) is automatically included in fonts by pyft-

subset, but as it has no relevance to this web page, it can be omitted.

These are the most useful arguments, but there are many more. Type

pyftsubset --help for a complete list. Once you have written your script, run

it (in Mac OS or Linux you need to make the file executable by typing chmod +x

80 JUNICODE ON ThE WEB

mysubsetscript on the command line).

Before you put your subsetted font to work, check it carefully in a program

like FontGoggles, which lets you preview the font and test all its OpenType

features. If you find errors, revise your script and run it again.

9.2. Junicode and CSS/HTML

This section assumes a basic knowledge of HTML (Hypertext Markup Lan-

guage, used to construct web pages) and CSS (Cascading Style Sheets, used to

format them). If you want to learn about these subjects, the number of good

books and online tutorials is so great that it makes no sense to try to list them.

Just make sure that the instructional materials you choose are of recent vintage,

because the relevant standards are always changing.

In the CSS for your web page, the @font-face at-rule for a variable font is a

little different from the one for a static font in that the range of possible values

for each axis can be declared:

@font-face {

font-family: "Junicode VF";

src: url("./webfiles/JunicodeVFsubset.woff2");

font-weight: 300 700;

font-stretch: 75% 125%;

font-style: normal;

}

These ranges are not strictly necessary, but they will prevent your supplying

invalid values for font-weight and font-stretch (that is, width) in other CSS

rules.

Once you have declared the font, you can invoke it in setting up classes. For

example:

body {

font-family: "Junicode VF";

font-size: 28px;

font-weight: normal; /* that is, 400 */

https://github.com/justvanrossum/fontgoggles

JUNICODE 81

font-stretch: 112.5%; /* that is, semiexpanded */

}

h1 {

font-family: "Junicode VF";

font-size: 125%;

font-weight: 600; /* that is, semibold */

font-stretch: 112.5%; /* that is, semiexpanded */

}

.annotation {

font-size: 90%;

font-weight: 300; /* that is, light */

font-stretch: 87.5%; /* that is, semicondensed */

}

These classes should be tested in all browsers. If any fail to display text properly,

you can use font-variation-settings instead of the high-level font-weight
and font-stretch:

body {

font-family: "Junicode VF";

font-size: 28px;

font-variation-settings: "wght" 400, "wdth" 112.5;

}

h1 {

font-family: "Junicode VF";

font-size: 125%;

font-variation-settings: "wght" 600, "wdth" 112.5;

}

.annotation {

font-size: 90%;

font-variation-settings: "wght" 300, "wdth" 87.5;

}

To accommodate older browsers, you should make a selection of Junicode static

fonts, subset them, and include them in your CSS. For example, if you need

normal and bold weights of Junicode roman, your @font-face at-rule may look

like this:

82 JUNICODE ON ThE WEB

@font-face {

font-family: "Junicode VF";

src: url("./webfiles/JunicodeVFsubset.woff2");

font-weight: 300 700;

font-stretch: 75% 125%;

font-style: normal;

}

@font-face {

font-family: "Junicode";

src: url("./webfiles/Junicode-Regular.woff2");

font-weight: 400;

font-style: normal;

}

@font-face {

font-family: "Junicode";

src: url("./webfiles/Junicode-Bold.woff2");

font-weight: 700;

font-style: normal;

}

Now use @supports in your CSS rules to determine which font gets downloaded:

body {

font-family: "Junicode", serif;

}

@supports (font-variation-settings: normal) {

body {

font-family: "Junicode VF", serif;

}

}

b {

font-weight: 700;

}

@supports (font-variation-settings: "wght" 700) {

b {

font-variation-settings: "wght" 700;

}

JUNICODE 83

}

The variable version of Junicode will be downloaded only if the browser supports

it, and the static version will be downloaded only if needed.

10. Junicode and TEX

10.1. Loading the packages

There are packages for both Junicode (the static font) and Junicode VF (the vari-

able font) in CTAN, the TEX repository, and also in the TEX Live distribution

(run tlmgr to get them). Both static and variable versions have a convenient

script for loading and managing the font: use \usepackage{junicode} for the

static font and \usepackage{junicodevf} for the variable font (which requires

LuaTEX). These commands accept several options commonly used in font pack-

ages:

light The weight of the type for the main text is light instead of regular.

medium The weight of the type for the main text is medium, somewhat heavier

than regular.

semibold The weight of bold type is somewhat lighter than the usual bold. This

may be a good choice if you have selected the light option.

condensed The width of the type is narrow. Note that in the static font, bold

type cannot be condensed: when this option is selected, any bold type in

the text will have normal width.

semicondensed The width of the type is wider than condensed but narrower

than the default. In the static font, bold type cannot be semicondensed.

expanded The width of the type is about 125%. Note that in the static font, light

type cannot be expanded: using both the light and the expanded options

will produce an error.

84

JUNICODE 85

semiexpanded The width of the type is wider than the default but narrower

than expanded. In the static font, light type cannot be semiexpanded.

proportional Numbers in the document will be proportionally spaced. This is

the default.

tabular Numbers will be tabular (or monospaced).

oldstyle Numbers will be old-style, harmonizing with lowercase letters.

lining Numbers will be lining, harmonizing with uppercase letters.

With the variable font, terms like “light” and “semibold” (and, for that matter,

“regular”) do not denote a fixed shape the way they do with the static font, but

rather a range of weights and widths that vary with the point size. You can see

these variations if we scale a line of footnote text and a line of header text to the

same \large size:

Here is some sample text for footnotes (about 8pt).

Here is some sample text for headers (18pt or larger).

The glyphs for footnote text are heavier and wider than those for headers,

recalling the way punchcutters in the era of metal type often designed small

sizes to be relatively thicker and wider than main text or titles. This promoted

legibility at small sizes and also evenness of color on pages with diverse text

blocks.

Junicode VF provides vastly more flexibility than static Junicode, starting

with two options that go with the weight and width options listed above:

weightadjustment Adjusts the weight of the type by adding this number. For

example, if you choose medium for your document (weight averaging

about 500) and bold (weight around 700), and also include the option

weightadjustment=-25, then the weights of medium and bold text will be

lightened by 25 (to 475 and 675).

widthadjustment Adjusts the width of the type by adding this number. For

example, if you choose semicondensed for your document (width averaging

87.5), and you also include the option widthadjustment=5, then the average

width will be 92.5, between semicondensed and regular.

86 JUNICODE AND TEx

10.2. Advanced Options

If you are using the variable font and the basic options listed above don’t yield

the results you want, the options listed in this section allow you to choose

from an effectively infinite number of styles. Do this by supplying custom axis

coordinates for one or more of the four basic styles of the main text (Regular,

Italic, Bold, BoldItalic) via package options called SizeFeatures. For example, here

are the SizeFeatures for this document:

\usepackage[
MainRegularSizeFeatures={

{size=8.6,wght=550,wdth=120},
{size=10.99,wght=475,wdth=115},
{size=21.59,wght=400,wdth=112.5},
{size=21.59,wght=351,wdth=100}

},
MainItalicSizeFeatures={

{size=8.6,wght=550,wdth=118},
{size=10.99,wght=475,wdth=114},
{size=21.59,wght=450,wdth=111},
{size=21.59,wght=372,wdth=98}

},
MainBoldSizeFeatures={

{size=8.6,wght=700,wdth=120},
{size=10.99,wght=700,wdth=115},
{size=21.59,wght=650,wdth=112.5},
{size=21.59,wght=600,wdth=100}

},
MainBoldItalicSizeFeatures={

{size=8.6,wght=700,wdth=118},
{size=10.99,wght=700,wdth=114},
{size=21.59,wght=650,wdth=111},
{size=21.59,wght=600,wdth=98}

}
]{junicodevf}

These options consist of lists of associative arrays, each prescribing axis coordi-

nates for a range of sizes. In these arrays, the size key is mandatory: any array

without one is ignored. The arrays should be in order of point size. The first

JUNICODE 87

array prescribes axis coordinates for all sizes up to size, the last array for all

sizes greater than size, and any intermediate arrays a range from the previous to

the current size.1 So the ranges covered in each list above are -8.6, 8.6-10.99,

10.99-21.59, and 21.59-.2

The keys other than size are the four-letter tags for the font’s axes: wght
(Weight), wdth (Width), and ENLA (Enlarge).3 When a key is omitted, the default

value for that axis is used. It is up to the user to make sure the values given for

each axis are valid—the package does no checking (though fontspecwill do a good

bit of checking for you). When SizeFeatures are given in this way, they override

any other options that set or change axis coordinates (e.g. weightadjustment).
The SizeFeatures options can only set axis coordinates; with the Features options

you can set OpenType features for the main text or for the four main styles

individually.

