
Package ‘flint’
September 21, 2025

Version 0.1.0

VersionNote sync configure.ac

Date 2025-09-21

Title Fast Library for Number Theory

Description An R interface to 'FLINT' <https://flintlib.org/>, a C library for
number theory. 'FLINT' extends GNU 'MPFR' <https://www.mpfr.org/>
and GNU 'MP' <https://gmplib.org/> with support for operations on
standard rings (the integers, the integers modulo n, finite fields,
the rational, p-adic, real, and complex numbers) as well as matrices
and polynomials over rings. 'FLINT' implements midpoint-radius
interval arithmetic, also known as ball arithmetic, in the real and
complex numbers, enabling computation in arbitrary precision with
rigorous propagation of rounding errors; see Johansson (2017)
<doi:10.1109/TC.2017.2690633>. Finally, 'FLINT' provides ball
arithmetic implementations of many special mathematical functions,
with high coverage of reference works such as the NIST Digital
Library of Mathematical Functions <https://dlmf.nist.gov/>. The R
interface defines S4 classes, generic functions, and methods for
representation and basic operations as well as plain R functions
mirroring and vectorizing entry points in the C library.

License GPL (>= 2)

URL https://github.com/jaganmn/flint

BugReports https://github.com/jaganmn/flint/issues

Depends R (>= 4.3), methods

Imports stats

SystemRequirements flint (>= 3), mpfr (>= 3.1), gmp

SystemRequirementsNote purely informational as we use configure tests

NeedsCompilation yes

Author Mikael Jagan [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3542-2938>),

Martin Maechler [ctb] (ORCID: <https://orcid.org/0000-0002-8685-9910>)

1

https://flintlib.org/
https://www.mpfr.org/
https://gmplib.org/
https://doi.org/10.1109/TC.2017.2690633
https://dlmf.nist.gov/
https://github.com/jaganmn/flint
https://github.com/jaganmn/flint/issues
https://orcid.org/0000-0002-3542-2938
https://orcid.org/0000-0002-8685-9910

2 flint-package

Maintainer Mikael Jagan <jaganmn@mcmaster.ca>

Repository CRAN

Date/Publication 2025-09-21 12:00:02 UTC

Contents
flint-package . 2
acb-class . 5
acf-class . 9
arb-class . 13
arb_dirichlet_zeta . 18
arb_hypgeom_2f1 . 20
arb_hypgeom_bessel_j . 21
arb_hypgeom_gamma . 22
arb_hypgeom_gamma_lower . 24
arb_lambertw . 26
arf-class . 27
asVector . 31
c.flint . 32
Constants . 33
flint-class . 34
fmpq-class . 40
fmpz-class . 44
format-methods . 48
mag-class . 49
OptionalCharacter-class . 53
Part . 54
ulong-class . 55

Index 61

flint-package R Package flint

Description

An R interface to FLINT, a C library for number theory.

Usage

flintABI()
flintClass(object)
flintLength(object, exact = TRUE)
flintPrec(prec = NULL)
flintRnd(rnd = NULL)
flintSize(object)
flintTriple(object)
flintVersion()

flint-package 3

Arguments

object an R object, typically inheriting from virtual class flint.

exact a logical indicating if the length should be represented exactly as an object of
class ulong.

prec a new default value for the precision of inexact floating-point operations, if non-
NULL. The value should be a positive integer indicating a number of bits.

rnd a new default value for the rounding mode of inexact floating-point operations,
if non-NULL. The value should be a character string indicating a rounding mode
for signed floating-point types. Valid characters are ‘[Uu]’ (towards positive
infinity), ‘[Dd]’ (towards negative infinity), ‘[Zz]’ (towards zero), ‘[Aa]’ (away
from zero), and ‘[Nn]’ (to nearest, with precedence to even significands).

Details

To report a bug or request a feature, use bug.report(package = "flint").

To render the change log, use news(package = "flint").

To render the index, use help(package = "flint")

To render a list of help topics for S4 classes, use help.search(package = "flint", keyword =
"classes")

To render a list of help topics for special mathematical functions, use help.search(package =
"flint", keyword = "math")

Value

flintABI returns the size in bits of C type long int, either 32 or 64. The value is determined when
package flint is configured. It is checked at configure time and at load time that linked C libraries
were configured for the same ABI.

flintClass returns a character string naming the direct nonvirtual subclass of virtual class flint
from which object inherits. (Hence a possible value is "ulong" but not the name of any sub-
class of ulong.) If object does not inherit from virtual class flint, then the return value is
NA_character_.

flintLength returns a representation of the length of object. If exact = TRUE, then the return
value is an object of class ulong representing the length exactly. Otherwise, if the length is less
than or equal to .Machine[["integer.max"]], then the return value is a traditional integer vector
representing the length exactly. Otherwise, the return value is a traditional double vector repre-
senting the length exactly if and only if n ≤ 2d − 1 or 2d+p ≤ n < 2d+p+1 and n is divisible
by 2p+1, where n is the length, d is .Machine[["double.digits"]], and p = 0, 1, Lengths
not exactly representable in double precision are rounded to the next representable number in the
direction of zero. Return values not representing the length exactly have an attribute off preserving
the rounding error (an integer in 1, . . . , 2p). If object does not inherit from virtual class flint,
then the return value is NA_integer_.

flintPrec returns the previous default precision.

flintRnd returns the previous default rounding mode.

flintSize returns an upper bound for the number of bytes used by object, as an object of class
object_size (following function object.size in package utils). If no members of the recursive

4 flint-package

structure share memory, then the upper bound is exact. Recursion starts at the address stored by
the R object, not at the address of the object itself. A corollary is that flintSize(object) is zero
for object of length zero. Another corollary is that the bytes counted by flintSize and the bytes
counted by object.size are disjoint. If object does not inherit from virtual class flint, then the
return value is NA_real_ (beneath the class).

flintTriple returns a character vector of length 3 containing the class of object, the length of
object, and the address stored by object. If object does not inherit from virtual class flint, then
all of the elements are NA.

flintVersion returns a named list of numeric versions with elements:

package the R package version.

flint.h the FLINT header version.

libflint the FLINT library version.

mpfr.h the GNU MPFR header version.

libmpfr the GNU MPFR library version.

gmp.h the GNU MP header version.

libgmp the GNU MP library version.

Header versions are determined at compile time. Library versions are determined at compile time
(static linking) or at load time (dynamic linking).

Author(s)

Mikael Jagan <jaganmn@mcmaster.ca>

References

FLINT Team (2025). FLINT: Fast Library for Number Theory. https://flintlib.org/

Examples

flintABI()

oprec <- flintPrec()
nprec <- 100L
stopifnot(identical(flintPrec(nprec), oprec),

identical(flintPrec(), nprec),
identical(flintPrec(oprec), nprec),
identical(flintPrec(), oprec))

ornd <- flintRnd()
nrnd <- "Z"
stopifnot(identical(flintRnd(nrnd), ornd),

identical(flintRnd(), nrnd),
identical(flintRnd(ornd), nrnd),
identical(flintRnd(), ornd))

flintVersion()

https://flintlib.org/

acb-class 5

acb-class Arbitrary Precision Floating-Point Complex Numbers with Error
Bounds

Description

Class acb extends virtual class flint. It represents vectors of complex numbers with error bounds
on the real and imaginary parts. Elements are specified by two pairs of mixed format floating-point
numbers: an arb real part and an arb imaginary part, each specified by an arf midpoint and a mag
radius.

Usage

Class generator functions

acb(x = 0i, length = 0L, names = NULL, real = 0, imag = 0)

acb.array(x = 0i, dim = length(x), dimnames = NULL, real = 0, imag = 0)

Arguments

x an atomic or flint vector containing data for conversion to acb.
length a numeric vector of length one giving the length of the return value. If that

exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

real, imag atomic or flint vectors containing data for conversion to arb. Use these for
initialization “by parts” (real and imaginary).

Details

The class generator function has six distinct usages:

acb()
acb(length=)
acb(x)
acb(x, length=)
acb(real=, imag=)
acb(real=, imag=, length=)

6 acb-class

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. The fifth and sixth usages, in which either of real and imag can be
missing, use arb(real) and arb(imag) to separately initialize the real and imaginary parts of the
acb return value.

Attempts to recycle real, imag, or x of length zero to nonzero length are an error.

Usage of acb.array is modelled after array.

Value

An acb vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real and imaginary parts of complex numbers are rounded according to the default
precision and rounding mode set by flintPrec and flintRnd. Ball midpoints are the numbers
obtained by rounding. Ball radii are upper bounds on the absolute errors incurred by rounding.

Character strings are scanned first for a real part then for an imaginary part. They can use any
of three formats: "sa", "tbi", and "satbi", where, recursively, each of a and b have the format
"(km+/-r)", defining a ball for each of the real and imaginary parts. k and m define the sign and
absolute value of the signed ball midpoints, and r defines the unsigned ball radii. k can be empty if
the ball midpoint is NaN or non-negative. s and t are unary or binary plus or minus to be reconciled
with k ; they are optional except in the third format where t is mandatory.

The sequences km and r are converted using function mpfr_strtofr from the GNU MPFR library
with argument base set to 0 and argument rnd set according to the default rounding mode (for
the midpoint, whereas the radius is always rounded towards Inf); see https://www.mpfr.org/
mpfr-current/mpfr.html#Assignment-Functions.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

Due to constraints imposed by generic functions, methods typically do not provide a formal ar-
gument prec allowing for a precision to be indicated in the function call. Such methods use the
current default precision set by flintPrec.

! signature(x = "acb"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "acb", y = "acb"):
signature(x = "acb", y = "ANY"):
signature(x = "ANY", y = "acb"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions
https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions

acb-class 7

+ signature(e1 = "acb", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "acb", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "acb"):
mathematical functions of one argument; see S4groupGeneric.

Math signature(x = "acb"):
mathematical functions of one argument; see S4groupGeneric. Member functions floor,
ceiling, trunc, cummin, cummax are not implemented.

Math2 signature(x = "acb"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "acb", e2 = "acb"):
signature(e1 = "acb", e2 = "ANY"):
signature(e1 = "ANY", e2 = "acb"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "acb"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an acb vector of length 1 or 2 (sum, prod). Member functions min, max,
range are not implemented.

anyNA signature(x = "acb"):
returns TRUE if any element of x has real or imaginary part with midpoint NaN, FALSE other-
wise.

as.vector signature(x = "acb"):
returns as.vector(y, mode), where y is a complex vector containing the result of convert-
ing the midpoints of the real and imaginary parts of x to the range of double, rounding if the
value is not exactly representable in double precision. The rounding mode is to the nearest
representable number (with precedence to even significands in case of ties), unless a mid-
point exceeds .Machine[["double.xmax"]] in absolute value, in which case -Inf or Inf is
introduced with a warning. Coercion to types "character", "symbol" (synonym "name"),
"pairlist", "list", and "expression", which are not “number-like”, is handled specially.
See also asVector.

backsolve signature(r = "acb", x = "acb"):
signature(r = "acb", x = "ANY"):
signature(r = "ANY", x = "acb"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices.

