
Package ‘reprex’
July 6, 2024

Title Prepare Reproducible Example Code via the Clipboard

Version 2.1.1

Description Convenience wrapper that uses the 'rmarkdown' package to
render small snippets of code to target formats that include both code
and output. The goal is to encourage the sharing of small,
reproducible, and runnable examples on code-oriented websites, such as
<https://stackoverflow.com> and <https://github.com>, or in email. The
user's clipboard is the default source of input code and the default
target for rendered output. 'reprex' also extracts clean, runnable R
code from various common formats, such as copy/paste from an R
session.

License MIT + file LICENSE

URL https://reprex.tidyverse.org, https://github.com/tidyverse/reprex

BugReports https://github.com/tidyverse/reprex/issues

Depends R (>= 3.6)

Imports callr (>= 3.6.0), cli (>= 3.2.0), clipr (>= 0.4.0), fs, glue,
knitr (>= 1.23), lifecycle, rlang (>= 1.0.0), rmarkdown,
rstudioapi, utils, withr (>= 2.3.0)

Suggests covr, fortunes, miniUI, rprojroot, sessioninfo, shiny,
spelling, styler (>= 1.2.0), testthat (>= 3.2.1)

VignetteBuilder knitr

Config/Needs/website dplyr, tidyverse/tidytemplate

Config/testthat/edition 3

Config/testthat/parallel TRUE

Config/testthat/start-first knitr-options, venues, reprex

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

SystemRequirements pandoc (>= 2.0) - https://pandoc.org/

NeedsCompilation no

1

https://stackoverflow.com
https://github.com
https://reprex.tidyverse.org
https://github.com/tidyverse/reprex
https://github.com/tidyverse/reprex/issues

2 reprex

Author Jennifer Bryan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>),
Jim Hester [aut] (<https://orcid.org/0000-0002-2739-7082>),
David Robinson [aut],
Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Christophe Dervieux [aut] (<https://orcid.org/0000-0003-4474-2498>),
Posit Software, PBC [cph, fnd]

Maintainer Jennifer Bryan <jenny@posit.co>

Repository CRAN

Date/Publication 2024-07-06 13:50:01 UTC

Contents

reprex . 2
reprex_addin . 7
reprex_document . 8
reprex_locale . 10
reprex_options . 12
reprex_render . 14
reprex_venue . 15
un-reprex . 16

Index 19

reprex Render a reprex

Description

Run a bit of R code using rmarkdown::render() and write the rendered result to user’s clipboard.
If the clipboard is unavailable, the file containing the rendered result is opened for manual copy.
The goal is to make it easy to share a small reproducible example ("reprex"), e.g., in a GitHub
issue. Reprex source can be

• read from clipboard

• provided directly as expression, character vector, or string

• read from file

• read from current selection or active document in RStudio

reprex can also be used for syntax highlighting (with or without rendering); see below for more.

https://orcid.org/0000-0002-6983-2759
https://orcid.org/0000-0002-2739-7082
https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0003-4474-2498

reprex 3

Usage

reprex(
x = NULL,
input = NULL,
wd = NULL,
venue = c("gh", "r", "rtf", "html", "slack", "so", "ds"),
render = TRUE,
advertise = NULL,
session_info = opt(FALSE),
style = opt(FALSE),
comment = opt("#>"),
tidyverse_quiet = opt(TRUE),
std_out_err = opt(FALSE),
html_preview = opt(TRUE),
outfile = deprecated(),
show = deprecated(),
si = deprecated()

)

Arguments

x An expression. If not given, reprex() looks for code in input. If input is not
provided, reprex() looks on the clipboard.
When the clipboard is structurally unavailable, e.g., on RStudio Server or RStu-
dio Cloud, reprex() consults the current selection instead of the clipboard.

input Character. If has length one and lacks a terminating newline, interpreted as the
path to a file containing reprex code. Otherwise, assumed to hold reprex code as
character vector. When input specifies a filepath, it also determines the reprex
working directory and the location of all resulting files.

wd An optional filepath that is consulted when input is not a filepath. (By default,
all work is done, quietly, in a subdirectory of the session temp directory.)
The most common use of wd is to set wd = ".", which means "reprex right HERE
in the current working directory". Do this if you really must demonstrate some-
thing with local files.

venue Character. Must be one of the following (case insensitive):
• "gh" for GitHub-Flavored Markdown, the default
• "r" for a runnable R script, with commented output interleaved. Also useful

for Slack code snippets; select "R" from the "Type" drop-down menu to
enjoy nice syntax highlighting.