For example, if you want your document to use the conventions observed by

early English typesetters for the distribution of s and s, load the package this

way:

\usepackage[MainFeatures={
Language=English,
StylisticSet=8

}]{junicodevf}

If you want to use these conventions only for text in the regular style, use Main-
RegularFeatures instead of MainFeatures. For the other styles, use MainItalicFeatures,
MainBoldFeatures, and MainBoldItalicFeatures. All of the features you pass via these

options must be valid for fontspec: in fact, they are passed straight through to

fontspec.

1 If you want only one size array, make size improbably low (e.g. 5) and place a comma

after the closing brace of the array.
2 Any modification of the default text size (e.g. in the \documentclass command) can affect

the size definitions in these arrays, with the result that (for example) 10 no longer means

exactly “ten points.” You may have to experiment to get these numbers right.
3 By convention, tags for axes defined in the OpenType standard are lowercase; custom

axes are uppercase. Junicode’s ENLA is a custom axis.

88 JUNICODE AND TEx

10.3. Selecting Alternate Styles

In addition to the document’s main font, you can choose from up to fifty pre-

defined styles—thirty-eight if you are using the static font (in the list below,

styles available only to variable font users are red). The commands for shifting

to these styles are as follows (of the italic styles, only the base “jItalic” is listed;

append “Italic” to any of the others, except “jRegular”):

\jRegular

\jItalic

\jCond

\jSmCond

\jSmExp

\jExp

\jLight

\jCondLight

\jSmCondLight

\jSmExpLight

\jExpLight

\jMedium

\jCondMedium

\jSmCondMedium

\jSmExpMedium

\jExpMedium

\jSmbold

\jCondSmbold

\jSmCondSmbold

\jSmExpSmbold

\jExpSmbold

\jBold

\jCondBold

\jSmCondBold

\jSmExpBold

\jExpBold

These commands will be self-explanatory if you bear in mind Junicode’s abbrevi-

ations for style names: Cond=Condensed, Exp=Expanded, Sm=Semi.4 Use them

to shift temporarily to a style other than that of the main text. For example, to

shift to the Condensed Light style for a short phrase, use this code:

{\jCondLight a short phrase}.

The result: a short phrase.

To add features to any of these styles (variable font only), use the style name

(without the prefixed “j” and with Features appended) as a package option. To

change the size features for the style, do the same, but with SizeFeatures instead

of Features appended:

\usepackage[
CondLightFeatures={

Language=English,

4 The purpose of these abbreviations is to keep font names under the character-limit

imposed by some systems.

JUNICODE 89

StylisticSet=2
},
CondLightSizeFeatures={{size=5,wght=325,wdth=80},}

]{junicodevf}

This will shift text in the Condensed Light style from default to insular letter-

shapes and slightly increase the weight and width of all glyphs in that style.

Here the SizeFeatures section is very simple (as in the package file itself), but you

can have as many size ranges as you want, just as you can for the main font.

10.4. The Enlarge Axis

The variable package defines four different styles for Junicode VF’s Enlarge axis,

in four sizes:

Not Enlarged abc abc

\EnlargedOne abc abc

\EnlargedTwo abc abc

\EnlargedThree abc abc

\EnlargedFour abc abc

You can produce an italic version of the enlarged minuscule by appending “Italic”

to the style name. You can also customize these styles with SizeFeatures:

\usepackage[
EnlargedThreeSizeFeatures={{size=5,ENLA=85},}

]{junicodevf}

This example will set all axes except for ENLA to their default coordinates. You

can, of course, define other axes, and, as with Junicode’s other SizeFeatures options,

as many size arrays as you like. Features options are not available for the Enlarged

styles.

90 JUNICODE AND TEx

10.5. Other Commands

The font packages’ other commands (listed in the following table) are offered as

conveniences, being shorter and more mnemonic than the fontspec commands

they invoke (though of course all fontspec commands remain available). Each

of these commands also has a corresponding “text” command that works like

\textit{}—that is, it takes as its sole argument the text to which the command

will be applied. Each “text” command consists of the main command with

“text” prefixed—for example, \textInsularLetterForms{} corresponding to

\InsularLetterForms. For a fuller account of the OpenType features applied by

these commands, see Chapter 4, Feature Reference.

\AltThornEth Applies ss01, Alternate thorn and eth.

\InsularLetterForms Applies ss02, Insular letter-forms.

\IPAAlternates Applies ss03, IPA alternates.

\HighOverline Applies ss04, High Overline.

\MediumHighOverline Applies ss05, Medium-high Overline.

\EnlargedMinuscules Applies ss06, Enlarged minuscules.

\Underdotted Applies ss07, Underdotted.

\ContextualLongS Applies ss08, Contextual long s.

\AlternateFigures Applies ss09, Alternate Figures.

\EntitiesAndTags Applies ss10, Entities and Tags.

\EarlyEnglishFuthorc Applies ss12, Early English Futhorc.

\ElderFuthark Applies ss13, Elder Futhark.

\YoungerFuthark Applies ss14, Younger Futhark.

\LongBranchToShortTwig Applies ss15, Long Branch to Short Twig.

\ContextualRRotunda Applies ss16, Contextual r rotunda.

\RareDigraphs Applies ss17, Rare Digraphs.

\OldStylePunctuation Applies ss18, Old-style Punctuation.

JUNICODE 91

\LatinToGothic Applies ss19, Latin to Gothic.

\LowDiacritics Applies ss20, Low Diacritics.

\jcv, \textcv Applies any Character Variant feature (see

below).

The syntax of \jcv is \jcv[num]{num}, where the second (required) ar-

gument is the number of the Character Variant feature, and the first (op-

tional) argument is an index into the variants provided by that feature (start-

ing with zero, the default). \textcv takes an additional required argument

(\textcv[num]{num}{text}—the text to which the feature should be applied.

Character Variant features can also be selected by means of commands con-

sisting of the prefix \jcv plus any letter of the basic Latin alphabet (e.g. \jcvA,

\jcvz), or any of the mnemonics below. For example, a feature for lowercase a

can be expressed as \textcv[2]{\jcva}{a}, yielding a.

\jcvaa

\jcvAE

\jcvae

\jcvAO

\jcvao

\jcvAogonek

\jcvaogonek

\jcvASCIItilde

\jcvasterisk

\jcvav

\jcvbrevebelow

\jcvcombiningdieresis

\jcvcombiningdoublemacron

\jcvcombininginsulard

\jcvcombiningopena

\jcvcombiningoverline

\jcvcombiningrrotunda

\jcvcombiningzigzag

\jcvcomma

\jcvcurrency

\jcvdbar

\jcvdcroat

\jcvEng

\jcvEogonek

\jcvetabbrev

\jcvexclam

\jcvflorin

\jcvGermanpenny

\jcvglottal

\jcvlb

\jcvlhighstroke

\jcvmacron

\jcvmiddot

\jcvoPolish

\jcvounce

\jcvperiod

\jcvpunctuselevatus

\jcvquestion

\jcvrum

\jcvsemicolon

\jcvslash

\jcvspacingusabbrev

\jcvspacingzigzag

\jcvsterling

\jcvthorncrossed

\jcvTironianEt

\jcvYogh

11. Encoded Glyphs in Junicode

The following table lists all the encoded glyphs in Junicode Roman. The font also

contains more than 2,000 unencoded glyphs, accessible via OpenType features.

For a comprehensive list of these features, see Chapter 4, Feature Reference.

Code points for which Junicode has no glyphs are represented in the table

by blue bullets (the actual bullet at U+2022 is black). Many of Junicode’s glyphs

(e.g. spaces, formatting marks) are invisible: these are represented by blanks in

the table. A few glyphs are too large for their table cells, and these spill out on

one or more sides.

