\magnification = \magstep1 \font\ninerm=amr9 \centerline{\bf An Elementary Sum\footnote*{\ninerm A nice little proof of a beautiful, well known theorem. This theorem was proved in 1736 by Leonhard Euler (1707--1783).}} \vskip 15 pt \nopagenumbers \centerline{\sl We show that $\sum_{n=1}^\infty{1\over{n^2}}={{\pi^2}\over{6}}$ ,} \centerline{\sl using only elementary trigonometry and algebra!} \vskip 15pt \noindent For the moment fix $n>0$ and for $1\leq k \leq n$ set $\theta_k = {{k\pi}\over{(2n + 1)}}$. The first step is to use De~Moivre's formula to construct a polynomial whose roots are $\cot^2(\theta_k), k = 1, \dots , n$. Recall that $$\eqalign{\sin[(2n+1)\theta]&=\Im(e^{(2n+1)i\theta})\cr &=\Im\{[\cos(\theta) + i \sin(\theta)]^{2n+1}\}\cr &=\sum_{k=0}^n(-1)^k{{2n+1}\choose{2k+1}}\sin^{2k+1} (\theta)\cos^{2(n-k)} (\theta)\cr &=\Bigl[\sum_{k=0}^n (-1)^k{{2n+1}\choose{2k+1}}\cot^{2(n-k)}(\theta) \Bigr]\Bigl[\sin^{2n+1}(\theta)\Bigr]\cr}$$ Since $\sin({{k\pi}\over{2n+1}})\neq 0$ for $k=1,\dots,n$, the roots of $p(x)=\sum_{k=0}^n{{2n+1}\choose{2k+1}} (-1)^kx^{n-k}$ are exactly $\cot^2( \theta_k)$. For any polynomial $p(x)=a_nx^n+a_{n-1} x^{n-1} + \dots + a_0$, the sum of the roots is equal to ${a_{n-1}}/{a_n}$. Therefore, $$\sum_{k=1}^n \cot^2(\theta_k)={{{2n+1}\choose{3}}\over{{2n+1}\choose{1}}}= {{(2n+1)2n(2n-1)}\over{3\cdot2\cdot(2n+1)}}={{n(2n-1)}\over{3}}.$$ $$\sum_{k=1}^n\csc^2(\theta_k)=\sum_{k=1}^n 1-\cot^2(\theta_k)= {{2(n+1)n}\over3}. $$ Also on $[0,1]$, we know that $\tan(x) \geq x \geq \sin(x)$. Thus, $$\tan(\theta_k)\geq \theta_k \geq \sin(\theta_k)$$ $$\cot^2(\theta_k)\leq {1\over{\theta_k^2}}\leq\csc^2(\theta_k)$$ $${{n(2n-1)}\over{3}}\leq\sum_{k=1}^n{1\over{\theta_k^2}} \leq{{2n(n+1)}\over3}$$ $${{\pi^2 n(2n-1)}\over{3(2n+1)^2}}\leq\sum_{k=1}^n{1\over{k^2}}\leq {{\pi^2 2n(n+1)}\over{3(2n+1)^2}}$$ An application of the sandwich theorem completes the proof: $$\lim_{n\to\infty}\sum_{k=1}^n {1\over{k^2}}={{\pi^2}\over6}.$$ \bye % % This example was typeset using TeX from Stanford University, % a QMS Lasergrafix Printer, and a driver from TAMU TUG. % For more information contact: % Norman W. Naugle Quality Micro Systems % P.O. Box 2736 1 Magnum Pass % College Station, TX 77841 Mobile, Alabama 36689 % (409) 845-3104 (205) 633-4300