8 acb-class

chol signature(x = "acb"):
returns the upper triangular Cholesky factor of the positive definite matrix whose upper trian-
gular part is the upper triangular part of x (discarding imaginary parts of diagonal entries).

chol2inv signature(x = "acb"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor is
the upper triangular part of x (discarding imaginary parts of diagonal entries).

coerce signature(from = "ANY", to = "acb"):
returns the value of acb(from).

colSums, colMeans signature(x = "acb"):
returns an acb vector or array containing the column sums or means of x, defined as sums or
means over dimensions 1:dims.

det signature(x = "arb"):
returns the determinant of x as an acb vector of length 1.

determinant signature(x = "acf"):
returns a list with components modulus and argument specifying the determinant of x, fol-
lowing the base function (except for the use of argument instead of sign), hence determinant.

format signature(x = "acb"):
returns a character vector suitable for printing, using string format "(m +/- r)+(m +/- r)i"
and scientific format for each m and r. Optional arguments control the output; see format-methods.

is.finite signature(x = "acb"):
returns a logical vector indicating which elements of x do not have real or imaginary part with
midpoint NaN, -Inf, or Inf or radius Inf.

is.infinite signature(x = "acb"):
returns a logical vector indicating which elements of x have real or imaginary part with mid-
point -Inf or Inf or radius Inf.

is.na, is.nan signature(x = "acb"):
returns a logical vector indicating which elements of x have real or imaginary part with mid-
point NaN.

is.unsorted signature(x = "acb"):
signals an error indicating that <= is not a total order on the range of arb; see xtfrm below.

log signature(x = "acb"):
returns the logarithm of the argument. The natural logarithm is computed by default (when
optional argument base is unset).

mean signature(x = "acb"):
returns the arithmetic mean.

rowSums, rowMeans signature(x = "acb"):
returns an acb vector or array containing the row sums or means of x, defined as sums or
means over dimensions (dims+1):length(dim(x)).

solve signature(a = "acb", b = "acb"):
signature(a = "acb", b = "ANY"):
signature(a = "ANY", b = "acb"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices.

acf-class 9

xtfrm signature(x = "acb"):
signals an error indicating that <= is not a total order on the range of arb: a <= b || b <= a is
is not TRUE for all finite a and b of class arb. Thus, direct sorting of acb, which is based on
arb, is not supported. Users wanting to order the midpoints of the real and imaginary parts
should operate on Mid(Real(x)) and Mid(Imag(x)).

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/acb.html

Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8), 1281-1292. doi:10.1109/TC.2017.2690633

See Also

Virtual class flint. Generic functions Real and Imag and their replacement forms for getting and
setting real and imaginary parts.

Examples

showClass("acb")
showMethods(classes = "acb")

acf-class Arbitrary Precision Floating-Point Complex Numbers

Description

Class acf extends virtual class flint. It represents vectors of arbitrary precision floating-point
complex numbers. Elements have real and imaginary parts, each with arbitrary precision significand
and exponent. The underlying C type can represent NaN, -Inf, and Inf real and imaginary parts.

Note that package stats exports a function acf, referring to autocovariance and autocorrelation
functions of time series. It returns objects of informal S3 class acf, for which a small number
of informal S3 methods are registered. The formal S4 class and methods documented here are
unrelated.

The class generator functions are named ACF and ACF.array instead of acf and acf.array because
an exported function named acf would mask the function in package stats.

Usage

Class generator functions

ACF(x = 0i, length = 0L, names = NULL, real = 0, imag = 0)

ACF.array(x = 0i, dim = length(x), dimnames = NULL, real = 0, imag = 0)

https://flintlib.org/doc/acb.html
https://doi.org/10.1109/TC.2017.2690633

10 acf-class

Arguments

x an atomic or flint vector containing data for conversion to acf.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

real, imag atomic or flint vectors containing data for conversion to arf. Use these instead
of x for initialization “by parts” (real and imaginary).

Details

The class generator function has six distinct usages:

acf.()
acf.(length=)
acf.(x)
acf.(x, length=)
acf.(real=, imag=)
acf.(real=, imag=, length=)

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. The fifth and sixth usages, in which either of real and imag can be
missing, use arf(real) and arf(imag) to separately initialize the real and imaginary parts of the
acf return value.

Attempts to recycle real, imag, or x of length zero to nonzero length are an error.

Usage of acf.array is modelled after array.

Value

An acf vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real and imaginary parts of complex numbers are rounded according to the default
precision and rounding mode set by flintPrec and flintRnd.

Character strings are scanned first for a real part then for an imaginary part. They can use any of
three formats: "sa", "tbi", and "satbi", where s and a define the sign and absolute value of the

acf-class 11

real part and t and b define the sign and absolute value of the imaginary part. s can be empty if the
real part is NaN or non-negative. t can be empty if the imaginary part is NaN or non-negative, but
only in the second format.

The sequences sa and tb are converted using function mpfr_strtofr from the GNU MPFR library
with argument base set to 0 and argument rnd set according to the default rounding mode; see
https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

Due to constraints imposed by generic functions, methods typically do not provide a formal ar-
gument prec allowing for a precision to be indicated in the function call. Such methods use the
current default precision set by flintPrec.

! signature(x = "acf"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "acf", y = "acf"):
signature(x = "acf", y = "ANY"):
signature(x = "ANY", y = "acf"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call. The
return value is approximate insofar that it may not be correctly rounded.

+ signature(e1 = "acf", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "acf", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "acf"):
mathematical functions of one argument; see S4groupGeneric.

Math signature(x = "acf"):
mathematical functions of one argument; see S4groupGeneric. Member functions floor,
ceiling, trunc, cummin, cummax are not implemented.

Math2 signature(x = "acf"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "acf", e2 = "acf"):
signature(e1 = "acf", e2 = "ANY"):
signature(e1 = "ANY", e2 = "acf"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions

12 acf-class

Summary signature(x = "acf"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an acf vector of length 1 or 2 (sum, prod). Member functions min, max,
range are not implemented.

anyNA signature(x = "acf"):
returns TRUE if any element of x has real or imaginary part NaN, FALSE otherwise.

as.vector signature(x = "acf"):
returns as.vector(y, mode), where y is a complex vector containing the result of con-
verting the real and imaginary parts of x to the range of double, rounding if the value is
not exactly representable in double precision. The rounding mode is to the nearest repre-
sentable number (with precedence to even significands in case of ties), unless parts exceed
.Machine[["double.xmax"]] in absolute value, in which case -Inf or Inf is introduced
with a warning. Coercion to types "character", "symbol" (synonym "name"), "pairlist",
"list", and "expression", which are not “number-like”, is handled specially. See also
asVector.

backsolve signature(r = "acf", x = "acf"):
signature(r = "acf", x = "ANY"):
signature(r = "ANY", x = "acf"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices.

chol signature(x = "acf"):
returns the upper triangular Cholesky factor of the positive definite matrix whose upper trian-
gular part is the upper triangular part of x (discarding imaginary parts of diagonal entries).

chol2inv signature(x = "acf"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor is
the upper triangular part of x (discarding imaginary parts of diagonal entries).

coerce signature(from = "ANY", to = "acf"):
returns the value of acf.(from).

colSums, colMeans signature(x = "acf"):
returns an acf vector or array containing the column sums or means of x, defined as sums or
means over dimensions 1:dims.

det signature(x = "acf"):
returns the determinant of x as an acf vector of length 1.

determinant signature(x = "acf"):
returns a list with components modulus and argument specifying the determinant of x, follow-
ing the base function (except for the use of argument instead of sign), hence see determinant.

format signature(x = "acf"):
returns a character vector suitable for printing, using string format "a+bi" and scientific for-
mat for each a and b. Optional arguments control the output; see format-methods.

arb-class 13

is.finite signature(x = "acf"):
returns a logical vector indicating which elements of x do not have real or imaginary part NaN,
-Inf, or Inf.

is.infinite signature(x = "acf"):
returns a logical vector indicating which elements of x have real or imaginary part -Inf or
Inf.

is.na, is.nan signature(x = "acf"):
returns a logical vector indicating which elements of x have real or imaginary part NaN.

is.unsorted signature(x = "acf"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE) by real part then by imaginary part.

mean signature(x = "acf"):
returns the arithmetic mean.

rowSums, rowMeans signature(x = "acf"):
returns an acf vector or array containing the row sums or means of x, defined as sums or
means over dimensions (dims+1):length(dim(x)).

solve signature(a = "acf", b = "acf"):
signature(a = "acf", b = "ANY"):
signature(a = "ANY", b = "acf"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices.

xtfrm signature(x = "acf"):
returns a numeric vector that sorts in the same order as x. The permutation order(xtfrm(x),
...) orders x first by its real part then by its imaginary part, with the caveat that all a+NaNi
and NaN+bi have equal precedence (for compatibility with base).

See Also

Virtual class flint. Generic functions Real and Imag and their replacement forms for getting and
setting real and imaginary parts.

Examples

showClass("acf")
showMethods(classes = "acf")

arb-class Arbitrary Precision Floating-Point Real Numbers with Error Bounds

14 arb-class

Description

Class arb extends virtual class flint. It represents vectors of arbitrary precision floating-point
real numbers with error bounds. Elements are specified by a pair of mixed format floating-point
numbers: an arf midpoint and a mag radius.

Arithmetic on arb vectors is midpoint-radius interval arithmetic, also known as ball arithmetic,
enabling computation with rigorous propagation of errors. Logic and comparison involving arb
vectors are defined as follows: unary op(x) is true if and only if op is true for all elements of the
interval x, and binary op(x, y) is true if and only if op is true for all elements of the Cartesian
product of the intervals x and y. A corollary is that the operator <= does not define a total order on
the range of arb (that is, the set of intervals [m− r,m+ r]), and a consequence is that methods for
generic functions that necessitate a total order tend to signal an error.

Usage

Class generator functions

arb(x = 0, length = 0L, names = NULL, mid = 0, rad = 0)

arb.array(x = 0, dim = length(x), dimnames = NULL, mid = 0, rad = 0)

Arguments

x an atomic or flint vector containing data for conversion to arb.
length a numeric vector of length one giving the length of the return value. If that

exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

mid, rad atomic or flint vectors containing data for conversion to arf and mag, respec-
tively. Use these for initialization “by parts” (midpoint and radius).

Details

The class generator function has six distinct usages:

arb()
arb(length=)
arb(x)
arb(x, length=)
arb(mid=, mid=)
arb(mid=, mid=, length=)

arb-class 15

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. The fifth and sixth usages, in which either of mid and rad can be
missing, use arf(mid) and mag(rad) to separately initialize the midpoints and radii of the arb
return value.

Attempts to recycle mid, rad, or x of length zero to nonzero length are an error.

Usage of arb.array is modelled after array.

Value

An arb vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real parts of complex numbers are rounded according to the default precision
and rounding mode set by flintPrec and flintRnd. Ball midpoints are the numbers obtained by
rounding. Ball radii are upper bounds on the absolute errors incurred by rounding. Imaginary parts
of complex numbers are discarded.

Character strings are scanned for format "s(km+/-r)", where k and m define the sign and absolute
value of the signed ball midpoint, and r defines the unsigned ball radius. k can be empty if the ball
midpoint is NaN or non-negative. s is an optional unary plus or minus to be reconciled with k .

The sequences km and r are converted using function mpfr_strtofr from the GNU MPFR library
with argument base set to 0 and argument rnd set according to the default rounding mode (for
the midpoint, whereas the radius is always rounded towards Inf); see https://www.mpfr.org/
mpfr-current/mpfr.html#Assignment-Functions.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

Due to constraints imposed by generic functions, methods typically do not provide a formal ar-
gument prec allowing for a precision to be indicated in the function call. Such methods use the
current default precision set by flintPrec.