Table 11.1: Encoded Glyphs in Junicode

0 1 2 3 4 5 6 7 8 9 A B C D E F

Basic Latin

U+0000-000F • • • • • • • • • • • • • • •

U+0020-002F ! " # $ % & ' () * + , - . /

U+0030-003F 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

U+0040-004F @ A B C D E F G H I J K L M N O

U+0050-005F P Q R S T U V W X Y Z [\] ^ _

U+0060-006F ` a b c d e f g h i j k l m n o

U+0070-007F p q r s t u v w x y z { | } ~ •

92

JUNICODE 93

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Latin-1 Supplement

U+00A0-00AF ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯

U+00B0-00BF ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

U+00C0-00CF À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

U+00D0-00DF Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

U+00E0-00EF à á â ã ä å æ ç è é ê ë ì í î ï

U+00F0-00FF ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Latin Extended-A

U+0100-010F Ā ā Ă ă Ą ą Ć ć Ĉ ĉ Ċ ċ Č č Ď ď

U+0110-011F Đ đ Ē ē Ĕ ĕ Ė ė Ę ę Ě ě Ĝ ĝ Ğ ğ

U+0120-012F Ġ ġ Ģ ģ Ĥ ĥ Ħ ħ Ĩ ĩ Ī ī Ĭ ĭ Į į

U+0130-013F İ ı Ĳ ĳ Ĵ ĵ Ķ ķ ĸ Ĺ ĺ Ļ ļ Ľ ľ Ŀ

U+0140-014F ŀ Ł ł Ń ń Ņ ņ Ň ň ŉ Ŋ ŋ Ō ō Ŏ ŏ

U+0150-015F Ő ő Œ œ Ŕ ŕ Ŗ ŗ Ř ř Ś ś Ŝ ŝ Ş ş

U+0160-016F Š š Ţ ţ Ť ť Ŧ ŧ Ũ ũ Ū ū Ŭ ŭ Ů ů

U+0170-017F Ű ű Ų ų Ŵ ŵ Ŷ ŷ Ÿ Ź ź Ż ż Ž ž ſ

Latin Extended-B

U+0180-018F ƀ Ɓ Ƃ ƃ Ƅ ƅ Ɔ Ƈ ƈ Ɖ Ɗ Ƌ ƌ ƍ Ǝ Ə

U+0190-019F Ɛ Ƒ ƒ Ɠ Ɣ ƕ Ɩ Ɨ Ƙ ƙ ƚ ƛ Ɯ Ɲ ƞ Ɵ

U+01A0-01AF Ơ ơ Ƣ ƣ Ƥ ƥ Ʀ Ƨ ƨ Ʃ ƪ ƫ Ƭ ƭ Ʈ Ư

U+01B0-01BF ư Ʊ Ʋ Ƴ ƴ Ƶ ƶ Ʒ Ƹ ƹ ƺ ƻ Ƽ ƽ ƾ ƿ

U+01C0-01CF ǀ ǁ ǂ ǃ Ǆ ǅ ǆ Ǉ ǈ ǉ Ǌ ǋ ǌ Ǎ ǎ Ǐ

U+01D0-01DF ǐ Ǒ ǒ Ǔ ǔ Ǖ ǖ Ǘ ǘ Ǚ ǚ Ǜ ǜ ǝ Ǟ ǟ

94 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+01E0-01EF Ǡ ǡ Ǣ ǣ Ǥ ǥ Ǧ ǧ Ǩ ǩ Ǫ ǫ Ǭ ǭ Ǯ ǯ

U+01F0-01FF ǰ Ǳ ǲ ǳ Ǵ ǵ Ƕ Ƿ Ǹ ǹ Ǻ ǻ Ǽ ǽ Ǿ ǿ

U+0200-020F Ȁ ȁ Ȃ ȃ Ȅ ȅ Ȇ ȇ Ȉ ȉ Ȋ ȋ Ȍ ȍ Ȏ ȏ

U+0210-021F Ȑ ȑ Ȓ ȓ Ȕ ȕ Ȗ ȗ Ș ș Ț ț Ȝ ȝ Ȟ ȟ

U+0220-022F Ƞ ȡ Ȣ ȣ Ȥ ȥ Ȧ ȧ Ȩ ȩ Ȫ ȫ Ȭ ȭ Ȯ ȯ

U+0230-023F Ȱ ȱ Ȳ ȳ • • • ȷ ȸ ȹ Ⱥ • • • • •

U+0240-024F • Ɂ ɂ Ƀ • • Ɇ ɇ Ɉ ɉ • • • • • •

IPA Extensions

U+0250-025F ɐ ɑ ɒ ɓ ɔ ɕ ɖ ɗ ɘ ə ɚ ɛ ɜ ɝ ɞ ɟ

U+0260-026F ɠ ɡ ɢ ɣ ɤ ɥ ɦ ɧ ɨ ɩ ɪ ɫ ɬ ɭ ɮ ɯ

U+0270-027F ɰ ɱ ɲ ɳ ɴ ɵ ɶ ɷ ɸ ɹ ɺ ɻ ɼ ɽ ɾ ɿ

U+0280-028F ʀ ʁ ʂ ʃ ʄ ʅ ʆ ʇ ʈ ʉ ʊ ʋ ʌ ʍ ʎ ʏ

U+0290-029F ʐ ʑ ʒ ʓ ʔ ʕ ʖ ʗ ʘ ʙ ʚ ʛ ʜ ʝ ʞ ʟ

U+02A0-02AF ʠ ʡ ʢ ʣ ʤ ʥ ʦ ʧ ʨ ʩ ʪ ʫ ʬ ʭ ʮ ʯ

Spacing Modifier Letters

U+02B0-02BF ʰ ʱ ʲ ʳ ʴ ʵ ʶ ʷ ʸ ʹ ʺ ʻ ʼ ʽ ʾ ʿ

U+02C0-02CF ˀ ˁ ˂ ˃ ˄ ˅ ˆ ˇ ˈ ˉ ˊ ˋ ˌ ˍ ˎ ˏ

U+02D0-02DF ː ˑ ˒ ˓ ˔ ˕ ˖ ˗ ˘ ˙ ˚ ˛ ˜ ˝ ˞ ˟

U+02E0-02EF ˠ ˡ ˢ ˣ ˤ ˥ ˦ ˧ ˨ ˩ ˪ ˫ ˬ ˭ ˮ ˯

U+02F0-02FF ˰ ˱ ˲ ˳ ˴ ˵ ˶ ˷ ˸ ˹ ˺ ˻ ˼ ˽ ˾ ˿

Combining Diacritical Marks

U+0300-030F ̀ ́ ̂ ̃ ̄ ̅ ̆ ̇ ̈ ̉ ̊ ̋ ̌ ̍ ̎ ̏

JUNICODE 95

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0310-031F ̐ ̑ ̒ ̓ ̔ ̕ ̖ ̗ ̘ ̙ ̚ ̛ ̜ ̝ ̞ ̟