• "rtf" for Rich Text Format (not supported for un-reprexing)
• "html" for an HTML fragment suitable for inclusion in a larger HTML doc-

ument (not supported for un-reprexing)
• "slack" for pasting into a Slack message. Optimized for people who opt out

of Slack’s WYSIWYG interface. Go to Preferences > Advanced > Input
options and select "Format messages with markup". (If there is demand for
a second Slack venue optimized for use with WYSIWYG, please open an
issue to discuss.)

https://github.github.com/gfm/
https://slack.com/intl/en-ca/slack-tips/share-code-snippets
https://en.wikipedia.org/wiki/Rich_Text_Format

4 reprex

• "so" for Stack Overflow Markdown. Note: this is just an alias for "gh",
since Stack Overflow started to support CommonMark-style fenced code
blocks in January 2019.

• "ds" for Discourse, e.g., forum.posit.co. Note: this is currently just an alias
for "gh".

render Logical. Whether to call rmarkdown::render() on the templated reprex, i.e.
whether to actually run the code. Defaults to TRUE. Exists primarily for the sake
of internal testing.

advertise Logical. Whether to include a footer that describes when and how the reprex
was created. If unspecified, the option reprex.advertise is consulted and, if
that is not defined, default is TRUE for venues "gh", "html", "so", "ds" and
FALSE for "r", "rtf", "slack".

session_info Logical. Whether to include sessioninfo::session_info(), if available, or
sessionInfo() at the end of the reprex. When venue is "gh", the session info
is wrapped in a collapsible details tag. Read more about opt().

style Logical. Whether to set the knitr chunk option tidy = "styler", which re-
styles code with the styler package. Read more about opt().

comment Character. Prefix with which to comment out output, defaults to "#>". Read
more about opt().

tidyverse_quiet

Logical. Sets the options tidyverse.quiet and tidymodels.quiet, which
suppress (TRUE, the default) or include (FALSE) the startup messages for the
tidyverse and tidymodels packages. Read more about opt().

std_out_err Logical. Whether to append a section for output sent to stdout and stderr by the
reprex rendering process. This can be necessary to reveal output if the reprex
spawns child processes or system() calls. Note this cannot be properly inter-
leaved with output from the main R process, nor is there any guarantee that the
lines from standard output and standard error are in correct chronological order.
See callr::r() for more. Read more about opt().

html_preview Logical. Whether to show rendered output in a viewer (RStudio or browser).
Always FALSE in a noninteractive session. Read more about opt().

outfile [Deprecated] in favor of wd or providing a filepath to input. To reprex in
current working directory, use wd = "." now, instead of outfile = NA.

show [Deprecated] in favor of html_preview, for greater consistency with other R
Markdown output formats.

si [Deprecated] in favor of session_info.

Value

Character vector of rendered reprex, invisibly.

Details

The usual "code + commented output" is returned invisibly, written to file, and, whenever possible,
put on the clipboard. An HTML preview displays in RStudio’s Viewer pane, if available, or in the

https://stackoverflow.com/editing-help#syntax-highlighting
https://forum.posit.co/
https://styler.r-lib.org

reprex 5

default browser, otherwise. Leading "> " prompts, are stripped from the input code. Read more at
https://reprex.tidyverse.org/.

reprex sets specific knitr options:

• Chunk options default to collapse = TRUE, comment = "#>", error = TRUE. Note that error
= TRUE, because a common use case is bug reporting.