! signature(x = "arb"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "arb", y = "arb"):
signature(x = "arb", y = "ANY"):
signature(x = "ANY", y = "arb"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

+ signature(e1 = "arb", e2 = "missing"):
returns a copy of the argument.

https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions
https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions

16 arb-class

- signature(e1 = "arb", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "arb"):
mathematical functions of one argument; see S4groupGeneric.

Math signature(x = "arb"):
mathematical functions of one argument; see S4groupGeneric.

Math2 signature(x = "arb"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "arb", e2 = "arb"):
signature(e1 = "arb", e2 = "ANY"):
signature(e1 = "ANY", e2 = "arb"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "arb"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an arb vector of length 1 or 2 (sum, prod, min, max, range).

anyNA signature(x = "arb"):
returns TRUE if any element of x has midpoint NaN, FALSE otherwise.

as.vector signature(x = "arb"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
the midpoints of x to the range of double, rounding if the value is not exactly representable in
double precision. The rounding mode is to the nearest representable number (with precedence
to even significands in case of ties), unless a midpoint exceeds .Machine[["double.xmax"]]
in absolute value, in which case -Inf or Inf is introduced with a warning. Coercion to
types "character", "symbol" (synonym "name"), "pairlist", "list", and "expression",
which are not “number-like”, is handled specially. See also asVector.

backsolve signature(r = "arb", x = "arb"):
signature(r = "arb", x = "ANY"):
signature(r = "ANY", x = "arb"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices.

chol signature(x = "arb"):
returns the upper triangular Cholesky factor of the positive definite matrix whose upper trian-
gular part is the upper triangular part of x.

chol2inv signature(x = "arb"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor is
the upper triangular part of x.

arb-class 17

coerce signature(from = "ANY", to = "arb"):
returns the value of arb(from).

colSums, colMeans signature(x = "arb"):
returns an arb vector or array containing the column sums or means of x, defined as sums or
means over dimensions 1:dims.

det signature(x = "arb"):
returns the determinant of x as an arb vector of length 1.

determinant signature(x = "arb"):
returns a list with components modulus and sign specifying the determinant of x, following
the base function, hence see determinant. The sign is NA if the interval computed by det(x)
contains both negative numbers and positive numbers.

format signature(x = "arb"):
returns a character vector suitable for printing, using string format "(m +/- r)" and scientific
format for m and r. Optional arguments control the output; see format-methods.

is.finite signature(x = "arb"):
returns a logical vector indicating which elements of x do not have midpoint NaN, -Inf, or Inf
or radius Inf.

is.infinite signature(x = "arb"):
returns a logical vector indicating which elements of x have midpoint -Inf or Inf or radius
Inf.

is.na, is.nan signature(x = "arb"):
returns a logical vector indicating which elements of x have midpoint NaN.

is.unsorted signature(x = "arb"):
signals an error indicating that <= is not a total order on the range of arb; see xtfrm below.

log signature(x = "arb"):
returns the logarithm of the argument. The natural logarithm is computed by default (when
optional argument base is unset).

mean signature(x = "arb"):
returns the arithmetic mean.

rowSums, rowMeans signature(x = "arb"):
returns an arb vector or array containing the row sums or means of x, defined as sums or
means over dimensions (dims+1):length(dim(x)).

solve signature(a = "arb", b = "arb"):
signature(a = "arb", b = "ANY"):
signature(a = "ANY", b = "arb"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices.

xtfrm signature(x = "arb"):
signals an error indicating that <= is not a total order on the range of arb: a <= b || b <= a is
is not TRUE for all finite a and b of class arb. Thus, direct sorting of arb is not supported.
Users wanting to order the midpoints should operate on Mid(x).

18 arb_dirichlet_zeta

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/arb.html

Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8), 1281-1292. doi:10.1109/TC.2017.2690633

See Also

Virtual class flint. Generic functions Mid and Rad and their replacement forms for getting and
setting midpoints and radii.

Examples

showClass("arb")
showMethods(classes = "arb")

arb_dirichlet_zeta Zeta and Related Functions

Description

Compute the Riemann zeta function, the Hurwitz zeta function, or Lerch’s transcendent. Lerch’s
transcendent Φ(z, s, a) is defined by

∞∑
k=0

zk

(k + a)s

for |z| < 1 and by analytic continuation elsewhere in the z-plane. The Riemann and Hurwitz zeta
functions are the special cases ζ(s) = Φ(1, s, 1) and ζ(s, a) = Φ(1, s, a), respectively. See the
references for restrictions on s and a.

Usage

arb_dirichlet_zeta(s, prec = flintPrec())
acb_dirichlet_zeta(s, prec = flintPrec())

arb_dirichlet_hurwitz(s, a = 1, prec = flintPrec())
acb_dirichlet_hurwitz(s, a = 1, prec = flintPrec())

arb_dirichlet_lerch_phi(z = 1, s, a = 1, prec = flintPrec())
acb_dirichlet_lerch_phi(z = 1, s, a = 1, prec = flintPrec())

Arguments

z, s, a numeric, complex, arb, or acb vectors.

prec a numeric or slong vector indicating the desired precision as a number of bits.

https://flintlib.org/doc/arb.html
https://doi.org/10.1109/TC.2017.2690633

arb_dirichlet_zeta 19

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/acb_dirichlet.
html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/25

See Also

Classes arb and acb.

Examples

dzet <- acb_dirichlet_zeta
dhur <- acb_dirichlet_hurwitz
dler <- acb_dirichlet_lerch_phi

Somewhat famous particular values :
debugging <- tolower(Sys.getenv("R_FLINT_CHECK_EXTRA")) == "true"

s <- acb(x = c(-1, 0, 2, 4))
zeta.s <- acb(x = c(-1/12, -1/2, pi^2/6, pi^4/90))
stopifnot(all.equal(dzet(s), zeta.s),

all.equal(dhur(s, 1), zeta.s),
!debugging ||
{
print(cbind(as.complex(dler(1, s, 1)), as.complex(zeta.s)))
all.equal(dler(1, s, 1), zeta.s) # FLINT bug, report this
})

set.seed(0xabcdL)
r <- 10L
eps <- 0x1p-4
a <- flint:::complex.runif(r, modulus = c(0, 1/eps))
z.l1 <- flint:::complex.runif(r, modulus = c(0, 1-eps))
z.g1 <- flint:::complex.runif(r, modulus = c(1+eps, 1/eps))
z <- acb(x = c(z.l1, z.g1))

A relation with the hypergeometric function from
http://dlmf.nist.gov/25.14.E3_3 :
h2f1 <- acb_hypgeom_2f1
stopifnot(all.equal(dler(z.l1, 1, a), h2f1(a, 1, a + 1, z.l1)/a))

TODO: test values also for z[Mod(z) > 1] ...

https://flintlib.org/doc/acb_dirichlet.html
https://flintlib.org/doc/acb_dirichlet.html
https://dlmf.nist.gov/25

20 arb_hypgeom_2f1

arb_hypgeom_2f1 Hypergeometric Functions

Description

Computes the principal branch of the hypergeometric function 2F1(a, b, c, z), defined by

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

for |z| < 1 and by analytic continuation elsewhere in the z-plane, or the principal branch of the
regularized hypergeometric function 2F1(a, b, c, z)/Γ(c).

Usage

arb_hypgeom_2f1(a, b, c, x, flags = 0L, prec = flintPrec())
acb_hypgeom_2f1(a, b, c, z, flags = 0L, prec = flintPrec())

Arguments

a, b, c, x, z numeric, complex, arb, or acb vectors.

flags an integer vector. The lowest bit of the integer element(s) indicates whether to
regularize. Later bits indicate special cases for which an alternate algorithm may
be used. Non-experts should use flags = 0L or 1L, leaving the later bits unset.

prec a numeric or slong vector indicating the desired precision as a number of bits.

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.
html, https://flintlib.org/doc/acb_hypgeom.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/15

See Also

Classes arb and acb.

https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/acb_hypgeom.html
https://dlmf.nist.gov/15

arb_hypgeom_bessel_j 21

Examples

h2f1 <- acb_hypgeom_2f1

set.seed(0xbcdeL)
r <- 10L
eps <- 0x1p-4
z.l1 <- flint:::complex.runif(r, modulus = c(0, 1-eps))
z.g1 <- flint:::complex.runif(r, modulus = c(1+eps, 1/eps))
z <- acb(x = c(z.l1, z.g1))

Elementary special cases from http://dlmf.nist.gov/15.4 :
stopifnot(all.equal(h2f1(1.0, 1.0, 2.0, z),

-log(1 - z)/z),
all.equal(h2f1(0.5, 1.0, 1.5, z^2),

0.5 * (log(1 + z) - log(1 - z))/z),
all.equal(h2f1(0.5, 1.0, 1.5, -z^2),

atan(z)/z))
[see more in ../tests/hypgeom.R]

arb_hypgeom_bessel_j Bessel and Related Functions

Description

Compute the principal branches of the (modified) Bessel functions of the first and second kind. The
Bessel functions of the first and second kind solve Bessel’s equation

z2
d2w
dz2

+ z
dw
dz

+ (z2 − ν2)w = 0

and are given by

Jν(z) = (12z)
ν

∞∑
k=0

(−1)k
(14z

2)k

k!Γ(ν + k + 1)

Yν(z) =
Yν(z) cos(νπ)− J−ν(z)

sin(νπ)

The modified Bessel functions of the first and second kind solve the modified Bessel’s equation

z2
d2w
dz2

+ z
dw
dz

+ (z2 − ν2)w = 0

and are given by

Iν(z) = (12z)
ν

∞∑
k=0

(14z
2)k

k!Γ(ν + k + 1)

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)

22 arb_hypgeom_gamma

Usage

arb_hypgeom_bessel_j(nu, x, prec = flintPrec())
acb_hypgeom_bessel_j(nu, z, prec = flintPrec())

arb_hypgeom_bessel_y(nu, x, prec = flintPrec())
acb_hypgeom_bessel_y(nu, z, prec = flintPrec())

arb_hypgeom_bessel_i(nu, x, prec = flintPrec())
acb_hypgeom_bessel_i(nu, z, prec = flintPrec())

arb_hypgeom_bessel_k(nu, x, prec = flintPrec())
acb_hypgeom_bessel_k(nu, z, prec = flintPrec())

Arguments

nu, x, z numeric, complex, arb, or acb vectors.

prec a numeric or slong vector indicating the desired precision as a number of bits.

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.
html, https://flintlib.org/doc/acb_hypgeom.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/10

See Also

Classes arb and acb; arb_hypgeom_gamma_lower and arb_hypgeom_beta_lower for the “incom-
plete” gamma and beta functions.

Examples

TODO

arb_hypgeom_gamma Gamma and Related Functions

https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/acb_hypgeom.html
https://dlmf.nist.gov/10

arb_hypgeom_gamma 23

Description

Compute the gamma function, the reciprocal gamma function, the logarithm of the absolute value
of the gamma function, the polygamma function, or the beta function. The gamma function Γ(z) is
defined by ∫ ∞

0

tz−1e−tdt

for ℜ(z) > 0 and by analytic continuation elsewhere in the z-plane, excluding poles at z =
0,−1, The beta function B(a, b) is defined by∫ 1

0

ta−1(1− t)b−1dt

for ℜ(a),ℜ(b) > 0 and by analytic continuation to all other (a, b).