U+0320-032F ̠ ̡ ̢ ̣ ̤ ̥ ̦ ̧ ̨ ̩ ̪ ̫ ̬ ̭ ̮ ̯

U+0330-033F ̰ ̱ ̲ ̳ ̴ ̵ ̶ ̷ ̸ ̹ ̺ ̻ ̼ ̽ ̾ ̿

U+0340-034F ̀ ́ ͂ ̓ ̈́ ͅ ͆ ͇ ͈ ͉ ͊ ͋ ͌ ͍ ͎

U+0350-035F ͐ ͑ ͒ ͓ ͔ ͕ ͖ ͗ • ͙ • ͛ ͜ ͝ ͞ ͟

U+0360-036F ͠ ͡ ͢ ͣ ͤ ͥ ͦ ͧ ͨ ͩ ͪ ͫ ͬ ͭ ͮ ͯ

Greek and Coptic

U+0370-037F • • • • ʹ ͵ • • • • ͺ • • • ; •

U+0380-038F • • • • ΄ ΅ Ά · Έ Ή Ί • Ό • Ύ Ώ

U+0390-039F ΐ Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο

U+03A0-03AF Π Ρ • Σ Τ Υ Φ Χ Ψ Ω Ϊ Ϋ ά έ ή ί

U+03B0-03BF ΰ α β γ δ ε ζ η θ ι κ λ μ ν ξ ο

U+03C0-03CF π ρ ς σ τ υ φ χ ψ ω ϊ ϋ ό ύ ώ Ϗ

U+03D0-03DF • ϑ • • • ϕ ϖ ϗ Ϙ ϙ Ϛ ϛ Ϝ ϝ Ϟ ϟ

U+03E0-03EF Ϡ ϡ • • • • • • • • • • • • • •

U+03F0-03FF ϰ ϱ • • • ϵ • • • • • • • • • •

Cyrillic

U+0420-042F • • • • • • • • • • Ъ • Ь • • •

U+0440-044F • • • • • • • • • • ъ • ь • • •

Georgian

U+10F0-10FF • • • • • • • • • • • ჻ • • • •

96 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Runic

U+16A0-16AF ᚠ ᚡ ᚢ ᚣ ᚤ ᚥ ᚦ ᚧ ᚨ ᚩ ᚪ ᚫ ᚬ ᚭ ᚮ ᚯ

U+16B0-16BF ᚰ ᚱ ᚲ ᚳ ᚴ ᚵ ᚶ ᚷ ᚸ ᚹ ᚺ ᚻ ᚼ ᚽ ᚾ ᚿ

U+16C0-16CF ᛀ ᛁ ᛂ ᛃ ᛄ ᛅ ᛆ ᛇ ᛈ ᛉ ᛊ ᛋ ᛌ ᛍ ᛎ ᛏ

U+16D0-16DF ᛐ ᛑ ᛒ ᛓ ᛔ ᛕ ᛖ ᛗ ᛘ ᛙ ᛚ ᛛ ᛜ ᛝ ᛞ ᛟ

U+16E0-16EF ᛠ ᛡ ᛢ ᛣ ᛤ ᛥ ᛦ ᛧ ᛨ ᛩ ᛪ ᛫ ᛬ ᛭ ᛮ ᛯ

U+16F0-16FF ᛰ • • • • • • • • • • • • • • •

Buginese

U+1AC0-1ACF • • • • • • • • • • • ᫋ ᫌ ᫍ ᫎ •

Phonetic Extensions

U+1D00-1D0F ᴀ ᴁ ᴂ ᴃ ᴄ ᴅ ᴆ ᴇ ᴈ ᴉ ᴊ ᴋ ᴌ ᴍ ᴎ ᴏ

U+1D10-1D1F ᴐ ᴑ ᴒ ᴓ ᴔ ᴕ ᴖ ᴗ ᴘ ᴙ ᴚ ᴛ ᴜ ᴝ ᴞ ᴟ

U+1D20-1D2F ᴠ ᴡ ᴢ ᴣ ᴤ ᴥ ᴦ ᴧ ᴨ ᴩ ᴪ ᴫ ᴬ ᴭ ᴮ ᴯ

U+1D30-1D3F ᴰ ᴱ ᴲ ᴳ ᴴ ᴵ ᴶ ᴷ ᴸ ᴹ ᴺ ᴻ ᴼ ᴽ ᴾ ᴿ

U+1D40-1D4F ᵀ ᵁ ᵂ ᵃ ᵄ ᵅ ᵆ ᵇ ᵈ ᵉ ᵊ ᵋ ᵌ ᵍ ᵎ ᵏ

U+1D50-1D5F ᵐ ᵑ ᵒ ᵓ ᵔ ᵕ ᵖ ᵗ ᵘ ᵙ ᵚ ᵛ ᵜ ᵝ ᵞ ᵟ

U+1D60-1D6F ᵠ ᵡ ᵢ ᵣ ᵤ ᵥ ᵦ ᵧ ᵨ ᵩ ᵪ ᵫ ᵬ ᵭ ᵮ ᵯ

U+1D70-1D7F ᵰ • • • • • • • • ᵹ • ᵻ • • • ᵿ

Phonetic Extensions Supplement

U+1D90-1D9F • • • • • • • • • • • • ᶜ • • •

U+1DA0-1DAF ᶠ • • • • • • • • • • • • • • •

U+1DB0-1DBF • • • • • • • • • • • ᶻ • • • •

JUNICODE 97

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Combining Diacritical Marks Supplement