• reprex also sets knitr’s upload.fun. It defaults to knitr::imgur_upload() so figures pro-
duced by the reprex appear properly on GitHub, Stack Overflow, Discourse, and Slack. Note
that imgur_upload() requires the packages httr and xml2. When venue = "r", upload.fun
is set to identity(), so that figures remain local. In that case, you may also want to provide
a filepath to input or set wd, to control where the reprex files are written. You can supplement
or override these options with special comments in your code (see examples).

Error backtraces

To use rlang::last_error() or rlang::last_trace() within a reprex, you must place them in
a different "chunk" to the code that generates an error. The easiest way to do is to insert a line
containing the special comment #' after error-causing code:

f <- function() rlang::abort('foo')
f()
#'
rlang::last_error()
rlang::last_trace()

Read more in rlang’s documentation: Errors in RMarkdown.

Syntax highlighting

[Experimental]
A secondary use case for reprex is to produce syntax highlighted code snippets, with or without
rendering, to paste into applications like Microsoft Word, PowerPoint, or Keynote. Use venue =
"rtf" for this.

This feature is experimental and requires the installation of the highlight command line tool. The
"rtf" venue is documented in its own article

Examples

Not run:
put some code like this on the clipboard
(y <- 1:4)
mean(y)
reprex()

provide code as an expression
reprex(rbinom(3, size = 10, prob = 0.5))
reprex({y <- 1:4; mean(y)})
reprex({y <- 1:4; mean(y)}, style = TRUE)

https://reprex.tidyverse.org/
https://yihui.org/knitr/options/
https://rlang.r-lib.org/reference/rlang_backtrace_on_error.html#errors-in-rmarkdown
http://andre-simon.de/doku/highlight/en/highlight.php
https://reprex.tidyverse.org/articles/articles/rtf.html

6 reprex

note that you can include newlines in those brackets
in fact, that is often a good idea
reprex({

x <- 1:4
y <- 2:5
x + y

})

provide code via character vector
reprex(input = c("x <- 1:4", "y <- 2:5", "x + y"))

if just one line, terminate with '\n'
reprex(input = "rnorm(3)\n")

customize the output comment prefix
reprex(rbinom(3, size = 10, prob = 0.5), comment = "#;-)")

override a default chunk option
reprex({

#+ setup, include = FALSE
knitr::opts_chunk$set(collapse = FALSE)

#+ actual-reprex-code
(y <- 1:4)
median(y)

})

add prose, use general markdown formatting
reprex({

#' # A Big Heading
#'
#' Look at my cute example. I love the
#' [reprex](https://github.com/tidyverse/reprex#readme) package!
y <- 1:4
mean(y)

}, advertise = FALSE)

read reprex from file and write resulting files to that location
tmp <- file.path(tempdir(), "foofy.R")
writeLines(c("x <- 1:4", "mean(x)"), tmp)
reprex(input = tmp)
list.files(dirname(tmp), pattern = "foofy")

clean up
file.remove(list.files(dirname(tmp), pattern = "foofy", full.names = TRUE))

write reprex to file AND keep figure local too, i.e. don't post to imgur
tmp <- file.path(tempdir(), "foofy")
dir.create(tmp)
reprex({

#+ setup, include = FALSE
knitr::opts_knit$set(upload.fun = identity)

reprex_addin 7

#+ actual-reprex-code
#' Some prose
regular comment
(x <- 1:4)
median(x)
plot(x)
}, wd = tmp)

list.files(dirname(tmp), pattern = "foofy")

clean up
unlink(tmp, recursive = TRUE)

target venue = R, also good for email or Slack snippets
ret <- reprex({

x <- 1:4
y <- 2:5
x + y

}, venue = "R")
ret

target venue = html
ret <- reprex({

x <- 1:4
y <- 2:5
x + y

}, venue = "html")
ret

include prompt and don't comment the output
use this when you want to make your code hard to execute :)
reprex({

#+ setup, include = FALSE
knitr::opts_chunk$set(comment = NA, prompt = TRUE)