Usage

arb_hypgeom_gamma(x, prec = flintPrec())
acb_hypgeom_gamma(z, prec = flintPrec())

arb_hypgeom_rgamma(x, prec = flintPrec())
acb_hypgeom_rgamma(z, prec = flintPrec())

arb_hypgeom_lgamma(x, prec = flintPrec())
acb_hypgeom_lgamma(z, prec = flintPrec())

arb_hypgeom_polygamma(s = 0, z, prec = flintPrec())
acb_hypgeom_polygamma(s = 0, z, prec = flintPrec())

arb_hypgeom_beta(a, b, prec = flintPrec())
acb_hypgeom_beta(a, b, prec = flintPrec())

Arguments

x, z, s, a, b numeric, complex, arb, or acb vectors.

prec a numeric or slong vector indicating the desired precision as a number of bits.

Details

acb_hypgeom_polygamma(s, z) evaluates the polygamma function of order s at z. The order s can
be any complex number. For nonnegative integers m, s = m corresponds to the derivative of order m
of the digamma function ψ(z) = Γ′(z)/Γ(z). Use acb_hypgeom_polygamma(0, z) to evaluate the
digamma function at z.

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

24 arb_hypgeom_gamma_lower

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.
html, https://flintlib.org/doc/acb_hypgeom.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/5

See Also

Classes arb and acb; arb_hypgeom_gamma_lower and arb_hypgeom_beta_lower for the “incom-
plete” gamma and beta functions.

Examples

TODO

arb_hypgeom_gamma_lower

Incomplete Gamma and Related Functions

Description

Compute the principal branch of the (optionally, regularized) incomplete gamma and beta functions.
The lower incomplete gamma function γ(s, z) is defined by∫ z

0

ts−1e−tdt

for ℜ(s) > 0 and by analytic continuation elsewhere in the s-plane, excluding poles at s =
0,−1, The upper incomplete gamma function Γ(s, z) is defined by∫ ∞

z

ts−1e−tdt

for ℜ(s) > 0 and by analytic continuation elsewhere in the s-plane except at z = 0. The incomplete
beta function B(a, b, z) is defined by ∫ z

0

ta−1(1− t)b−1dt

for ℜ(a),ℜ(b) > 0 and by analytic continuation to all other (a, b). It coincides with the beta func-
tion at z = 1. The regularized functions are γ(s, z)/Γ(s), Γ(s, z)/Γ(s), and B(a, b, z)/B(a, b).

Usage

arb_hypgeom_gamma_lower(s, x, flags = 0L, prec = flintPrec())
acb_hypgeom_gamma_lower(s, z, flags = 0L, prec = flintPrec())

arb_hypgeom_gamma_upper(s, x, flags = 0L, prec = flintPrec())
acb_hypgeom_gamma_upper(s, z, flags = 0L, prec = flintPrec())

arb_hypgeom_beta_lower(a, b, x, flags = 0L, prec = flintPrec())
acb_hypgeom_beta_lower(a, b, z, flags = 0L, prec = flintPrec())

https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/acb_hypgeom.html
https://dlmf.nist.gov/5

arb_hypgeom_gamma_lower 25

Arguments

x, z, s, a, b numeric, complex, arb, or acb vectors.

flags an integer vector with elements 0, 1, or 2 indicating unregularized, regularized,
or “alternately” regularized; see the FLINT documentation.

prec a numeric or slong vector indicating the desired precision as a number of bits.

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.
html, https://flintlib.org/doc/acb_hypgeom.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/8

See Also

Classes arb and acb; arb_hypgeom_gamma and arb_hypgeom_beta for the “complete” gamma and
beta functions.

Examples

hg <- acb_hypgeom_gamma
hgl <- acb_hypgeom_gamma_lower
hgu <- acb_hypgeom_gamma_upper

hb <- acb_hypgeom_beta
hbl <- acb_hypgeom_beta_lower

set.seed(0xcdefL)
r <- 10L
eps <- 0x1p-4
a <- flint:::complex.runif(r, modulus = c(0, 1/eps))
b <- flint:::complex.runif(r, modulus = c(0, 1/eps))
z <- flint:::complex.runif(r, modulus = c(eps, 1/eps))

Some trivial identities
stopifnot(# http://dlmf.nist.gov/8.2.E3

all.equal(hgl(a, z) + hgu(a, z), hg(a), tolerance = 1e-5),
https://dlmf.nist.gov/8.4.E5
all.equal(hgu(1, z), exp(-z), check.class = FALSE))

Regularization
stopifnot(all.equal(hgl(a, z, flags = 1L), hgl(a, z)/hg(a)),

all.equal(hgu(a, z, flags = 1L), hgu(a, z)/hg(a)),
all.equal(hbl(a, b, z, flags = 1L), hbl(a, b, z)/hb(a, b)))

https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/arb_hypgeom.html
https://flintlib.org/doc/acb_hypgeom.html
https://dlmf.nist.gov/8

26 arb_lambertw

A relation with the hypergeometric function from
https://dlmf.nist.gov/8.17.E7 :
h2f1 <- acb_hypgeom_2f1
stopifnot(all.equal(hbl(a, b, z), z^a * h2f1(a, 1 - b, a + 1, z)/a))

arb_lambertw Lambert W function

Description

Computes any branch Wk of the multiple-valued Lambert W function. W (z) is the set of solutions
w of the equation wew = z.

Usage

arb_lambertw(x, flags = 0L, prec = flintPrec())
acb_lambertw(z, k = 0L, flags = 0L, prec = flintPrec())

Arguments

x, z numeric, complex, arb, or acb vectors.

k an integer or fmpz vector listing indices of branches of the function. 0 indicates
the principal branch.

flags for arb_lambertw:
an integer vector indicating which of the index 0 and index -1 branches is com-
puted (0 means index 0, 1 means index -1).

for acb_lambertw:
an integer vector indicating how branch cuts are defined. Nonzero values are
nonstandard; see the first reference.

prec a numeric or slong vector indicating the desired precision as a number of bits.

Value

An arb or acb vector storing function values with error bounds. Its length is the maximum of the
lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled
as necessary.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb.html,
https://flintlib.org/doc/acb.html

NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/4.13

See Also

Classes arb and acb.

https://flintlib.org/doc/arb.html
https://flintlib.org/doc/acb.html
https://dlmf.nist.gov/4.13

arf-class 27

Examples

TODO

arf-class Arbitrary Precision Floating-Point Real Numbers

Description

Class arf extends virtual class flint. It represents vectors of arbitrary precision floating-point real
numbers. Elements have arbitrary precision significand and exponent. The underlying C type can
represent NaN, -Inf, and Inf.

Usage

Class generator functions

arf(x = 0, length = 0L, names = NULL)

arf.array(x = 0, dim = length(x), dimnames = NULL)

Arguments

x an atomic or flint vector containing data for conversion to arf.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

Details

The class generator function has four distinct usages:

arf()
arf(length=)
arf(x)
arf(x, length=)

28 arf-class

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. Attempts to recycle x of length zero to nonzero length are an error.

Usage of arf.array is modelled after array.

Value

A arf vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real parts of complex numbers are rounded according to the default precision
and rounding mode set by flintPrec and flintRnd. Imaginary parts of complex numbers are
discarded.

Character strings are converted using function mpfr_strtofr from the GNU MPFR library with
argument base set to 0 and argument rnd set according to the default rounding mode; see https:
//www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

Due to constraints imposed by generic functions, methods typically do not provide a formal ar-
gument prec allowing for a precision to be indicated in the function call. Such methods use the
current default precision set by flintPrec.

! signature(x = "arf"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "arf", y = "arf"):
signature(x = "arf", y = "ANY"):
signature(x = "ANY", y = "arf"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call. The
return value is approximate insofar that it may not be correctly rounded.

+ signature(e1 = "arf", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "arf", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "arf"):
mathematical functions of one argument; see S4groupGeneric.

https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions
https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions

arf-class 29

Math signature(x = "arf"):
mathematical functions of one argument; see S4groupGeneric. Notably, the logarithmic, ex-
ponential, (inverse) trigonometric, (inverse) hyperbolic, and gamma-related member functions
are not yet implemented. Users wanting those can (for now) operate on arb(x).

Math2 signature(x = "arf"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "arf", e2 = "arf"):
signature(e1 = "arf", e2 = "ANY"):
signature(e1 = "ANY", e2 = "arf"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "arf"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an arf vector of length 1 or 2 (sum, prod, min, max, range).

anyNA signature(x = "arf"):
returns TRUE if any element of x is NaN, FALSE otherwise.

as.vector signature(x = "arf"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
each element of x to the range of double, rounding if the value is not exactly representable in
double precision. The rounding mode is to the nearest representable number (with precedence
to even significands in case of ties), unless the element exceeds .Machine[["double.xmax"]]
in absolute value, in which case -Inf or Inf is introduced with a warning. Coercion to
types "character", "symbol" (synonym "name"), "pairlist", "list", and "expression",
which are not “number-like”, is handled specially. See also asVector.

backsolve signature(r = "arf", x = "arf"):
signature(r = "arf", x = "ANY"):
signature(r = "ANY", x = "arf"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices.

chol signature(x = "arf"):
returns the upper triangular Cholesky factor of the positive definite matrix whose upper trian-
gular part is the upper triangular part of x.

chol2inv signature(x = "arf"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor is
the upper triangular part of x.

coerce signature(from = "ANY", to = "arf"):
returns the value of arf(from).

30 arf-class

colSums, colMeans signature(x = "arf"):
returns an arf vector or array containing the column sums or means of x, defined as sums or
means over dimensions 1:dims.

det signature(x = "arf"):
returns the determinant of x as an arf vector of length 1.

determinant signature(x = "arf"):
returns a list with components modulus and sign specifying the determinant of x, following
the base function, hence see determinant.

format signature(x = "arf"):
returns a character vector suitable for printing, using scientific format. Optional arguments
control the output; see format-methods.

is.finite signature(x = "arf"):
returns a logical vector indicating which elements of x are not NaN, -Inf, or Inf.

is.infinite signature(x = "arf"):
returns a logical vector indicating which elements of x are -Inf or Inf.

is.na, is.nan signature(x = "arf"):
returns a logical vector indicating which elements of x are NaN.

is.unsorted signature(x = "arf"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE).

mean signature(x = "arf"):
returns the arithmetic mean.

rowSums, rowMeans signature(x = "arf"):
returns an arf vector or array containing the row sums or means of x, defined as sums or
means over dimensions (dims+1):length(dim(x)).

solve signature(a = "arf", b = "arf"):
signature(a = "arf", b = "ANY"):
signature(a = "ANY", b = "arf"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices.

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/arf.html

Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8), 1281-1292. doi:10.1109/TC.2017.2690633

See Also

Virtual class flint.

Examples

showClass("arf")
showMethods(classes = "arf")

https://flintlib.org/doc/arf.html
https://doi.org/10.1109/TC.2017.2690633

asVector 31

asVector Coerce an Object to a Vector Class

Description

A generalization of as.vector enabling coercion from and to flint vector classes (in addition to
basic vector classes) and providing more uniform handling of attributes.

