## ----echo = FALSE, warning=FALSE, message = FALSE, results = 'hide'----------- cat("this will be hidden; use for general initializations.") library(superb) library(ggplot2) ## ----message=FALSE, echo=FALSE, fig.height=4, fig.width=3, fig.cap="**Figure 1**. Mean scores along with 95% confidence interval for two groups of students on the quality of learning behavior."---- superb( score ~ grp, dataFigure1, plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="(stand-alone)\n95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) ## ----message=FALSE, warning=FALSE, echo=TRUE---------------------------------- t.test(dataFigure1$score[dataFigure1$grp==1], dataFigure1$score[dataFigure1$grp==2], var.equal=T) ## ----message=FALSE, echo=TRUE------------------------------------------------- t.test(dataFigure1$score[dataFigure1$grp==1], mu=100) ## ----message=FALSE, echo=TRUE------------------------------------------------- t.test(dataFigure1$score[dataFigure1$grp==2], mu=105) ## ----message=FALSE, echo=TRUE, fig.height=4, fig.width=3, fig.cap="**Figure 2**. Mean scores along with difference-adjusted 95% confidence interval for two groups of students on the quality of learning behavior."---- superb( score ~ grp, dataFigure1, adjustments=list(purpose = "difference"), # the only new thing here plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="Difference-adjusted\n95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) ## ----message=FALSE, echo=TRUE, fig.height=4, fig.cap="**Figure 3**. Two representation of the data with unadjusted (left) and adjusted (right) 95% confidence intervals"---- library(gridExtra) plt1 <- superb( score ~ grp, dataFigure1, plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="(stand-alone)\n95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) plt2 <- superb( score ~ grp, dataFigure1, adjustments=list(purpose = "difference"), plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="Difference-adjusted\n95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) plt <- grid.arrange(plt1, plt2, ncol=2) ## ----message=FALSE, echo=TRUE, fig.height=4, fig.width=6, fig.cap="**Figure 4**. Two representations of the results with adjusted and unadjusted error bars on the same plot"---- # generate the two plots, nudging the error bars, using distinct colors, and # having the second plot's background transparent (with ``makeTransparent()`` ) plt1 <- superb( score ~ grp, dataFigure1, errorbarParams = list(color="blue",position = position_nudge(-0.05) ), plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="(red) Difference-adjusted 95% confidence intervals\n(blue) (stand-alone) 95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) plt2 <- superb( score ~ grp, dataFigure1, adjustments=list(purpose = "difference"), errorbarParams = list(color="red",position = position_nudge(0.05) ), plotStyle="line" ) + xlab("Group") + ylab("Score") + labs(title="(red) Difference-adjusted 95% confidence intervals\n(blue) (stand-alone) 95% confidence intervals") + coord_cartesian( ylim = c(85,115) ) + theme_gray(base_size=10) + scale_x_discrete(labels=c("1" = "Collaborative\ngames", "2" = "Unstructured\nactivity")) # transform the ggplots into "grob" so that they can be manipulated plt1g <- ggplotGrob(plt1) plt2g <- ggplotGrob(plt2 + makeTransparent() ) # put the two grob onto an empty ggplot (as the positions are the same, they will be overlayed) ggplot() + annotation_custom(grob=plt1g) + annotation_custom(grob=plt2g)