#+ actual-reprex-code
x <- 1:4
y <- 2:5
x + y

})

leading prompts are stripped from source
reprex(input = c("> x <- 1:3", "> median(x)"))

End(Not run)

reprex_addin Render a reprex, conveniently

Description

reprex_addin() opens an RStudio gadget and addin that allows you to say where the reprex source

https://shiny.rstudio.com/articles/gadgets.html
https://rstudio.github.io/rstudioaddins/

8 reprex_document

is (clipboard? current selection? active file? other file?) and to control a few other arguments.
Appears as "Render reprex" in the RStudio Addins menu.

reprex_selection() is an addin that reprexes the current selection, optionally customised by
options. Appears as "Reprex selection" in the RStudio Addins menu. Heavy users might want to
create a keyboard shortcut. Suggested shortcut: Cmd + Shift + R (macOS) or Ctrl + Shift + R
(Windows).

Usage

reprex_addin()

reprex_selection(venue = getOption("reprex.venue", "gh"))

Arguments

venue Character. Must be one of the following (case insensitive):

• "gh" for GitHub-Flavored Markdown, the default
• "r" for a runnable R script, with commented output interleaved. Also useful

for Slack code snippets; select "R" from the "Type" drop-down menu to
enjoy nice syntax highlighting.

• "rtf" for Rich Text Format (not supported for un-reprexing)
• "html" for an HTML fragment suitable for inclusion in a larger HTML doc-

ument (not supported for un-reprexing)
• "slack" for pasting into a Slack message. Optimized for people who opt out

of Slack’s WYSIWYG interface. Go to Preferences > Advanced > Input
options and select "Format messages with markup". (If there is demand for
a second Slack venue optimized for use with WYSIWYG, please open an
issue to discuss.)

• "so" for Stack Overflow Markdown. Note: this is just an alias for "gh",
since Stack Overflow started to support CommonMark-style fenced code
blocks in January 2019.

• "ds" for Discourse, e.g., forum.posit.co. Note: this is currently just an alias
for "gh".

reprex_document reprex output format

Description

This is an R Markdown output format designed specifically for making "reprexes", typically created
via the reprex() function, which ultimately renders the document with reprex_render(). It is a
heavily modified version of rmarkdown::md_document(). The arguments have different spheres
of influence:

• venue potentially affects input preparation and reprex_render().

• Add content to the primary input, prior to rendering:

https://docs.posit.co/ide/user/ide/guide/productivity/add-ins.html
https://docs.posit.co/ide/user/ide/guide/productivity/custom-shortcuts.html
https://github.github.com/gfm/
https://slack.com/intl/en-ca/slack-tips/share-code-snippets
https://en.wikipedia.org/wiki/Rich_Text_Format
https://stackoverflow.com/editing-help#syntax-highlighting
https://forum.posit.co/

reprex_document 9

– advertise

– session_info

– std_out_err (also consulted by reprex_render())

• Influence knitr package or chunk options:

– style

– comment

– tidyverse_quiet

RStudio users can create new R Markdown documents with the reprex_document() format using
built-in templates. Do File > New File > R Markdown ... > From Template and choose one of:

• reprex (minimal)

• reprex (lots of features)

Both include knit: reprex::reprex_render in the YAML, which causes the RStudio "Knit" but-
ton to use reprex_render(). If you render these documents yourself, you should do same.

Usage

reprex_document(
venue = c("gh", "r", "rtf", "html", "slack", "so", "ds"),
advertise = NULL,
session_info = opt(FALSE),
style = opt(FALSE),
comment = opt("#>"),
tidyverse_quiet = opt(TRUE),
std_out_err = opt(FALSE),
pandoc_args = NULL

)

Arguments

venue Character. Must be one of the following (case insensitive):

• "gh" for GitHub-Flavored Markdown, the default
• "r" for a runnable R script, with commented output interleaved. Also useful

for Slack code snippets; select "R" from the "Type" drop-down menu to
enjoy nice syntax highlighting.