Usage

asVector(x, mode = "any", strict = TRUE)

Arguments

x an R object coercible to the target class.

mode a character string indicating the target class.

strict a logical indicating if attributes of x should be discarded and if the class of the
return value must match the target class exactly (and hence not be a subclass of
the target class).

Details

Argument mode can be one of the basic vector classes "raw", "logical", "integer", "numeric"
(synonym "double"), "complex", "character", "list", and "expression"; one of the flint
vector classes "ulong", "slong", "fmpz", "fmpq", "mag", "arf", "acf", "arb", and "acb"; or
one of "any", "vector", and "flint", indicating the vector class, basic vector class, and flint
vector class “nearest” the class of x. Note that as.vector supports mode equal to "name" (synonym
"symbol") or "pairlist". asVector does not: names and pairlists are not vectors!

Value

The result of coercing x to the target class indicated by mode.

See Also

Virtual class vector and related functions as.vector and as.

Examples

str(J <- diag(ulong(1L), 2L))

as.integer(J)
as.vector(J, "integer")
as(J, "integer")
asVector(J, "integer")
asVector(J, "integer", FALSE)

setClass("ulongExtension", contains = "ulong")

32 c.flint

str(J. <- new("ulongExtension", J))

str(asVector(J , "ulong"))
str(asVector(J., "ulong"))
str(asVector(J , "ulong", FALSE))
str(asVector(J., "ulong", FALSE))

c.flint Concatenate Vectors

Description

Function c is primitive and internally generic but it dispatches only on its first argument. A corollary
is that c(x, ...) does not dispatch the S4 method with signature x="flint" if x is not a flint
vector, even if a flint vector appears later in the call as a component of

Functions cbind and rbind are internally generic and dispatch on all components of ..., creating
the possibility of dispatch ambiguities; see cbind2 and rbind2.

S3 methods c.flint, cbind.flint and rbind.flint are registered and exported to enable users
to bypass internal dispatch.

Usage

S3 method for class 'flint'
c(..., recursive = FALSE, use.names = TRUE)
S3 method for class 'flint'
cbind(..., deparse.level = 1)
S3 method for class 'flint'
rbind(..., deparse.level = 1)

Arguments

... objects inheriting from virtual class flint or whose type is one of the vector
types or one of the non-vector types NULL, pairlist, symbol, and language.

recursive a logical indicating if pairlists, lists, and expressions should be handled recur-
sively. If TRUE, then the function behaves as if such arguments were replaced by
their terminal nodes.

use.names a logical indicating if names should be preserved.

deparse.level an integer (0, 1, or 2) indicating how names are chosen for rows or columns
derived from untagged, non-matrix arguments. 0 is to use empty names, 2 is to
deparse unevaluated arguments, and 1 (the default value) is to deparse unevalu-
ated arguments only if they are symbols and otherwise use empty names.

Constants 33

Value

If none of the arguments is a flint vector, then the internal default methods are dispatched.

If at least one argument is a flint vector, then the return value is a flint vector, unless recursive
= FALSE and at least one argument is a pairlist, name, call, list, or expression, in which case the
return value is a list or expression.

If the return value is a flint vector, then its class is the most specific subclass of flint whose
range contains the ranges of the classes of the arguments.

Examples

x <- slong(2:5)
c(x, 6L)
c(1L, x) # bad
c.flint(x, 6L)
c.flint(1L, x)

Constants Mathematical Constants Represented to Arbitrary Precision

Description

Compute standard mathematical constants to arbitrary precision.

Usage

arb_const_pi(prec = flintPrec())
arb_const_log2(prec = flintPrec())
arb_const_log10(prec = flintPrec())
arb_const_e(prec = flintPrec())

Arguments

prec a numeric or slong vector indicating the desired precision as a number of bits.

Value

An arb vector storing function values with error bounds. Its length is the length of prec, typically
1.

References

The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb.html

See Also

Class arb.

https://flintlib.org/doc/arb.html

34 flint-class

Examples

prec <- cumprod(rep(c(1, 2), c(1L, 15L)))
arb_const_pi(prec)

flint-class Class of FLINT-Type Vectors

Description

Class flint is a virtual class representing vectors of any FLINT C type. The C type is determined
by the class attribute and interfaced exactly using R’s external pointer type.

Usage

Class generator functions

flint(class, ...)

flint.array(class, ...)

Arguments

class a character string giving the name of a nonvirtual subclass of flint, one of
"ulong", "slong", "fmpz", "fmpq", "mag", "arf", "acf", "arb", and "acb".

... arguments passed to the class generator function corresponding to class.

Value

An object of class class generated by the corresponding class generator function. For example,
flint("ulong", ...) returns ulong(...) and flint.array("slong", ...) returns slong.array(...).

Slots

.xData an external pointer. The protected field is an integer vector of length 1 or 2 storing the
object length whose size is 32 or 64 bits depending on the ABI; see flintABI. The pointer
field contains the address of a block of allocated memory of size greater than or equal to the
object length times the size of the FLINT C type. It is a null pointer if and only if the object
length is zero.

Methods for initialize set a finalizer on .xData (see reg.finalizer) to ensure that al-
located memory is freed before .xData is itself freed by the garbage collector.

dim either NULL, indicating that the object is not an array, or an integer vector of length d greater
than 0 and with product equal to the object length, indicating that the object is a d-dimensional
array with dimensions dim. Array entries are stored in colexicographic order, meaning that
the first subscript moves fastest.

flint-class 35

dimnames either NULL, indicating that the object is not an array or is an array whose dimensions
are not named, or a list of length d equal to length(dim) such that dimnames[[i]] is either
NULL or a character vector of length dim[[i]], for all i in 1L:d.

names either NULL, indicating that the object is not named, or a character vector of length equal to
the object length. A corollary is that objects whose length exceeds the maximum length of a
character vector cannot have names.

Methods

$, $<- signature(x = "flint"):
signals an error as x is “atomic-like” and in any case not recursive or NULL.

[signature(x = "flint", i = "ANY", j = "ANY"):
signature(x = "ANY", i = "flint", j = "ANY"):
signature(x = "ANY", i = "ANY", j = "flint"):
returns a traditional vector or flint vector containing the elements of x indexed by (i, j,
...) (the “subscript”). The components of the subscript can be missing, NULL, logical, integer,
double, character, ulong, slong, fmpz, or fmpq. Methods for signatures with x = "flint"
signal an error for NA and out of bounds subscripts, as the C types interfaced by flint vectors
have no representation for missing values. Note that [does not perform S4 dispatch if its first
positional argument is not an S4 object. If it is known that i is a flint vector and not known
whether x is a flint vector, then one option is to call [as `[`(i = i, x = x) rather than as
x[i]. However, it is not guaranteed that such usage of [, which is mostly undocumented,
continues to work in future versions of R.

[<- signature(x = "flint", i = "ANY", j = "ANY", value = "ANY"):
signature(x = "ANY", i = "flint", j = "ANY", value = "ANY"):
signature(x = "ANY", i = "ANY", j = "flint", value = "ANY"):
signature(x = "ANY", i = "ANY", j = "ANY", value = "flint"):
returns the traditional vector or flint vector obtained by replacing the elements of x indexed
by (i, j, ...) (the “subscript”) with elements of value, which are recycled as necessary.
The components of the subscript can be missing, NULL, logical, integer, double, character,
ulong, slong, fmpz, or fmpq. The class of the return value is determined following strict rules
from the classes of x and value, which are promoted to the value class as necessary. If the
value class is a subclass of flint, then an error is signaled for NA and out of bounds subscripts,
as the C types interfaced by flint vectors have no representation for missing values. Note
that [<- does not perform S4 dispatch if its first positional argument is not an S4 object. If it
is known that i is a flint vector and not known whether x is a flint vector, then one option
is to call [<- as `[`(i = i, x = x) <- value rather than as x[i] <- value. However, it is not
guaranteed that such usage of [<-, which is mostly undocumented, continues to work in future
versions of R.

[[signature(x = "flint", i = "ANY", j = "ANY"):
signature(x = "ANY", i = "flint", j = "ANY"):
signature(x = "ANY", i = "ANY", j = "flint"):
similar to [, with differences as documented in Extract, particularly for recursive x.

[[<- signature(x = "flint", i = "ANY", j = "ANY", value = "ANY"):
signature(x = "ANY", i = "flint", j = "ANY", value = "ANY"):
signature(x = "ANY", i = "ANY", j = "flint", value = "ANY"):
signature(x = "ANY", i = "ANY", j = "ANY", value = "flint"):
similar to [<-, with differences as documented in Extract, particularly for recursive x.

36 flint-class

all.equal signature(x = "flint", y = "flint"):
signature(x = "flint", y = "ANY"):
signature(x = "ANY", y = "flint"):
returns either TRUE, indicating that there is no meaningful difference between x and y, or a
character vector describing differences. The implementation (including optional arguments)
is adapted from all.equal.numeric, hence see its documentation. Notably, comparison of
objects inheriting from different subclasses of virtual class flint and comparison with objects
(typically atomic vectors) coercible to virtual class flint are supported with check.class =
FALSE. See the method for identical for much stricter comparison of flint objects.

anyDuplicated signature(x = "flint"):
returns anyDuplicated(mtfrm(x), ...).

as.raw, as.logical, as.integer, as.numeric, as.complex signature(x = "flint"):
returns the value of as.vector(x, mode = *). Methods for as.vector must be defined for
subclasses of flint. Note that as.double dispatches internally the method for as.numeric,
so there is no method for as.double; see also as.numeric, section ‘S4 Methods’.

as.matrix, as.array, as.Date, as.POSIXct, as.POSIXlt signature(x = "flint"):
coerces the argument with as.vector, restores dimensions, dimension names, and names,
and dispatches. as.matrix and as.array obtain the same result more efficiently.

as.data.frame signature(x = "flint"):
behaves as as.data.frame.vector, as.data.frame.matrix, or as.data.frame.array,
depending on the length of the dim slot. It enables the construction of data frames contain-
ing flint vectors using as.data.frame and functions that call it such as data.frame and
cbind.data.frame.

c signature(x = "flint"):
returns c.flint(x, ...), the concatenation of the arguments. Function c.flint is exported
to work around the fact that c(x, ...) dispatches only on x.

cbind2 signature(x = "flint", y = "flint"):
signature(x = "flint", y = "ANY"):
signature(x = "ANY", y = "flint"):
returns cbind.flint(x, y, ...), the horizontal concatenation of x and y. These methods
are dispatched by cbind in case of S3 dispatch ambiguities; see cbind2.

coerce signature(from = "ANY", to = "flint"):
coerces atomic (except character) vectors from to the most specific subclass of flint whose
range contains the range of typeof(from).

cut signature(x = "flint"):
returns findInterval(x=x, vec=breaks, left.open=right, rightmost.closed=include.lowest),
hence see below. The behaviour is consistent with the default method for cut with argument
labels set to FALSE, provided that breaks is sorted and no element of x is out of bounds.

diag signature(x = "flint"):
if x is a matrix, then returns a flint vector containing the diagonal entries of x; otherwise,
returns a diagonal matrix with diagonal entries taken from x. Optional arguments nrow, ncol,
and names are handled as by the base function, hence see diag.