U+1DC0-1DCF • • • • • • • • • • • • • ᷍ ᷎ ᷏

U+1DD0-1DDF ᷐ ᷑ ᷒ ᷓ ᷔ ᷕ ᷖ ᷗ ᷘ ᷙ ᷚ ᷛ ᷜ ᷝ ᷞ ᷟ

U+1DE0-1DEF ᷠ ᷡ ᷢ ᷣ ᷤ ᷥ ᷦ • ᷨ • • ᷫ • • ᷮ •

U+1DF0-1DFF • ᷱ • • • • • • • • • • • • • •

Latin Extended Additional

U+1E00-1E0F Ḁ ḁ Ḃ ḃ Ḅ ḅ Ḇ ḇ Ḉ ḉ Ḋ ḋ Ḍ ḍ Ḏ ḏ

U+1E10-1E1F Ḑ ḑ Ḓ ḓ Ḕ ḕ Ḗ ḗ Ḙ ḙ Ḛ ḛ Ḝ ḝ Ḟ ḟ

U+1E20-1E2F Ḡ ḡ Ḣ ḣ Ḥ ḥ Ḧ ḧ Ḩ ḩ Ḫ ḫ Ḭ ḭ Ḯ ḯ

U+1E30-1E3F Ḱ ḱ Ḳ ḳ Ḵ ḵ Ḷ ḷ Ḹ ḹ Ḻ ḻ Ḽ ḽ Ḿ ḿ

U+1E40-1E4F Ṁ ṁ Ṃ ṃ Ṅ ṅ Ṇ ṇ Ṉ ṉ Ṋ ṋ Ṍ ṍ Ṏ ṏ

U+1E50-1E5F Ṑ ṑ Ṓ ṓ Ṕ ṕ Ṗ ṗ Ṙ ṙ Ṛ ṛ Ṝ ṝ Ṟ ṟ

U+1E60-1E6F Ṡ ṡ Ṣ ṣ Ṥ ṥ Ṧ ṧ Ṩ ṩ Ṫ ṫ Ṭ ṭ Ṯ ṯ

U+1E70-1E7F Ṱ ṱ Ṳ ṳ Ṵ ṵ Ṷ ṷ Ṹ ṹ Ṻ ṻ Ṽ ṽ Ṿ ṿ

U+1E80-1E8F Ẁ ẁ Ẃ ẃ Ẅ ẅ Ẇ ẇ Ẉ ẉ Ẋ ẋ Ẍ ẍ Ẏ ẏ

U+1E90-1E9F Ẑ ẑ Ẓ ẓ Ẕ ẕ ẖ ẗ ẘ ẙ ẚ ẛ ẜ ẝ ẞ ẟ

U+1EA0-1EAF Ạ ạ Ả ả Ấ ấ Ầ ầ Ẩ ẩ Ẫ ẫ Ậ ậ Ắ ắ

U+1EB0-1EBF Ằ ằ Ẳ ẳ Ẵ ẵ Ặ ặ Ẹ ẹ Ẻ ẻ Ẽ ẽ Ế ế

U+1EC0-1ECF Ề ề Ể ể Ễ ễ Ệ ệ Ỉ ỉ Ị ị Ọ ọ Ỏ ỏ

U+1ED0-1EDF Ố ố Ồ ồ Ổ ổ Ỗ ỗ Ộ ộ Ớ ớ Ờ ờ Ở ở

U+1EE0-1EEF Ỡ ỡ Ợ ợ Ụ ụ Ủ ủ Ứ ứ Ừ ừ Ử ử Ữ ữ

U+1EF0-1EFF Ự ự Ỳ ỳ Ỵ ỵ Ỷ ỷ Ỹ ỹ Ỻ ỻ Ỽ ỽ Ỿ ỿ

98 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Greek Extended

U+1F00-1F0F ἀ ἁ ἂ ἃ ἄ ἅ ἆ ἇ Ἀ Ἁ Ἂ Ἃ Ἄ Ἅ Ἆ Ἇ

U+1F10-1F1F ἐ ἑ ἒ ἓ ἔ ἕ • • Ἐ Ἑ Ἒ Ἓ Ἔ Ἕ • •

U+1F20-1F2F ἠ ἡ ἢ ἣ ἤ ἥ ἦ ἧ Ἠ Ἡ Ἢ Ἣ Ἤ Ἥ Ἦ Ἧ

U+1F30-1F3F ἰ ἱ ἲ ἳ ἴ ἵ ἶ ἷ Ἰ Ἱ Ἲ Ἳ Ἴ Ἵ Ἶ Ἷ

U+1F40-1F4F ὀ ὁ ὂ ὃ ὄ ὅ • • Ὀ Ὁ Ὂ Ὃ Ὄ Ὅ • •

U+1F50-1F5F ὐ ὑ ὒ ὓ ὔ ὕ ὖ ὗ • Ὑ • Ὓ • Ὕ • Ὗ

U+1F60-1F6F ὠ ὡ ὢ ὣ ὤ ὥ ὦ ὧ Ὠ Ὡ Ὢ Ὣ Ὤ Ὥ Ὦ Ὧ

U+1F70-1F7F ὰ ά ὲ έ ὴ ή ὶ ί ὸ ό ὺ ύ ὼ ώ • •

U+1F80-1F8F ᾀ ᾁ ᾂ ᾃ ᾄ ᾅ ᾆ ᾇ ᾈ ᾉ ᾊ ᾋ ᾌ ᾍ ᾎ ᾏ

U+1F90-1F9F ᾐ ᾑ ᾒ ᾓ ᾔ ᾕ ᾖ ᾗ ᾘ ᾙ ᾚ ᾛ ᾜ ᾝ ᾞ ᾟ

U+1FA0-1FAF ᾠ ᾡ ᾢ ᾣ ᾤ ᾥ ᾦ ᾧ ᾨ ᾩ ᾪ ᾫ ᾬ ᾭ ᾮ ᾯ

U+1FB0-1FBF ᾰ ᾱ ᾲ ᾳ ᾴ • ᾶ ᾷ Ᾰ Ᾱ Ὰ Ά ᾼ ᾽ ι ᾿

U+1FC0-1FCF ῀ ῁ ῂ ῃ ῄ • ῆ ῇ Ὲ Έ Ὴ Ή ῌ ῍ ῎ ῏

U+1FD0-1FDF ῐ ῑ ῒ ΐ • • ῖ ῗ Ῐ Ῑ Ὶ Ί • ῝ ῞ ῟

U+1FE0-1FEF ῠ ῡ ῢ ΰ ῤ ῥ ῦ ῧ Ῠ Ῡ Ὺ Ύ Ῥ ῭ ΅ `

U+1FF0-1FFF • • ῲ ῳ ῴ • ῶ ῷ Ὸ Ό Ὼ Ώ ῼ ´ ῾ •

General Punctuation

U+2000-200F                       • •

U+2010-201F ‐ ‑ ‒ – — ― ‖ ‗ ‘ ’ ‚ ‛ “ ” „ ‟

U+2020-202F † ‡ • ‣ ․ ‥ … ‧ • • • • • • •  

U+2030-203F ‰ ‱ ′ ″ ‴ ‵ ‶ ‷ ‸ ‹ › ※ ‼ ‽ ‾ ‿

U+2040-204F ⁀ ⁁ ⁂ ⁃ ⁄ ⁅ ⁆ ⁇ ⁈ ⁉ ⁊ ⁋ ⁌ ⁍ ⁎ ⁏

JUNICODE 99

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+2050-205F ⁐ ⁑ ⁒ ⁓ • • ⁖ ⁗ ⁘ • • • ⁜ • • •

Superscripts and Subscripts

U+2070-207F ⁰ ⁱ • • ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ

U+2080-208F ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ •

Currency Symbols

U+20A0-20AF • • • • • • • • • • • • € • • •

U+20B0-20BF ₰ • • • • • • • • • • • • • • •

Combining Diacritical Marks for Symbols

U+20D0-20DF • • • • • • • • • • • • • ⃝ • •

Letterlike Symbols

U+2100-210F • • • • • • • • ℈ • • • • • • •

U+2110-211F • • • • ℔ • • • • • • • • • ℞ ℟

U+2120-212F • • ™ ℣ • ℥ Ω • • • • • • • • •

U+2130-213F • • Ⅎ • • • • • • • • • • • • •

U+2140-214F • • • • • • • • • • • • • • ⅎ •

Number Forms

U+2150-215F ⅐ ⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞ ⅟

U+2160-216F Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ ⅦⅧ Ⅸ Ⅹ Ⅺ Ⅻ Ⅼ Ⅽ Ⅾ Ⅿ

U+2170-217F ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ⅺ ⅻ ⅼ ⅽ ⅾ ⅿ

U+2180-218F ↀ ↁ ↂ Ↄ ↄ ↅ ↆ ↇ ↈ ↉ • • • • • •

100 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Arrows

U+2190-219F ← ↑ → ↓ • • • • • • • • • • • •

U+21A0-21AF • • • • • • • • • ↩ • • • • • •

Mathematical Operators

U+2200-220F • • ∂ • • ∅ ∆ • • • • • • • • ∏

U+2210-221F • ∑ − • • ∕ • • • ∙ √ • • • ∞ •

U+2220-222F • • • • • • • ∧ • • • ∫ • • • •

U+2230-223F • • • • ∴ ∵ • ∷ • • • ∻ • • • •

U+2240-224F • • • • • • • • ≈ • • • • • • •

U+2260-226F ≠ • • • ≤ ≥ • • • • • • • • • •

U+22D0-22DF • • • • • • • ⋗ • • • • • • • •

Miscellaneous Technical

U+2300-230F • • • • • • • • ⌈ ⌉ • • • • • •

U+2320-232F • • • • • • • • • 〈 〉 • • • • •

U+23D0-23DF • ⏑ ⏒ ⏓ ⏔ • • • • • • • • • • •

Enclosed Alphanumerics

U+2460-246F ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯

U+2470-247F ⑰ ⑱ ⑲ ⑳ ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽⑾⑿

U+2480-248F ⒀⒁⒂⒃⒄⒅⒆⒇ ⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏

U+2490-249F ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗ ⒘ ⒙ ⒚ ⒛ ⒜ ⒝ ⒞ ⒟

U+24A0-24AF ⒠ ⒡ ⒢ ⒣ ⒤ ⒥ ⒦ ⒧ ⒨ ⒩ ⒪ ⒫ ⒬ ⒭ ⒮ ⒯

JUNICODE 101

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+24B0-24BF ⒰ ⒱ ⒲ ⒳ ⒴ ⒵ Ⓐ Ⓑ Ⓒ Ⓓ Ⓔ Ⓕ Ⓖ Ⓗ Ⓘ Ⓙ

U+24C0-24CF Ⓚ Ⓛ Ⓜ Ⓝ Ⓞ Ⓟ Ⓠ Ⓡ Ⓢ Ⓣ Ⓤ Ⓥ Ⓦ Ⓧ Ⓨ Ⓩ

U+24D0-24DF ⓐ ⓑ ⓒ ⓓ ⓔ ⓕ ⓖ ⓗ ⓘ ⓙ ⓚ ⓛ ⓜ ⓝ ⓞ ⓟ

U+24E0-24EF ⓠ ⓡ ⓢ ⓣ ⓤ ⓥ ⓦ ⓧ ⓨ ⓩ ⓪ ⓫ ⓬ ⓭ ⓮ ⓯

U+24F0-24FF ⓰ ⓱ ⓲ ⓳ ⓴ ⓵ ⓶ ⓷ ⓸ ⓹ ⓺ ⓻ ⓼ ⓽ ⓾ ⓿

Geometric Shapes

U+25A0-25AF ■ • • • • • • • • • ▪ ▫ • • • •

U+25B0-25BF • • • • • • • • • ▹ • • • • • •

U+25C0-25CF • • • ◃ • • ◆ ◇ • • ◊ • ◌ • • ●

Miscellaneous Shapes

U+2610-261F ☐ • • • • • • • • ☙ ☚ ☛ ☜ ☝ ☞ ☟

U+2620-262F • • • • • • • ☧ • • • • • • • •

Dingbats

U+2710-271F • • • • • • • • • • • • • ✝ • •

U+2720-272F ✠ • • • • • • • • • • • • • • •

U+2740-274F ❀ • • • • • • • • • • • • • • •

U+2760-276F • • • • • • ❦ ❧ • • • • • • • •

U+2770-277F • • • • • • ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

Miscellaneous Mathematical Symbols-A

U+27E0-27EF • • • • • • ⟦ ⟧ ⟨ ⟩ • • • • • •

102 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Supplemental Mathematical Operators