• "rtf" for Rich Text Format (not supported for un-reprexing)
• "html" for an HTML fragment suitable for inclusion in a larger HTML doc-

ument (not supported for un-reprexing)
• "slack" for pasting into a Slack message. Optimized for people who opt out

of Slack’s WYSIWYG interface. Go to Preferences > Advanced > Input
options and select "Format messages with markup". (If there is demand for
a second Slack venue optimized for use with WYSIWYG, please open an
issue to discuss.)

• "so" for Stack Overflow Markdown. Note: this is just an alias for "gh",
since Stack Overflow started to support CommonMark-style fenced code
blocks in January 2019.

https://github.github.com/gfm/
https://slack.com/intl/en-ca/slack-tips/share-code-snippets
https://en.wikipedia.org/wiki/Rich_Text_Format
https://stackoverflow.com/editing-help#syntax-highlighting

10 reprex_locale

• "ds" for Discourse, e.g., forum.posit.co. Note: this is currently just an alias
for "gh".

advertise Logical. Whether to include a footer that describes when and how the reprex
was created. If unspecified, the option reprex.advertise is consulted and, if
that is not defined, default is TRUE for venues "gh", "html", "so", "ds" and
FALSE for "r", "rtf", "slack".

session_info Logical. Whether to include sessioninfo::session_info(), if available, or
sessionInfo() at the end of the reprex. When venue is "gh", the session info
is wrapped in a collapsible details tag. Read more about opt().

style Logical. Whether to set the knitr chunk option tidy = "styler", which re-
styles code with the styler package. Read more about opt().

comment Character. Prefix with which to comment out output, defaults to "#>". Read
more about opt().

tidyverse_quiet

Logical. Sets the options tidyverse.quiet and tidymodels.quiet, which
suppress (TRUE, the default) or include (FALSE) the startup messages for the
tidyverse and tidymodels packages. Read more about opt().

std_out_err Logical. Whether to append a section for output sent to stdout and stderr by the
reprex rendering process. This can be necessary to reveal output if the reprex
spawns child processes or system() calls. Note this cannot be properly inter-
leaved with output from the main R process, nor is there any guarantee that the
lines from standard output and standard error are in correct chronological order.
See callr::r() for more. Read more about opt().

pandoc_args Additional command line options to pass to pandoc

Value

An R Markdown output format to pass to rmarkdown::render().

Examples

reprex_document()

reprex_locale Render a reprex in a specific locale

Description

Render a reprex(), with control over the localization of error messages and aspects of the locale.
Note that these are related but distinct issues! Typical usage is for someone on a Spanish system to
create a reprex that is easier for an English-speaking audience to follow.

Usage

reprex_locale(..., language = "en", locale = NULL)

https://forum.posit.co/
https://styler.r-lib.org

reprex_locale 11

Arguments

... Inputs passed through to reprex().

language A string specifying the preferred language for messages. It is enacted via the
LANGUAGE environment variable, for the duration of the reprex() call. Exam-
ples: "en" for English and "fr" for French. See Details for more.

locale A named character vector, specifying aspects of the locale, in the Sys.setlocale()
sense. It is enacted by setting one or more environment variables, for the dura-
tion of the reprex() call. See Details for more.

Value

Character vector of rendered reprex, invisibly.

language

Use the language argument to express the preferred language of error messages. The output of
dir(system.file(package = "translations")) may provide some helpful ideas. The language
should generally follow "XPG syntax": a two-letter language code, optionally followed by other
modifiers.

Examples: "en", "de", "en_GB", "pt_BR".

locale

Use the locale argument only if you want to affect something like how day-of-the-week or month is
converted to character. You are less likely to need to set this than the language argument. You may
have more success setting specific categories, such as "LC_TIME", than multi-category shortcuts like
"LC_ALL" or "LANG". The locale values must follow the format dictated by your operating system
and the requested locale must be installed. On *nix systems, locale -a is a good way to see which
locales are installed. Note that the format for locale and language are different from each other
on Windows.

Examples: "en_CA.UTF-8" (macOS), "French_France.1252" (Windows).