diag<- signature(x = "flint", value = "ANY"):
returns x, which must be a matrix, after setting its main diagonal to value, whose length must
be equal to 1 or the length of x. Arguments x and value are coerced to a common class
following the rules used for general subassignment; see the methods for [<- and [[<-.

flint-class 37

dim signature(x = "flint"):
returns the dim slot of x.

dim<- signature(x = "flint", value = "NULL"):
returns x with dim and dimnames slots set to NULL.

dim<- signature(x = "flint", value = "numeric"):
returns x with dim slot set to value and dimnames slot set to NULL. value of double type is
coerced to integer.

dimnames signature(x = "flint"):
returns the dimnames slot of x.

dimnames<- signature(x = "flint", value = "NULL"):
returns x with dimnames slot set to NULL.

dimnames<- signature(x = "flint", value = "list"):
returns x with dimnames slot set to value. Elements of value of a vector type are coerced
to character using as.character.default. Exceptionally, factors are coerced to character
using as.character.factor.

drop signature(x = "flint"):
returns x with dim, dimnames, and names slots modified following the documented behaviour
of the base function, hence see drop.

duplicated signature(x = "flint"):
returns duplicated(mtfrm(x), ...).

findInterval returns a ulong vector of length equal to the length of x, following the documented
behaviour of the base function, hence see findInterval. A caveat is that an error is signaled
if x contains NaN, because ulong has no representation for R’s missing value NA_integer_.

identical signature(x = "flint", y = "flint"):
returns a logical indicating if x and y are “exactly equal”. Compared to the default method
(which is the base function, hence see identical), this method handles the .xData slots of
x and y specially: by default (if extptr.as.ref is FALSE), it does not test for equality of the
stored pointers but rather for entrywise equality of the pointed to arrays. Hence by default the
.xData slots are compared as if they were traditional numeric or complex vectors.

is.array signature(x = "flint"):
returns a logical indicating if x has a non-NULL dim slot.

is.matrix signature(x = "flint"):
returns a logical indicating if x has a dim slot of length 2.

is.na<- signature(x = "flint"):
returns the value of x after x[value] <- na , where na is an NA of integer, double, or complex
type, depending on the class of x.

isSymmetric signature(x = "flint"):
returns a logical indicating if x is a Hermitian matrix or if x is a symmetric matrix, depend-
ing on optional argument trans, following the documented behaviour of the S3 method for
traditional matrices, hence see isSymmetric.

length signature(x = "flint"):
returns flintLength(x, exact = FALSE).

length<- signature(x = "flint"):
returns a flint vector of length given by the second argument value. The first min(length(x),
value) elements are copied from x and the remaining elements are initialized to zero.

38 flint-class

match signature(x = "flint", table = "flint"):
signature(x = "flint", table = "ANY"):
signature(x = "ANY", table = "flint"):
returns an integer vector matching x to table after coercing to a common class then “match
transforming” with mtfrm. The behaviour is parallel to that of the default method, hence see
match.

mtfrm signature(x = "flint"):
returns format(x, base = 62L, digits = 0L), a character vector representing the elements
of x exactly in base 62 (chosen over smaller bases to reduce the number of characters in the
output); see also format-methods.

names signature(x = "flint"):
returns the value of the names slot.

names<- signature(x = "flint", value = "NULL"):
returns x with names slot set to NULL.

names<- signature(x = "flint", value = "character"):
returns x with names slot set to value. Attributes of value are stripped. NA_character_ are
appended to value if its length is less than the length of x. An error is signaled if its length is
greater.

norm signature(x = "flint"):
returns the matrix norm of x as a flint vector of length 1. The class of the return value can
depend on the norm type indicated by argument type; see norm.

print signature(x = "flint"):
prints format(x) without quotes and returns x invisibly. The output has a header listing the
class and length of x and the address stored by its .xData slot. If the output might be differ-
enced by Rdiff, then one can set optional argument Rdiff to TRUE to indicate that the address
should be formatted as <pointer: 0x...> rather than as 0x..., as the longer format is recog-
nized and ignored by Rdiff. The default value NULL is equivalent to getOption("flint.Rdiff",
FALSE). For greater control over output, consider doing print(format(x, ...), ...) in-
stead of print(x, ...).

quantile signature(x = "flint"):
returns a flint vector containing sample quantiles computed according to additional argu-
ments probs and type; see quantile. Currently, an error is is signaled for x of length zero
and x containing NaN.

rbind2 signature(x = "flint", y = "flint"):
signature(x = "flint", y = "ANY"):
signature(x = "ANY", y = "flint"):
returns rbind.flint(x, y, ...), the vertical concatenation of x and y. These methods are
dispatched by rbind in case of S3 dispatch ambiguities; see rbind2.

rep signature(x = "flint"):
repeats x (or elements of x) according to optional arguments times, length.out, and each.
The behaviour is parallel to that of the internal default method, hence see rep. One difference
is that rep(0-length, length.out=nonzero) signals an error, because the underlying C types
have no representation for missing values.

rep.int, rep_len signature(x = "flint"):
analogues of rep(x, times=) and rep(x, length.out=) not preserving names, faster than
rep when x has names.

flint-class 39

seq signature(... = "flint"):
generates flint vectors whose elements are equally spaced. This method is dispatched by
calls to seq or seq.int in which the first positional argument is a flint vector. Accepted
usage is any of

seq(length.out=)
seq(length.out=, by=)
seq(from=, to=)
seq(from=, to=, by=)
seq(from=, to=, length.out=)
seq(from=, by=, length.out=)
seq(to=, by=, length.out=)

where length.out=n and along.with=x are equivalent for x of length n. Good users name
all arguments.

sequence signature(nvec = "flint"):
returns the concatenation of seq(from = from[i], by = by[i], length.out = nvec[i]) af-
ter recycling arguments nvec, from, and by to a common length.

show signature(object = "flint"):
prints format(object) and returns NULL invisibly.

summary signature(object = "flint"):
returns a flint vector containing the minimum, first quartile, median, mean, third quartile,
maximum, and (if nonzero) the number of NaN, unless object is complex (inherits from acf
or acb) or x has error bounds (inherits from arb or acb) or optional argument triple is TRUE,
in which case the value is just flintTriple() with names.

t signature(x = "flint"):
returns the transpose of x if x is a matrix, handling non-array x as length(x)-by-1 matrices.

unique signature(x = "flint"):
returns x[!duplicated(x, ...)].

Methods are on purpose not defined for generic functions whose default methods correctly han-
dle objects inheriting from virtual class flint, typically by calling other generic functions for
which methods are defined. Examples are as.character, as.list, diff, rev, seq.int, sort,
and split.

See Also

The nonvirtual subclasses: ulong, slong, fmpz, fmpq, mag, arf, acf, arb, and acb.

Examples

showClass("flint")
showMethods(classes = "flint")

40 fmpq-class

fmpq-class Arbitrary Precision Rational Numbers

Description

Class fmpq extends virtual class flint. It represents vectors of arbitrary precision rational numbers.
Elements are specified by a pair of arbitrary precision signed integers: a numerator and a positive,
coprime denominator. There is no representation for R’s missing value NA_integer_.

Usage

Class generator functions

fmpq(x = 0L, length = 0L, names = NULL, num = 0L, den = 1L)

fmpq.array(x = 0L, dim = length(x), dimnames = NULL, num = 0L, den = 1L)

Arguments

x an atomic or flint vector containing data for conversion to fmpq.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

num, den atomic or flint vectors containing data for conversion to fmpz. Use these in-
stead of x for initialization “by parts” (numerator and denominator).

Details

The class generator function has six distinct usages:

fmpq()
fmpq(length=)
fmpq(x)
fmpq(x, length=)
fmpq(num=, den=)
fmpq(num=, den=, length=)

fmpq-class 41

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. The fifth and sixth usages, in which either of num and den can be
missing, use fmpz(num) and fmpz(den) to separately initialize the numerators and denominators
of the fmpq return value.

Attempts to recycle num, den, or x of length zero to nonzero length are an error.

Usage of fmpq.array is modelled after array.

Value

An fmpq vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real parts of complex numbers are converted exactly, as floating-point numbers
are rational by definition. Imaginary parts of complex numbers are discarded.

Character strings are converted using function mpq_set_str from the GNU MP library with argu-
ment base set to 0; see https://gmplib.org/manual/Initializing-Rationals.

An error is signaled if elements of num, den, or x are NaN, -Inf, or Inf or if elements of den are 0.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

! signature(x = "fmpq"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "fmpq", y = "fmpq"):
signature(x = "fmpq", y = "ANY"):
signature(x = "ANY", y = "fmpq"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

+ signature(e1 = "fmpq", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "fmpq", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "fmpq"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

Math signature(x = "fmpq"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

https://gmplib.org/manual/Initializing-Rationals

42 fmpq-class

Math2 signature(x = "fmpq"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "fmpq", e2 = "fmpq"):
signature(e1 = "fmpq", e2 = "ANY"):
signature(e1 = "ANY", e2 = "fmpq"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "fmpq"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an fmpq vector of length 1 or 2 (sum, prod, min, max, range).

anyNA signature(x = "fmpq"):
returns FALSE, as fmpq has no representation for NaN.

as.vector signature(x = "fmpq"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
each element of x to the range of double, rounding if the value is not exactly representable in
double precision. The rounding mode is to the nearest representable number in the direction of
zero, unless the element exceeds .Machine[["double.xmax"]] in absolute value, in which
case -Inf or Inf is introduced with a warning. Coercion to types "character", "symbol"
(synonym "name"), "pairlist", "list", and "expression", which are not “number-like”,
is handled specially. See also asVector.

backsolve signature(r = "fmpq", x = "fmpq"):
signature(r = "fmpq", x = "ANY"):
signature(r = "ANY", x = "fmpq"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices. If r and (if not missing) x are both formally rational, then the
solution is exact and the return value is an fmpq matrix.

chol signature(x = "fmpq"):
coerces x to class arf and dispatches.

chol2inv signature(x = "fmpq"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor
is the upper triangular part of x. The return value is the exact inverse, being computed as
tcrossprod(backsolve(x)).

coerce signature(from = "ANY", to = "fmpq"):
returns the value of fmpq(from).

colSums, colMeans signature(x = "fmpq"):
returns an fmpq vector or array containing the column sums or means of x, defined as sums or
means over dimensions 1:dims.

fmpq-class 43

colSums signature(x = "fmpq"):
returns an fmpq vector or array containing the column sums of x, defined as sums over dimen-
sions 1:dims.

colMeans signature(x = "fmpq"):
returns an fmpq vector or array containing the column means of x, defined as means over
dimensions 1:dims.

det signature(x = "fmpq"):
returns the determinant of x as an fmpq vector of length 1.

determinant signature(x = "fmpq"):
returns a list with components modulus and sign specifying the determinant of x, follow-
ing the base function, hence see determinant. Note that det(x) and determinant(x,
logarithm = FALSE) are exact, but determinant(x) is not in general due to rounding.

format signature(x = "fmpq"):
returns a character vector suitable for printing, using string format "p/q". Optional arguments
control the output; see format-methods.

is.finite signature(x = "fmpq"):
returns a logical vector whose elements are all TRUE, as fmpq has no representation for NaN,
-Inf, and Inf.

is.infinite, is.na, is.nan signature(x = "fmpq"):
returns a logical vector whose elements are all FALSE, as fmpq has no representation for NaN,
-Inf, and Inf.

is.unsorted signature(x = "fmpq"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE).

mean signature(x = "fmpq"):
returns the arithmetic mean. An error is signaled if the argument length is 0, because the return
type is fmpq which cannot represent the result of division by 0.

rowSums, rowMeans signature(x = "fmpq"):
returns an fmpq vector or array containing the row sums or means of x, defined as sums or
means over dimensions (dims+1):length(dim(x)).

solve signature(a = "fmpq", b = "fmpq"):
signature(a = "fmpq", b = "ANY"):
signature(a = "ANY", b = "fmpq"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices. If a and (if
not missing) b are both formally rational, then the solution is exact and the return value is an
fmpq matrix.

