Package ‘unnest’

November 23, 2025

Title Unnest Hierarchical Data Structures
Version 0.1

Description Fast flattening of hierarchical data structures (e.g. JSON, XML)
into data.frames with a flexible spec language.

License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.3.1

Suggests data.table, dplyr, knitr, repurrrsive, rmarkdown, testthat,
tibble, tidyr

VignetteBuilder knitr

URL https://github.com/vspinu/unnest/,

https://vspinu.github.io/unnest/

BugReports https://github.com/vspinu/unnest/issues
NeedsCompilation yes

Author Vitalie Spinu [aut, cre]

Maintainer Vitalie Spinu <spinuvit@gmail.com>
Repository CRAN

Date/Publication 2025-11-23 19:10:03 UTC

Contents
SPEC o e e e e e e e e e e e e
UNNESE o o o e
Index

https://github.com/vspinu/unnest/
https://vspinu.github.io/unnest/
https://github.com/vspinu/unnest/issues

spec

spec

Unnest spec

Description

Unnest spec is a nested list with the same structure as the nested json. It specifies how the deeply
nested lists ought to be unnested. spec() is a handy constructor for spec lists. s() is a shorthand

alias for spec().

Usage

spec(
selector = NULL,
as = NULL,
children = NULL,
groups = NULL,
include = NULL,
exclude = NULL,
stack = NULL,
process = NULL,
default = NULL

)

s(
selector = NULL,
as = NULL,
children = NULL,
groups = NULL,
include = NULL,
exclude = NULL,
stack = NULL,
process = NULL,
default = NULL

Arguments

selector A shorthand syntax for an include parameter. Can be a list or a character vector.

1.

When selector is a list or a character vector with length greater than 1,
each element is an include parameter at the corresponding level. For exam-
ple s(c("a", "b"), ...) isequivalent to s(include = "a", s(include =
"b", ...))

When selector is a character of length 1 and contains "/" characters it
is split with "/" first. For instance s(c("a", "b"), ...), s("a/b", ...)

unnest

as

children, ...

groups

include, exclude

stack

process

default

Value

and s("a", s("b", ...)) are all equivalent to the canonical s(include =
"a", s(include = "b", ...)). Components consisting entirely of digits
are converted to integers. For example s("a/2/b" ...) is equivalent to

s("a", s(2, s("b", ...0))
3. Multiple include fields can be separated with , . For example s("a/b,c/d")
is equivalent to s("a", s(include = c("b"”, "c"), s("d", ...)))

name for this field in the extracted data.frame

Unnamed list of children spec. ... is merged into children. children is part
of the canonical spec.

Named list of specs to be processed in parallel. The return value is a named list
of unnested data.frames. The results is the same as when each spec is unnested
separately except that dedupe parameter of unnest() will work across groups
and execution is faster because the nested list is traversed once regardless of the
number of groups.

A list, a numeric vector or a character vector specifying components to include
or exclude. A list can combine numeric indexes and character elements to ex-
tract.

Whether to stack this node (TRUE) or to spread it (FALSE). When stack is a
string an index column is created with that name.

Extra processing step for this element. Either NULL for no processing (the
default), "as_is" to return the entire element in a list column, "paste" to paste
elements together into a character column.

Default value to insert if the include specification hasn’t matched.

s(): a canonical spec - a list consumed by C++ unnesting routines.

Examples

s("a")
s("a//c2")
s("a/2/c2,cid")

unnest

Unnest lists

Description

Unnest nested lists into a flat data.frames.

Usage

unnest(
X!
spec = NULL,

unnest

dedupe = FALSE,

stack_atomic

= NULL,

process_atomic = NULL,
process_unnamed_lists = NULL,
cross_join = TRUE

Arguments

X
spec
dedupe

stack_atomic

process_atomic

a nested list to unnest
spec to use for unnesting. See spec().

whether to dedupe repeated elements. If TRUE, if a node is visited for a second
time and is not explicitly declared in the spec the node is skipped. This is
particularly useful with grouped specs.