See Also

• The Locale Names section of the GNU C docs, for more about XPG syntax

• The Internationalization and Localization section of the R Installation and Administration
manual

Examples

Not run:

if all you want to do is make sure messages are in English
reprex_locale("a" / 2)

change messages to a specific language
reprex_locale(

{

https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Internationalization

12 reprex_options

"a" / 2
},
language = "it"

)

reprex_locale(
{

"a" / 2
},
language = "fr_CA"

)

reprex_locale(
{

"a" / 2
},
language = "pt_BR"

)

get day-of-week and month to print in French (not Windows)
reprex_locale(

{
format(as.Date(c("2019-01-01", "2019-02-01")), "%a %b %d")

},
locale = c(LC_TIME = "fr_FR")

)

get day-of-week and month to print in French (Windows)
assumes that the relevant language is installed on the system
LC_TIME can also be specified as "French" or "French_France" here
reprex_locale(

{
format(as.Date(c("2019-01-01", "2019-02-01")), "%a %b %d")

},
locale = c(LC_TIME = "French_France.1252")

)

End(Not run)

reprex_options reprex options

Description

Some reprex() behaviour can be controlled via an option, providing a way for the user to set
personal defaults. The pattern for such option names is reprex.<arg>, where <arg> is an argument
of reprex(). Here are the main ones:

• reprex.advertise

• reprex.session_info (previously, reprex.si)

reprex_options 13

• reprex.style

• reprex.html_preview (previously, reprex.show)

• reprex.comment

• reprex.tidyverse_quiet

• reprex.std_out_err

A few more options exist, but are only relevant to specific situations:

• reprex.venue: Can be used to control the venue used by the reprex_selection() addin.

• reprex.current_venue: Read-only option that is set during reprex_render(). Other pack-
ages that want to generate reprex-compatible output can consult it via getOption("reprex.current_venue"),
if they want to tailor their output to the venue.

• reprex.clipboard: When FALSE, reprex makes no attempt to access the user’s clipboard,
ever. This exists mostly for internal use, i.e. we set it to FALSE when we detect use from RStu-
dio Server. But a user could set this to FALSE to explicitly opt-out of clipboard functionality.
A Linux user with no intention of installing xclip or xsel might also do this.

• reprex.highlight.hl_style: Only relevant to venue = "rtf. Details are in the article
reprex venue RTF.

• reprex.highlight.font: See above.

• reprex.highlight.font_size: See above.

• reprex.highlight.other: See above.

Here’s code you could put in .Rprofile to set reprex options. It would be rare to want non-default
behaviour for all of these! We only do so here for the sake of exposition:

options(
reprex.advertise = FALSE,
reprex.session_info = TRUE,
reprex.style = TRUE,
reprex.html_preview = FALSE,
reprex.comment = "#;-)",
reprex.tidyverse_quiet = FALSE,
reprex.std_out_err = TRUE,
reprex.venue = "html", # NOTE: only affects reprex_selection()!
reprex.highlight.hl_style = "acid", # NOTE: only affects RTF venue
reprex.highlight.font = "Andale Mono Regular",
reprex.highlight.font_size = 35,
reprex.highlight.other = "--line-numbers"

)

The function usethis::edit_r_profile() is handy for creating and/or opening your .Rprofile.

Explaining the opt() helper

Arguments that appear like so in reprex():

reprex(..., arg = opt(DEFAULT), ...)

https://reprex.tidyverse.org/articles/articles/rtf.html

14 reprex_render

get their value according to this logic:

user-specified value or, if not given,
getOption("reprex.arg") or, if does not exist,
DEFAULT

It’s shorthand for:

f(..., arg = getOption("reprex.arg", DEFAULT), ...)