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/fmpq.html

https://flintlib.org/doc/fmpq.html

44 fmpz-class

See Also

Virtual class flint. Generic functions Num and Den and their replacement forms for getting and
setting numerators and denominators.

Examples

showClass("fmpq")
showMethods(classes = "fmpq")

fmpz-class Arbitrary Precision Signed Integers

Description

Class fmpz extends virtual class flint. It represents vectors of arbitrary precision signed integers.
There is no representation for R’s missing value NA_integer_.

Usage

Class generator functions

fmpz(x = 0L, length = 0L, names = NULL)

fmpz.array(x = 0L, dim = length(x), dimnames = NULL)

Arguments

x an atomic or flint vector containing data for conversion to fmpz.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

fmpz-class 45

Details

The class generator function has four distinct usages:

fmpz()
fmpz(length=)
fmpz(x)
fmpz(x, length=)

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. Attempts to recycle x of length zero to nonzero length are an error.

Usage of fmpz.array is modelled after array.

Value

An fmpz vector, possibly an array; see ‘Details’.

Conversion

Real numbers and real parts of complex numbers are rounded in the direction of 0. Imaginary parts
of complex numbers are discarded.

Character strings are converted using function mpz_set_str from the GNU MP library with argu-
ment base set to 0; see https://gmplib.org/manual/Assigning-Integers.

An error is signaled if elements of x are NaN, -Inf, or Inf.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

! signature(x = "fmpz"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "fmpz", y = "fmpz"):
signature(x = "fmpz", y = "ANY"):
signature(x = "ANY", y = "fmpz"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

+ signature(e1 = "fmpz", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "fmpz", e2 = "missing"):
returns the negation of the argument.

https://gmplib.org/manual/Assigning-Integers

46 fmpz-class

Complex signature(z = "fmpz"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

Math signature(x = "fmpz"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

Math2 signature(x = "fmpz"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

Ops signature(e1 = "fmpz", e2 = "fmpz"):
signature(e1 = "fmpz", e2 = "ANY"):
signature(e1 = "ANY", e2 = "fmpz"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "fmpz"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an fmpz vector of length 1 or 2 (sum, prod, min, max, range).

anyNA signature(x = "fmpz"):
returns FALSE, as fmpz has no representation for NaN.

as.vector signature(x = "fmpz"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
each element of x to the range of double, rounding if the value is not exactly representable in
double precision. The rounding mode is to the nearest representable number in the direction of
zero, unless the element exceeds .Machine[["double.xmax"]] in absolute value, in which
case -Inf or Inf is introduced with a warning. Coercion to types "character", "symbol"
(synonym "name"), "pairlist", "list", and "expression", which are not “number-like”,
is handled specially. See also asVector.

backsolve signature(r = "fmpz", x = "fmpz"):
signature(r = "fmpz", x = "ANY"):
signature(r = "ANY", x = "fmpz"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices. If r and (if not missing) x are both formally rational, then the
solution is exact and the return value is an fmpq matrix.

chol signature(x = "fmpz"):
coerces x to class arf and dispatches.

chol2inv signature(x = "fmpz"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor
is the upper triangular part of x. The return value is the exact inverse, being computed as
tcrossprod(backsolve(x)).

fmpz-class 47

coerce signature(from = "ANY", to = "fmpz"):
returns the value of fmpz(from).

colSums signature(x = "fmpz"):
returns an fmpz vector or array containing the column sums of x, defined as sums over dimen-
sions 1:dims.

colMeans signature(x = "fmpz"):
returns an fmpq vector or array containing the column means of x, defined as means over
dimensions 1:dims.

det signature(x = "fmpz"):
returns the determinant of x as an fmpz vector of length 1.

determinant signature(x = "fmpz"):
returns a list with components modulus and sign specifying the determinant of x, follow-
ing the base function, hence see determinant. Note that det(x) and determinant(x,
logarithm = FALSE) are exact, but determinant(x) is not in general due to rounding.

format signature(x = "fmpz"):
returns a character vector suitable for printing. Optional arguments control the output; see
format-methods.

is.finite returns a logical vector whose elements are all TRUE, as fmpz has no representation for
NaN, -Inf, and Inf.

is.infinite, is.na, is.nan signature(x = "fmpz"):
returns a logical vector whose elements are all FALSE, as fmpz has no representation for NaN,
-Inf, and Inf.

is.unsorted signature(x = "fmpz"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE).

mean signature(x = "fmpz"):
returns the arithmetic mean. An error is signaled if the argument length is 0, because the return
type is fmpq which cannot represent the result of division by 0.

rowSums signature(x = "fmpz"):
returns an fmpz vector or array containing the row sums of x, defined as sums over dimensions
(dims+1):length(dim(x)).

rowMeans signature(x = "fmpz"):
returns an fmpq vector or array containing the row means of x, defined as means over dimen-
sions (dims+1):length(dim(x)).

solve signature(a = "fmpz", b = "fmpz"):
signature(a = "fmpz", b = "ANY"):
signature(a = "ANY", b = "fmpz"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices. If a and (if
not missing) b are both formally rational, then the solution is exact and the return value is an
fmpq matrix.

48 format-methods

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/fmpz.html

See Also

Virtual class flint.

Examples

showClass("fmpz")
showMethods(classes = "fmpz")

format-methods Format FLINT-type Numbers as Strings

Description

Format a flint vector for pretty printing.

Usage

S4 method for signature 'ulong'
format(x, base = 10L, ...)
S4 method for signature 'slong'
format(x, base = 10L, ...)
S4 method for signature 'fmpz'
format(x, base = 10L, ...)
S4 method for signature 'fmpq'
format(x, base = 10L, ...)
S4 method for signature 'mag'
format(x, base = 10L, digits.mag = NULL,

sep = NULL, rnd = flintRnd(), ...)
S4 method for signature 'arf'
format(x, base = 10L, digits = NULL,

sep = NULL, rnd = flintRnd(), ...)
S4 method for signature 'acf'
format(x, base = 10L, digits = NULL,

sep = NULL, rnd = flintRnd(), ...)
S4 method for signature 'arb'
format(x, base = 10L, digits = NULL, digits.mag = NULL,

sep = NULL, rnd = flintRnd(), ...)
S4 method for signature 'acb'
format(x, base = 10L, digits = NULL, digits.mag = NULL,

sep = NULL, rnd = flintRnd(), ...)

https://flintlib.org/doc/fmpz.html

mag-class 49

Arguments

x a flint vector.

base an integer from 2 to 62 indicating a base for output. Values 2, 10, and 16 cor-
respond to binary, decimal, and hexadecimal output. Digits are represented
by characters ‘[0-9A-Za-z]’, in that significance order, hence the maximum
10+26+26=62.

digits, digits.mag
an integer indicating how many digits of the significand are reported when for-
matting floating-point numbers. arf and arf components of acf, arb, and acb
use digits. mag and mag components of arb and acb use digits.mag. When
more than one digit is printed, a radix point is inserted after the first digit. Value
0 is equivalent to the minimum integer d such that all elements of x are rep-
resented exactly by d digits in the specified base. The default values NULL are
equivalent to getOption("digits") and getOption("digits.mag", 4L).

sep a nonempty character string used to separate the significand from the exponent.
The default value NULL is a equivalent to "e" for base equal to 10 and to "@" for
all other bases.

rnd a nonempty character string whose first character indicates a rounding mode.
Methods for arb and acb require rnd of length 2, specifying rounding modes
separately for midpoints and radii. See flintRnd for information about valid
character strings.

... further optional arguments, though these are currently unused.

Value

A character vector containing ASCII strings of equal length, preserving the length, dimensions,
dimension names, and names of x.

Examples

q <- fmpq(num = c(-1L, 1L) * 0:5, den = 1:6)
for (b in 2:8) {

cat("base = ", b, ":\n", sep = "")
print(format(q, base = b), quote = FALSE, width = 12L)

}

z <- acb(real = arb(mid = pi, rad = 0.5 * pi))
format(z)
format(z, base = 62L, sep = "*[62]^")
strsplit(format(Re(z), digits = 80L), "[()]")[[1L]][c(FALSE, TRUE)]

mag-class Fixed Precision Magnitude (Error) Bounds

50 mag-class

Description

Class mag extends virtual class flint. It represents vectors of fixed precision error bounds. Ele-
ments are unsigned floating-point numbers with a 30-bit significand and an arbitary precision expo-
nent. The underlying C type can represent Inf but not NaN.

Usage

Class generator functions

mag(x = 0, length = 0L, names = NULL)

mag.array(x = 0, dim = length(x), dimnames = NULL)

Arguments

x an atomic or flint vector containing data for conversion to mag.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

Details

The class generator function has four distinct usages:

mag()
mag(length=)
mag(x)
mag(x, length=)

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. Attempts to recycle x of length zero to nonzero length are an error.

Usage of mag.array is modelled after array.

Value

A mag vector, possibly an array; see ‘Details’.

mag-class 51

Conversion

Magnitudes of real numbers and real parts of complex numbers are rounded in the direction of 0 or
Inf according to the default rounding mode set by flintRnd. Imaginary parts of complex numbers
are discarded.

Character strings are converted using function mpfr_strtofr from the GNU MPFR library with
argument base set to 0 and argument rnd set according to the default rounding mode; see https:
//www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions.

An error is signaled if elements of x are NaN.

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

! signature(x = "mag"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "mag", y = "mag"):
signature(x = "mag", y = "ANY"):
signature(x = "ANY", y = "mag"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

+ signature(e1 = "mag", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "mag", e2 = "missing"):
returns a copy of the argument, to be consistent with the binary operation which returns an
upper bound for the absolute value of the difference.

Complex signature(z = "mag"):
mathematical functions of one argument; see S4groupGeneric. The return value is an upper
bound for the absolute value of the exact answer.

Math signature(x = "mag"):
mathematical functions of one argument; see S4groupGeneric. The return value is an up-
per bound for the absolute value of the exact answer. Notably, the (inverse) trigonometric,
(inverse) hyperbolic, and gamma-related member functions are not yet implemented. Users
wanting those can (for now) operate on arb(x).

Math2 signature(x = "mag"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member functions: round, signif. The return value is an upper bound for the exact
answer.

Ops signature(e1 = "mag", e2 = "mag"):
signature(e1 = "mag", e2 = "ANY"):
signature(e1 = "ANY", e2 = "mag"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”

https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions
https://www.mpfr.org/mpfr-current/mpfr.html#Assignment-Functions

52 mag-class

operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled. For arithmetic, the return value is a mag vector only if both operands are mag
vectors. In that case, the return value is an upper bound for the absolute value of the exact an-
swer. Users wanting “standard” floating-point arithmetic must ensure that at least one operand
is not a mag vector.