U+2AF0-2AFF • • • • • • • • • • • • • ⫽ • •

Miscellaneous Symbols and Arrows

U+2B20-2B2F • • • • • ⬥ ⬦ • • • • • • • • •

Latin Extended-C

U+2C60-2C6F • • • • • ⱥ • • • • • • • • • •

U+2C70-2C7F • ⱱ Ⱳ ⱳ • Ⱶ ⱶ • • • • • • ⱽ • •

Supplemental Punctuation

U+2E00-2E0F ⸀ ⸁ ⸂ ⸃ ⸄ ⸅ ⸆ ⸇ ⸈ ⸉ ⸊ ⸋ ⸌ ⸍ • •

U+2E10-2E1F • • • • • • • ⸗ • ⸙ ⸚ ⸛ ⸜ ⸝ ⸞ ⸟

U+2E20-2E2F ⸠ ⸡ ⸢ ⸣ ⸤ ⸥ ⸦ ⸧ ⸨ ⸩ ⸪ ⸫ ⸬ ⸭ ⸮ ⸯ

U+2E30-2E3F • • • • • • • • • • ⸺⸻• • • •

U+2E40-2E4F ⹀ • • • • • • • • • ⹊ ⹋ ⹌ ⹍ ⹎ •

U+2E50-2E5F • • ⹒ ⹓ ⹔ • • • • • • • • ⹝ • •

CJK Symbols and Punctuation

U+3000-300F • • • • • • • • • • 《 》 • • • •

Modifier Tone Letters

U+A710-A71F • • • • • • • • • • • ꜛ ꜜ • • •

Latin Extended-D

U+A720-A72F • • Ꜣ ꜣ Ꜥ ꜥ Ꜧ ꜧ Ꜩ ꜩ • • • • • •

U+A730-A73F ꜰ ꜱ Ꜳ ꜳ Ꜵ ꜵ Ꜷ ꜷ Ꜹ ꜹ Ꜻ ꜻ Ꜽ ꜽ Ꜿ ꜿ

JUNICODE 103

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+A740-A74F Ꝁ ꝁ Ꝃ ꝃ Ꝅ ꝅ Ꝇ ꝇ Ꝉ ꝉ Ꝋ ꝋ Ꝍ ꝍ Ꝏ ꝏ

U+A750-A75F Ꝑ ꝑ Ꝓ ꝓ Ꝕ ꝕ Ꝗ ꝗ Ꝙ ꝙ Ꝛ ꝛ Ꝝ ꝝ Ꝟ ꝟ

U+A760-A76F Ꝡ ꝡ Ꝣ ꝣ Ꝥ ꝥ Ꝧ ꝧ Ꝩ ꝩ Ꝫ ꝫ Ꝭ ꝭ Ꝯ ꝯ

U+A770-A77F ꝰ ꝱ ꝲ ꝳ ꝴ ꝵ ꝶ ꝷ ꝸ Ꝺ ꝺ Ꝼ ꝼ Ᵹ Ꝿ ꝿ

U+A780-A78F Ꞁ ꞁ Ꞃ ꞃ Ꞅ ꞅ Ꞇ ꞇ • • • • • • • •

U+A790-A79F • • • • • • Ꞗ ꞗ • • • • • • • •

U+A7A0-A7AF • • • • • • • • • ꞩ • • • • • •

U+A7B0-A7BF • • • • • • • • • • Ꞻ ꞻ Ꞽ ꞽ Ꞿ ꞿ

U+A7C0-A7CF Ꟁ ꟁ Ꟃ ꟃ • • • • • • • • • • •

U+A7D0-A7DF Ꟑ ꟑ • ꟓ • ꟕ Ꟗ ꟗ Ꟙ ꟙ • • • • • •

U+A7F0-A7FF • • • • • • • • • • • ꟻ ꟼ ꟽ ꟾ ꟿ

LatinExtended-E

U+AB50-AB5F • • ꭒ • • • • ꭗ • • • • • • • •

Private Use Area

U+E000-E00F • • • • • • • • • • • • • •

U+E010-E01F • • • • • • • • • • • • • • •

U+E020-E02F • • • • • • • • • • • • • •

U+E030-E03F • • • • • • • • • • •

U+E040-E04F • • • • • • • • • • •

U+E060-E06F • • • • • • • • • • • • • • •

U+E070-E07F • • • • • • • • • • • • • •

U+E080-E08F • • • • • • • • • • • • • • •

104 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E090-E09F • • • • • • • • • • • • • • •

U+E0B0-E0BF • • • • • • • • • • • • • •

U+E0C0-E0CF • • • • • • • • • • • • • • •

U+E0D0-E0DF • • • • • • • • • • • • • • •

U+E0E0-E0EF • • • • • • • • •

U+E0F0-E0FF • • • • • • • • • • • • • • •

U+E100-E10F • • • • • • • • • • • • • • •

U+E110-E11F • • • • • • • • • • • • • • •

U+E120-E12F • • • • • • • • • • • • • •

U+E130-E13F • • • • • • • • • • • • • •

U+E140-E14F • • • • • • • • • • • • • • •

U+E150-E15F • • • • • • • • • •

U+E160-E16F • • • • • • • • • • • • •

U+E190-E19F • • • • • • • • • • • • • • •

U+E1B0-E1BF • • • • • • • • • • • • • • •

U+E1D0-E1DF • • • • • • • • • • • • • •

U+E200-E20F • • • • • • • • • • • • • •

U+E210-E21F • • • • • • • • • • • • • • •

U+E220-E22F • • • • • • • • • • • • • • •

U+E240-E24F • • • • • • • • • • • • •

U+E250-E25F • • • • • • • • • •

U+E260-E26F • • • • • • • • • • • •

JUNICODE 105

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E270-E27F • • • • • • • • • • • • • •

U+E280-E28F • • • • • • • • • • • • • •

U+E2E0-E2EF • • • • • • • • • • • • • •

U+E300-E30F • • • • • • • • • • • • • •

U+E310-E31F • • • • • • • • • • • • • •

U+E320-E32F • • • • • • • • • • • • •

U+E330-E33F • • • • • • • • • • • •

U+E340-E34F • • • • • • • • • • •

U+E350-E35F • • • • • • • • • • • • •

U+E370-E37F • • • • • • • • • • • •

U+E380-E38F • • • • • • • • • • • • • •

U+E390-E39F • • • • • • • • • • • • • • •

U+E3D0-E3DF • • • • • • • • • • • • • •

U+E3E0-E3EF • • • • • • • • • • • • •

U+E400-E40F • • • • • • • • • • • • • •

U+E410-E41F • • • • • • • • • • • •

U+E420-E42F • • • • • • • • • • • •

U+E430-E43F • • • • • • • • • • •

U+E440-E44F • • • • • • • • • •

U+E460-E46F • • • • • • • • • • • • • • •

U+E470-E47F • • • • • • • • • • • • • •

U+E480-E48F • • • • • • • • • • • • • • •

106 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E490-E49F • • • • • • • • • • • •

U+E4B0-E4BF • • • • • • • • • • • • • •

U+E4C0-E4CF • • • • • • • • • • • • •

U+E4D0-E4DF • • • • • • • • • • • • • • •

U+E4E0-E4EF • • • • • • •

U+E4F0-E4FF • • • • • • • • • • • • • • •

U+E500-E50F • • • • • • • • • • • • • • •

U+E510-E51F • • • • • • • • • • • • • •

U+E520-E52F • • • • • • • • • • • • • • •

U+E530-E53F • • • • • • • • • • • • • •

U+E540-E54F • • • • • • • • • • • •

U+E550-E55F • • • • • • • • • • •

U+E560-E56F • • • • • • • • • • • • •

U+E580-E58F • • • • • • • • • • • • • • •

U+E590-E59F • • • • • • • • • • • • • •

U+E5A0-E5AF • • • • • • • • • • • • • • •

U+E5B0-E5BF • • • • • • • • • • • • • •

U+E5C0-E5CF • • • • • • • • • • • • • • •

U+E5D0-E5DF • • • • • • • • • • • • •

U+E5E0-E5EF • • • • • • • • • • • • • • •

U+E600-E60F • • • • • • • • • • • • •

U+E610-E61F • • • • • • • • • • • • • • •

U+E620-E62F • • • • • • • • • • • • • •

JUNICODE 107

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E630-E63F • • • • • • • • • • • • • • •