Whether atomic leaf vectors should be stacked or not. If NULL, the default,
data.frame vectors are stacked, all others are spread.

Process spec for atomic leaf vectors. Either NULL for no processing (the de-
fault), "as_is" to return the entire element in a list column, "paste" to paste ele-
ments together into a character column.

process_unnamed_lists

cross_join

Value

How to process unnamed lists. Can be one of "as_is" - return a list column,
"exclude" - drop these elements unless they are explicitly included in the spec,
"paste" - return a character column, "stack" - automatically stack. If NULL (the
default), do nothing - process them normally according to the specs.

Specifies how the results from sibling nodes are joined (cbinded) together. The
shorter data.frames (fewer rows) can be either recycled to the max number of
rows across all joined components with cross_join = FALSE. Or, the results
are cross joined (produce all combinations of rows across all components) with
cross_join =TRUE. cross_join = TRUE is the default because of no data loss
and it is more conducive for earlier error detection with incorrect specs

A data.frame, data.table ora tibble as specified by the option unnest.return. type. Defaults

to data.frame.

Examples

x <- list(a = list(b

list(x
list(x

1:2, z = 10),
100:102)))

1l
[N

C

xxx <- list(x, x, x)

spreading

unnest

unnest(x, s("a"))

unnest(x, s("a"), stack_atomic = TRUE)

unnest(x, s("a/b"), stack_atomic = TRUE)

unnest(x, s("a/c"), stack_atomic = TRUE)

unnest(x, s("a"), stack_atomic = TRUE, cross_join = TRUE)
unnest(x, s("a//x"))

unnest(x, s("a//x,z"))

unnest(x, s("a/2/x,y"))

stacking

unnest(x, s("a/", stack = TRUE))

unnest(x, s("a/", stack = TRUE, as = "A"))

unnest(x, s("a/", stack = TRUE, as = "A"), stack_atomic = TRUE)
unnest(x, s("a/", stack = "id"), stack_atomic = TRUE)

unnest(x, s("a/", stack = "id", as = ""), stack_atomic = TRUE)

unnest(xxx, s(stack = "id"))
unnest(xxx, s(stack = "id"), stack_atomic = TRUE)
unnest(xxx, s(stack = "id", s("a/b/y/", stack = TRUE)))

exclusion
unnest(x, s("a/b/", exclude = "x"))

dedupe
unnest(x, s("a", s("b/y"), s("b")), stack_atomic = TRUE)
unnest(x, s("a", s("b/y"), s("b")), dedupe = TRUE, stack_atomic = TRUE)

grouping
unnest(xxx, stack_atomic = TRUE,
s(stack = TRUE,
groups = list(first = s("a/b/x,y"),
second = s("a/b"))))

unnest(xxx, stack_atomic = TRUE, dedupe = TRUE,
s(stack = TRUE,
groups = list(first = s("a/b/x,y"),
second = s("a’b"))))

processing as_is

str(unnest(xxx, s(stack = "id",

s("a/b/y", process = "as_is"),

s("a/c", process = "as_is"))))
str(unnest(xxx, s(stack = "id", s("a/b/", process = "as_is"))))
str(unnest(xxx, s(stack = "id", s("a/b", process = "as_is"))))

processing paste

str(unnest(x, s("a/b/y", process = "paste”)))

str(unnest(xxx, s(stack = TRUE, s("a/b/", process = "paste”))))
str(unnest(xxx, s(stack = TRUE, s("a/b", process = "paste”))))

default
unnest(x, s("a/b/c/", s("b", default = 100)))
unnest(x, s("a/b/c/", stack = "ix", s("b", default = 100)))

unnest

Index

s (spec), 2
spec, 2
spec(), 4

unnest, 3

	spec
	unnest
	Index