This is not an exported function and should not be called directly.

reprex_render Render a document in a new R session

Description

This is a wrapper around rmarkdown::render() that enforces the "reprex" mentality. Here’s a
simplified version of what happens:

callr::r(
function(input) {
rmarkdown::render(input, envir = globalenv(), encoding = "UTF-8")

},
args = list(input = input),
spinner = is_interactive(),
stdout = std_file, stderr = std_file

)

Key features to note

• rmarkdown::render() is executed in a new R session, by using callr::r(). The goal is to
eliminate the leakage of objects, attached packages, and other aspects of session state from
the current session into the rendering session. Also, the system and user-level .Rprofiles are
ignored.

• Code is evaluated in the globalenv() of this new R session, which means that method dis-
patch works the way most people expect it to.

• The input file is assumed to be UTF-8, which is a knitr requirement as of v1.24.

• If the YAML frontmatter includes std_err_out: TRUE, standard output and error of the ren-
dering R session are captured in std_file, which is then injected into the rendered result.

reprex_render() is designed to work with the reprex_document() output format, typically through
a call to reprex(). reprex_render() may work with other R Markdown output formats, but it is
not well-tested.

reprex_venue 15

Usage

reprex_render(input, html_preview = NULL, encoding = "UTF-8")

Arguments

input The input file to be rendered. This can be a .R script or a .Rmd R Markdown
document.

html_preview Logical. Whether to show rendered output in a viewer (RStudio or browser).
Always FALSE in a noninteractive session. Read more about opt().

encoding The encoding of the input file. Note that the only acceptable value is "UTF-8",
which is required by knitr as of v1.24. This is exposed as an argument purely
for technical convenience, relating to the "Knit" button in the RStudio IDE.

Value

The output of rmarkdown::render() is passed through, i.e. the path of the output file.

Examples

Not run:
reprex_render("input.Rmd")

End(Not run)

reprex_venue Venue-specific shortcuts

Description

These are thin wrappers around reprex() that incorporate the target venue as a suffix in the func-
tion name, for easier access via auto-completion.

Usage

reprex_html(...)

reprex_r(...)

reprex_rtf(...)

reprex_slack(...)

Arguments

... Passed along to reprex().

16 un-reprex

un-reprex Un-render a reprex

Description

Recover clean, runnable code from a reprex captured in the wild and write it to user’s clipboard.
The code is also returned invisibly and optionally written to file. Three different functions address
various forms of wild-caught reprex:

• reprex_invert() attempts to reverse the effect of reprex(). When venue = "r", this just
calls reprex_clean().

• reprex_clean() removes commented output. This assumes that R code is top-level, possibly
interleaved with commented output, e.g., a displayed reprex copied from GitHub or the output
of reprex(..., venue = "R").

• reprex_rescue() removes lines of output and strips prompts from lines holding R com-
mands. This assumes that R code lines start with a prompt and that printed output is top-level,
e.g., what you’d if you’ve copied from the R Console.

Usage

reprex_invert(
input = NULL,
wd = NULL,
venue = c("gh", "r"),
comment = opt("#>"),
outfile = deprecated()

)

reprex_clean(
input = NULL,
wd = NULL,
comment = opt("#>"),
outfile = deprecated()

)

reprex_rescue(
input = NULL,
wd = NULL,
prompt = getOption("prompt"),
continue = getOption("continue"),
outfile = deprecated()

)

Arguments

input Character. If has length one and lacks a terminating newline, interpreted as the
path to a file containing the reprex. Otherwise, assumed to hold the reprex as

un-reprex 17

a character vector. If not provided, the clipboard is consulted for input. If the
clipboard is unavailable and we’re in RStudio, the current selection is used.

wd An optional filepath that is consulted when input is not a filepath. (By default,
all work is done, quietly, in a subdirectory of the session temp directory.)
The most common use of wd is to set wd = ".", which means "reprex right HERE
in the current working directory". Do this if you really must demonstrate some-
thing with local files.

venue Character. Must be one of the following (case insensitive):

• "gh" for GitHub-Flavored Markdown, the default
• "r" for a runnable R script, with commented output interleaved. Also useful

for Slack code snippets; select "R" from the "Type" drop-down menu to
enjoy nice syntax highlighting.