U+E640-E64F • • • • • • • • • •

U+E650-E65F • • • • • • • • • •

U+E660-E66F • • • • • • • • • • •

U+E670-E67F • • • • • • • • • • • • • •

U+E680-E68F • • • • • • • • • • •

U+E6A0-E6AF • • • • • • • • • • • • • • •

U+E6E0-E6EF • • • • • • • • • • • • • •

U+E700-E70F • • • • • • • • • • • • • •

U+E710-E71F • • • • • • • • • • • • • •

U+E720-E72F • • • • • • • • • • •

U+E730-E73F • • • • • • • • •

U+E740-E74F • • • • • • • • •

U+E750-E75F • • • • • • • • • • • •

U+E770-E77F • • • • • • • • • • •

U+E780-E78F • • • • • • • • • • • • •

U+E790-E79F • • • • • • • • • • • • • •

U+E7A0-E7AF • • • • • • • • • • • • • • •

U+E7B0-E7BF • • • • • • • • • • • • • • •

U+E7C0-E7CF • • • • • • • • • •

U+E7D0-E7DF • • • • • • • • • • • • • •

U+E7E0-E7EF • • • • • • • • • • • •

108 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E8A0-E8AF • • • • • • • • • •

U+E8B0-E8BF • • • •

U+E8C0-E8CF • • • • • • •

U+E8D0-E8DF • • • • • •

U+E8E0-E8EF • •

U+E8F0-E8FF • • • • • • • • • • • •

U+EAD0-EADF • • • • • • • • •

U+EAF0-EAFF • • • • • • • • • • • •

U+EBA0-EBAF

U+EBB0-EBBF •

U+EBC0-EBCF •

U+EBD0-EBDF • •

U+EBE0-EBEF

U+EBF0-EBFF

U+EEC0-EECF • •

U+EED0-EEDF

U+EEE0-EEEF

U+EEF0-EEFF

U+EF00-EF0F • • • • • • • • • • • • • • •

U+EF10-EF1F • • • • • • • • • • • • • •

U+EF20-EF2F • •

U+EF90-EF9F • •

JUNICODE 109

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+EFA0-EFAF •

U+EFB0-EFBF • • • • • • • • • • • • •

U+EFD0-EFDF • • • • • • • • •

U+EFE0-EFEF

U+EFF0-EFFF

U+F000-F00F • • • • • • • • • • • •

U+F010-F01F • • •

U+F020-F02F • • • • • • • • • • • •

U+F030-F03F • • • •

U+F040-F04F • • • • • • • • • • • • • • •

U+F050-F05F • • • • •

U+F060-F06F • •

U+F070-F07F • • • •

U+F080-F08F • • • • • • •

U+F090-F09F • • • • • •

U+F0A0-F0AF • • • • • • • •

U+F0B0-F0BF • • • • • • • •

U+F0C0-F0CF • • • •

U+F0D0-F0DF • • • • • • • • •

U+F0E0-F0EF • • • • • • • • • • • •

U+F0F0-F0FF • • • • • • • • • •

U+F100-F10F • • • • • • • • • • • • •

U+F110-F11F • • • • • • • • • • • • • •

U+F120-F12F • • • • • • • • • • • • •

110 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+F130-F13F • • • • • • • • • •

U+F140-F14F • • • • • • • • • • • • • • •

U+F150-F15F • • • • • • • • • • • • • •

U+F160-F16F • • • • • • • • • • • • •

U+F170-F17F • • • • • • • • • • •

U+F180-F18F • • • • • • • • • •

U+F190-F19F • • • • • •

U+F1A0-F1AF • • • • • • • • • • • •

U+F1B0-F1BF • • • • • • • • • • • •

U+F1C0-F1CF • • • • • • • •

U+F1D0-F1DF • • • • • • • • • • • • • •

U+F1E0-F1EF • • • • •

U+F1F0-F1FF • • • • •

U+F200-F20F • • • • • •

U+F210-F21F • • • • •

U+F220-F22F • • • •

U+F230-F23F • • • • • • • •

U+F2E0-F2EF • •

U+F2F0-F2FF •

U+F4F0-F4FF • • • • • • • •

U+F700-F70F • • •

U+F710-F71F • • • • • • •

JUNICODE 111

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+F7B0-F7BF • • • • • • • • • • •

Alphabetic Presentation Forms

U+FB00-FB0F ff fi fl ffi ffl st st • • • • • • • • •

Small Form Variants

U+FE50-FE5F • • • • • • • • • • • • • • • ﹟

U+FE60-FE6F • • • • • • • • • • ﹪ • • • • •

Specials ...

U+FFF0-FFFF • • • • • • • • • • • • • � • •

Ancient Symbols

U+10190-1019F 𐆐 𐆑 𐆒 𐆓 𐆔 𐆕 𐆖 𐆗 𐆘 𐆙 𐆚 • • • • •

Gothic

U+10330-1033F 𐌰 𐌱 𐌲 𐌳 𐌴 𐌵 𐌶 𐌷 𐌸 𐌹 𐌺 𐌻 𐌼 𐌽 𐌾 𐌿

U+10340-1034F 𐍀 𐍁 𐍂 𐍃 𐍄 𐍅 𐍆 𐍇 𐍈 𐍉 𐍊 • • • • •

Enclosed Alphanumeric Supplement

U+1F100-1F10F 🄀 • • • • • • • • • • • • • • •

U+1F110-1F11F 🄐 🄑 🄒🄓 🄔 🄕 🄖🄗 🄘 🄙 🄚 🄛🄜🄝🄞 🄟

U+1F120-1F12F 🄠🄡 🄢 🄣 🄤 🄥🄦🄧 🄨 🄩 • • • • • •

Variation Selectors Supplement

U+E0030-E003F • • • • • •

U+E0060-E006F •

112 ENCODED GlyPhS IN JUNICODE

Table 11.1: Encoded Glyphs in Junicode, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+E0070-E007F • • • •