• "rtf" for Rich Text Format (not supported for un-reprexing)
• "html" for an HTML fragment suitable for inclusion in a larger HTML doc-

ument (not supported for un-reprexing)
• "slack" for pasting into a Slack message. Optimized for people who opt out

of Slack’s WYSIWYG interface. Go to Preferences > Advanced > Input
options and select "Format messages with markup". (If there is demand for
a second Slack venue optimized for use with WYSIWYG, please open an
issue to discuss.)

• "so" for Stack Overflow Markdown. Note: this is just an alias for "gh",
since Stack Overflow started to support CommonMark-style fenced code
blocks in January 2019.

• "ds" for Discourse, e.g., forum.posit.co. Note: this is currently just an alias
for "gh".

comment regular expression that matches commented output lines

outfile [Deprecated] in favor of wd or providing a filepath to input. To reprex in
current working directory, use wd = "." now, instead of outfile = NA.

prompt character, the prompt at the start of R commands

continue character, the prompt for continuation lines

Value

Character vector holding just the clean R code, invisibly

Examples

Not run:
a roundtrip: R code --> rendered reprex, as gfm --> R code
original <- file.path(tempdir(), "original.R")
writeLines(glue::glue("

#' Some text
#+ chunk-label-and-options-cannot-be-recovered, message = TRUE
(x <- 1:4)
#' More text
y <- 2:5
x + y"), con = original)

https://github.github.com/gfm/
https://slack.com/intl/en-ca/slack-tips/share-code-snippets
https://en.wikipedia.org/wiki/Rich_Text_Format
https://stackoverflow.com/editing-help#syntax-highlighting
https://forum.posit.co/

18 un-reprex

reprex(input = original, html_preview = FALSE, advertise = FALSE)
reprexed <- sub("[.]R$", "_reprex.md", original)
writeLines(readLines(reprexed))
unreprexed <- reprex_invert(input = reprexed)
writeLines(unreprexed)

clean up
file.remove(

list.files(dirname(original), pattern = "original", full.names = TRUE)
)

End(Not run)
Not run:
a roundtrip: R code --> rendered reprex, as R code --> original R code
code_in <- c(

"# a regular comment, which is retained",
"(x <- 1:4)",
"median(x)"

)
reprexed <- reprex(input = code_in, venue = "r", advertise = FALSE)
writeLines(reprexed)
code_out <- reprex_clean(input = reprexed)
writeLines(code_out)
identical(code_in, code_out)

End(Not run)
Not run:
rescue a reprex that was copied from a live R session
from_r_console <- c(

"> # a regular comment, which is retained",
"> (x <- 1:4)",
"[1] 1 2 3 4",
"> median(x)",
"[1] 2.5"

)
rescued <- reprex_rescue(input = from_r_console)
writeLines(rescued)

End(Not run)

Index

callr::r(), 4, 10, 14

knitr::imgur_upload(), 5

opt (reprex_options), 12
opt(), 4, 10, 15

reprex, 2
reprex(), 8, 10–16
reprex_addin, 7
reprex_clean (un-reprex), 16
reprex_document, 8
reprex_document(), 14
reprex_html (reprex_venue), 15
reprex_invert (un-reprex), 16
reprex_locale, 10
reprex_options, 12
reprex_r (reprex_venue), 15
reprex_render, 14
reprex_render(), 8, 9, 13
reprex_rescue (un-reprex), 16
reprex_rtf (reprex_venue), 15
reprex_selection (reprex_addin), 7
reprex_selection(), 13
reprex_slack (reprex_venue), 15
reprex_venue, 15
rlang::last_error(), 5
rlang::last_trace(), 5
rmarkdown::md_document(), 8
rmarkdown::render(), 2, 4, 10, 14, 15

sessionInfo(), 4, 10
sessioninfo::session_info(), 4, 10
Sys.setlocale(), 11

un-reprex, 16

19

	reprex
	reprex_addin
	reprex_document
	reprex_locale
	reprex_options
	reprex_render
	reprex_venue
	un-reprex
	Index