Supplementary Private Use Area-A

U+F0000-F000F

U+F0010-F001F

U+F0020-F002F • • • • • • • • • • • • • •

U+F0030-F003F

U+F0040-F004F

U+F0050-F005F •

Total number of glyphs shown from JunicodeVF-Roman.ttf: 3306

Index of OpenType Features

c2sc, 17

calt, 7, 24, 36, 41, 79

case, 18, 36, 70

ccmp, 25, 41, 79

cv01, 19

cv02, 15, 19, 91

cv03, 19

cv04, 19

cv05, 19

cv06, 19

cv07, 19

cv08, 19

cv09, 19

cv10, 19

cv11, 19

cv12, 19

cv13, 19

cv14, 19

cv15, 19

cv16, 19

cv17, 19

cv18, 19, 21

cv19, 19

cv20, 19

cv21, 19

cv22, 20

cv23, 20

cv24, 20

cv25, 20

cv26, 20

cv27, 20

cv28, 20

cv29, 20

cv30, 20

cv31, 20

cv32, 20, 21

cv33, 20

cv34, 20

cv35, 20

cv36, 20

cv37, 20

cv38, 20, 27

cv39, 20

cv40, 20

cv41, 20

cv42, 20

cv43, 20

cv44, 21

cv45, 21

cv46, 21

113

114 INDEx OF OPENTyPE FEATURES

cv47, 21

cv48, 21

cv49, 21

cv50, 21

cv51, 21

cv52, 21

cv53, 21

cv54, 21

cv55, 21

cv56, 22

cv57, 22

cv58, 22

cv59, 22

cv60, 22

cv61, 22

cv62, 7, 21, 22

cv63, 22, 67

cv64, 22

cv65, 22

cv66, 22

cv67, 34, 72

cv68, 25

cv69, 32, 71

cv70, 32

cv71, 33

cv72, 33

cv73, 33

cv74, 33

cv75, 33

cv76, 33

cv77, 33

cv78, 34

cv79, 34

cv80, 34, 70

cv81, 36, 68

cv82, 34

cv83, 34, 71

cv84, 21, 35, 36, 37, 69

cv85, 38

cv86, 38

cv87, 38

cv88, 38

cv89, 38

cv90, 38

cv91, 21, 22

cv92, 38

cv93, 39

cv94, 39

cv95, 39

cv96, 39

cv97, 39

cv98, 39

cv99, 35

dlig, 29

dnom, 30, 30

frac, 29, 30, 31

hlig, 21, 28, 67, 71, 72

kern, 41, 79

liga, 28, 41, 79

lnum, 30, 31

loca, 22, 41

locl, 79

mark, 41, 79

mkmk, 41, 79

JUNICODE 115

nalt, 30

numr, 30, 30

onum, 30

ornm, 8, 40

pcap, 18

pnum, 31

rlig, 30, 41, 79

rtlm, 27

salt, 24

smcp, 17, 18, 36, 79

ss01, 4, 22, 90

ss02, 3, 4, 22, 27, 90

ss03, 26, 90

ss04, 23, 90

ss05, 23, 90

ss06, 18, 22, 23, 74, 75, 90

ss07, 18, 24, 90

ss08, 24, 90

ss09, 31, 90

ss10, 36, 36, 37, 45, 90

ss12, 26, 90

ss13, 27, 90

ss14, 27, 90

ss15, 27, 90

ss16, 24, 90

ss17, 28, 29, 90

ss18, 32, 90

ss19, 5, 26, 91

ss20, 37, 91

subs, 32

sups, 31, 69

tnum, 30, 31

zero, 31

This document was set in 12pt Junicode VF

using the LuaLATEX typesetting system with fontspec for font management.

The font for code is Fira Mono.

The sans serif font is Fira Sans.

The source for the document, JunicodeManual.tex, is available at

https://github.com/psb1558/Junicode-font.

	About Junicode
	Specimens
	Getting Started with Junicode
	Feature Reference
	Introduction
	Case-Related Features
	GGOrangesmcp – Small Capitals
	GGOrangec2sc – Small Capitals from Capitals
	GGOrangepcap – Petite Capitals
	GGOrangec2pc – Petite Capitals from Capitals
	GGOrangecase – Case-Sensitive Forms

	Alphabetic Variants
	GGOrangecv01-cv52 – Basic Latin Variants
	GGOrangecv53-cv66, GGOrangecv91 – Other Latin Letters
	GGOrangess01 – Alternate thorn and eth
	GGOrangess02 – Insular Letter-Forms
	GGOrangess04 – High Overline
	GGOrangess05 – Medium-High Overline
	GGOrangess06 – Enlarged Minuscules
	GGOrangess07 – Underdotted Text
	GGOrangess08 – Contextual Long s
	GGOrangess16 – Contextual r Rotunda
	GGOrangesalt – Stylistic Alternates (medieval capitals, etc.)
	GGOrangecv68 – Variant of ʔ (Numbers=Uppercase,MonospacedU+0294, glottal stop)

	Greek
	GGOrangess03 – Alternate Greek

	Gothic
	GGOrangess19 – Latin to Gothic Transliteration

	Runic
	GGOrangess12 – Early English Futhorc
	GGOrangess13 – Elder Futhark
	GGOrangess14 – Younger Futhark
	GGOrangess15 – Long Branch to Short Twig
	GGOrangertlm – Right to Left Mirrored Forms

	Ligatures and Digraphs
	GGOrangehlig – Historic Ligatures
	GGOrangedlig – Discretionary Ligatures
	GGOrangess17 – Rare Digraphs

	Numbers and Sequencing
	GGOrangefrac – Fractions
	GGOrangenumr – Numerators
	GGOrangednom – Denominators
	GGOrangenalt – Alternate Annotation Forms
	GGOrangetnum – Tabular Figures
	GGOrangeonum – Oldstyle Figures
	GGOrangepnum – Proportional Figures
	GGOrangelnum – Lining Figures
	GGOrangezero – Slashed Zero
	GGOrangess09 – Alternate Figures

	Superscripts and Subscripts
	GGOrangesups – Superscripts
	GGOrangesubs – Subscripts

	Punctuation and Symbols
	GGOrangess18 – Old-Style Punctuation Spacing
	GGOrangecv69 – Variants of ⁊⹒ (Numbers=Uppercase,MonospacedU+204A / U+2E52, Tironian nota)
	GGOrangecv70 – Variants of . (period)
	GGOrangecv71 – Variant of · (Numbers=Uppercase,MonospacedU+00B7, middle dot)
	GGOrangecv72 – Variants of , (comma)
	GGOrangecv73 – Variants of ; (semicolon)
	GGOrangecv74 – Variants of ⹎ (Numbers=Uppercase,MonospacedU+2E4E, punctus elevatus)
	GGOrangecv75 – Variant of ! (exclamation mark)
	GGOrangecv76 – Variants of ? (question mark)
	GGOrangecv77 – Variant of ˜ (ASCII tilde)
	GGOrangecv78 – Variant of * (asterisk)
	GGOrangecv79 – Variants of / (slash)

	Spacing Abbreviations
	GGOrangecv80 – Variant of ꝝ (Numbers=Uppercase,MonospacedU+A75D, rum abbreviation)
	GGOrangecv82 – Variants of spacing ꝰ (Numbers=Uppercase,MonospacedU+A770)
	GGOrangecv83 – Variants of ꝫ (Numbers=Uppercase,MonospacedU+A76B, “et” abbreviation)
	GGOrangecv67 – Spacing zigzag (variant of Numbers=Uppercase,MonospacedU+00AF, spacing macron)
	GGOrangecv99 – Word omitted symbol (variant of Numbers=Uppercase,MonospacedU+00B0, degree)

	Combining Marks
	GGOrangecv84 – MUFI combining marks (variants of Numbers=Uppercase,MonospacedU+0304)
	GGOrangecv81 – Variants of ◌͛ (Numbers=Uppercase,MonospacedU+035B, combining zigzag above)
	GGOrangess10 – Character Entities for Combining Marks
	GGOrangess20 – Low Diacritics
	GGOrangecv85 – Variant of ◌ᷓ (U+1DD3, combining open a)
	GGOrangecv86 – Variant of ◌ᷘ (Numbers=Uppercase,MonospacedU+1DD8, combining insular d)
	GGOrangecv87 – Variant of ◌ᷣ (Numbers=Uppercase,MonospacedU+1DE3, combining r rotunda)
	GGOrangecv88 – Variant of combining dieresis (Numbers=Uppercase,MonospacedU+0308)
	GGOrangecv89 – Variant of ◌̅ (Numbers=Uppercase,MonospacedU+0305, combining overline)
	GGOrangecvGGOrange90 – Variants of ◌͞◌ (Numbers=Uppercase,MonospacedU+035E, combining double macron)
	GGOrangecv92 – Variant of combining breve below (Numbers=Uppercase,MonospacedU+032E)

	Currency and Weights
	GGOrangecv93 – Variants of ¤ (Numbers=Uppercase,MonospacedU+0044, generic currency sign)
	GGOrangecv94 – Variant of ℔ (Numbers=Uppercase,MonospacedU+2114)
	GGOrangecv95 – Variants of £ (Numbers=Uppercase,MonospacedU+00A3, British pound sign)
	GGOrangecv96 – Variant of ₰ (Numbers=Uppercase,MonospacedU+20B0, German penny sign)
	GGOrangecv97 – Variant of ƒ (Numbers=Uppercase,MonospacedU+0192, florin)
	GGOrangecv98 – Variant of ℥ (Numbers=Uppercase,MonospacedU+2125, Ounce sign)

	Ornaments
	GGOrangeornm – Ornaments
	Lady Junicode

	Required Features

	Non-MUFI Code Points
	Entering characters with tags
	Transcribing records
	A preliminary note on transcription
	Common combining marks
	Spacing characters
	Other formatting
	On the web

	The Enlarge Axis
	Junicode on the Web
	Subsetting Junicode
	Junicode and CSS/HTML

	Junicode and TeX
	Loading the packages
	Advanced Options
	Selecting Alternate Styles
	The Enlarge Axis
	Other Commands

	Encoded Glyphs in Junicode