Summary signature(x = "mag"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or an mag vector of length 1 or 2 (sum, prod, min, max, range). For sum
and prod, the return value is an upper bound for the exact answer.

anyNA signature(x = "mag"):
returns FALSE, as mag has no representation for NaN.

as.vector signature(x = "mag"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
each element of x to the range of double, rounding in the direction of Inf, not always to
nearest. Coercion to types "character", "symbol" (synonym "name"), "pairlist", "list",
and "expression", which are not “number-like”, is handled specially. See also asVector.

backsolve signature(r = "mag", x = "mag"):
signature(r = "mag", x = "ANY"):
signature(r = "ANY", x = "mag"):
coerces the mag operand to class arf, acf, arb, or acb (depending on the class of the other
operand) and dispatches.

chol, chol2inv signature(x = "mag"):
coerces x to class arf and dispatches.

coerce signature(from = "ANY", to = "mag"):
returns the value of mag(from).

colSums, colMeans signature(x = "mag"):
returns a mag vector or array containing upper bounds on the column sums or means of x,
defined as sums or means over dimensions 1:dims.

det, determinant signature(x = "mag"):
coerces x to class arf and dispatches.

format signature(x = "mag"):
returns a character vector suitable for printing, using scientific format. Optional arguments
control the output; see format-methods.

is.finite signature(x = "mag"):
returns a logical vector indicating which elements of x are not Inf.

is.infinite signature(x = "mag"):
returns a logical vector indicating which elements of x are Inf.

is.na, is.nan signature(x = "mag"):
returns a logical vector whose elements are all FALSE, as mag has no representation for NaN.

is.unsorted signature(x = "mag"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE).

OptionalCharacter-class 53

log signature(x = "mag"):
returns an upper bound for the absolute value of the logarithm of the argument. The natural
logarithm is computed by default (when optional argument base is unset).

mean signature(x = "mag"):
returns an upper bound for the arithmetic mean.

rowSums, rowMeans signature(x = "mag"):
returns a mag vector or array containing upper bounds on the row sums or means of x, defined
as sums or means over dimensions (dims+1):length(dim(x)).

solve signature(a = "mag", b = "mag"):
signature(a = "mag", b = "ANY"):
signature(a = "ANY", b = "mag"):
coerces the mag operand to class arf, acf, arb, or acb (depending on the class of the other
operand) and dispatches.

References

The FLINT documentation of the underlying C type: https://flintlib.org/doc/mag.html

Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8), 1281-1292. doi:10.1109/TC.2017.2690633

See Also

Virtual class flint.

Examples

showClass("mag")
showMethods(classes = "mag")

OptionalCharacter-class

Unions of ‘NULL’ and Vector Classes

Description

Class unions in the style of OptionalFunction from package methods, whose purpose is to allow
slots dim, dimnames, and names of virtual class flint to be NULL or a vector of suitable type.

OptionalInteger, OptionalList, and OptionalCharacter are the unions of NULL and integer,
list, and character, respectively.

https://flintlib.org/doc/mag.html
https://doi.org/10.1109/TC.2017.2690633

54 Part

Examples

showClass("OptionalInteger")
showClass("OptionalList")
(oc <- getClass("OptionalCharacter"))

stopifnot(isVirtualClass(oc),
isClassUnion(oc),
all(c("NULL", "character") %in% names(oc@subclasses)),
any(extends("NULL") == "OptionalCharacter"),
any(extends("character") == "OptionalCharacter"))

getClass("flint")@slots

Part Get or Set One Part of a Vector

Description

The subclasses of virtual class flint are interfaces to C types in the FLINT C library. For types
implemented recursively as C structs, it is often very natural to get and set the struct members. The
functions documented here provide support for this common operation; they are all S4 generic.

Usage

Num(q)
Num(q) <- value
Den(q)
Den(q) <- value

Mid(x)
Mid(x) <- value
Rad(x)
Rad(x) <- value

Real(z)
Real(z) <- value
Imag(z)
Imag(z) <- value

Arguments

q a vector-like R object with elements representing quotients of numbers. Package
flint provides methods for class fmpq.

x a vector-like R object with elements representing balls in a metric space. Pack-
age flint provides methods for class arb.

z a vector-like R object with elements representing complex numbers. Package
flint provides methods for classes acf and acb.

ulong-class 55

value a vector-like R object; the replacement value. Methods in package flint support
atomic vectors and vectors inheriting from virtual class flint, of length equal
to 1 or the length of the argument.

Details

Num and Den extract fmpz numerators and denominators from fmpq q. The replacement form of Num
constructs a new fmpq vector from value (coerced to fmpz) and Den(q). The replacement form of
Den constructs a new fmpq vector from Num(q) and value (coerced to fmpz).

Mid and Rad extract arf midpoints and mag radii from arb x. The replacement form of Mid con-
structs a new arb vector from value (coerced to arf) and Rad(x). The replacement form of Rad
constructs a new arb vector from Mid(x) and value (coerced to mag).

Real and Imag extract arf real and imaginary parts from acf z and arb real and imaginary parts
from acb z. The replacement form of Real constructs a new acf or acb vector from value (coerced
to arf or arb) and Imag(z). The replacement form of Imag constructs a new acf or acb vector
from Real(z) and value (coerced to arf or arb).

For convenience, Mid and its replacement form also work for acb x, getting and setting the complex
midpoint defined by the midpoints of the real and imaginary parts of x.

Value

Num, Den, Mid, Rad, Real, and Imag and their replacement forms return a vector-like R object
preserving the length, dimensions, dimension names, and names of the argument. See ‘Details’ for
behaviour specific to methods in package flint.

See Also

Virtual class flint.

Examples

(q <- q. <- fmpq(num = 1:10, den = 2L))
Num(q)
Den(q)
Num(q) <- Den(q)
q
(m <- Num(q))
(n <- Den(q))
stopifnot(m == 1L, n == 1L, q == 1L)

ulong-class Fixed Precision Unsigned and Signed Integers

Description

Classes ulong and slong extend virtual class flint. They represent vectors of fixed precision
unsigned and signed integers, respectively. The integer size is 32 or 64 bits, depending on the ABI;
see flintABI. There is no representation for R’s missing value NA_integer_.

56 ulong-class

Usage

Class generator functions

ulong(x = 0L, length = 0L, names = NULL)
slong(x = 0L, length = 0L, names = NULL)

ulong.array(x = 0L, dim = length(x), dimnames = NULL)
slong.array(x = 0L, dim = length(x), dimnames = NULL)

Arguments

x an atomic or flint vector containing data for conversion to ulong or slong.

length a numeric vector of length one giving the length of the return value. If that
exceeds the length of x, then x is recycled. Non-integer values are rounded in
the direction of zero.

names the names slot of the return value, either NULL or a character vector of equal
length. Non-character names are coerced to character.

dim the dim slot of the return value, an integer vector of nonzero length. If the
product exceeds the length of x, then x is recycled. Non-integer numeric dim are
coerced to integer.

dimnames the dimnames slot of the return value, either NULL or a list of length equal to the
length of dim. The components are either NULL or character vectors of length
given by dim. Non-character vector components of dimnames are coerced to
character.

Details

The class generator functions have four distinct usages:

ulong()
ulong(length=)
ulong(x)
ulong(x, length=)

slong()
slong(length=)
slong(x)
slong(x, length=)

The first usage generates an empty vector. The second usage generates a zero vector of the indicated
length. The third usage converts x, preserving dimensions, dimension names, and names. The
fourth usage converts x, recycling its elements to the indicated length and discarding its dimensions,
dimension names, and names. Attempts to recycle x of length zero to nonzero length are an error.

Usage of ulong.array and slong.array is modelled after array.

Value

A ulong or slong vector, possibly an array; see ‘Details’.

ulong-class 57

Conversion

Real numbers and real parts of complex numbers are rounded in the direction of 0. Imaginary parts
of complex numbers are discarded.

Character strings are converted using function mpz_set_str from the GNU MP library with argu-
ment base set to 0; see https://gmplib.org/manual/Assigning-Integers.

An error is signaled if elements of x are not in the range of the C type, in particular if elements of
x are NaN, -Inf, or Inf. The range is (−1, 2n) for ulong and (−2n−1 − 1, 2n−1) for slong, where
n is the value of flintABI().

Slots

.xData, dim, dimnames, names inherited from virtual class flint.

Methods

! signature(x = "ulong"):
signature(x = "slong"):
equivalent to (but faster than) x == 0.

%*%, crossprod, tcrossprod signature(x = "ulong", y = "ulong"):
signature(x = "slong", y = "slong"):
signature(x = "ulong", y = "ANY"):
signature(x = "slong", y = "ANY"):
signature(x = "ANY", y = "ulong"):
signature(x = "ANY", y = "slong"):
matrix products. The “other” operand must be atomic or inherit from virtual class flint.
crossprod and tcrossprod behave as if y = x when y is missing or NULL. Operands are
promoted as necessary and must be conformable (have compatible dimensions). Non-array
operands of length k are handled as 1-by-k or k-by-1 matrices depending on the call.

+ signature(e1 = "ulong", e2 = "missing"):
signature(e1 = "slong", e2 = "missing"):
returns a copy of the argument.

- signature(e1 = "ulong", e2 = "missing"):
signature(e1 = "slong", e2 = "missing"):
returns the negation of the argument.

Complex signature(z = "ulong"):
signature(z = "slong"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

Math signature(x = "ulong"):
signature(x = "slong"):
mathematical functions of one argument; see S4groupGeneric. Member functions requiring
promotion to a floating-point type may not be implemented.

Math2 signature(x = "ulong"):
signature(x = "slong"):
decimal rounding according to a second argument digits; see S4groupGeneric. There are
just two member member functions: round, signif.

https://gmplib.org/manual/Assigning-Integers

58 ulong-class

Ops signature(e1 = "ulong", e2 = "ulong"):
signature(e1 = "slong", e2 = "slong"):
signature(e1 = "ulong", e2 = "ANY"):
signature(e1 = "slong", e2 = "ANY"):
signature(e1 = "ANY", e2 = "ulong"):
signature(e1 = "ANY", e2 = "slong"):
binary arithmetic, comparison, and logical operators; see S4groupGeneric. The “other”
operand must be atomic or inherit from virtual class flint. Operands are promoted as neces-
sary. Array operands must be conformable (have identical dimensions). Non-array operands
are recycled.

Summary signature(x = "ulong"):
signature(x = "slong"):
univariate summary statistics; see S4groupGeneric. The return value is a logical vector of
length 1 (any, all) or a ulong, slong, or fmpz vector of length 1 or 2 (sum, prod, min, max,
range).

anyNA signature(x = "ulong"):
signature(x = "slong"):
returns FALSE, as ulong and slong have no representation for NaN.

as.vector signature(x = "ulong"):
signature(x = "slong"):
returns as.vector(y, mode), where y is a double vector containing the result of converting
each element of x to the range of double, rounding if the value is not exactly representable in
double precision. The rounding mode is to the nearest representable number in the direction of
zero. Coercion to types "character", "symbol" (synonym "name"), "pairlist", "list",
and "expression", which are not “number-like”, is handled specially. See also asVector.

backsolve signature(r = "ulong", x = "ulong"):
signature(r = "slong", x = "slong"):
signature(r = "ulong", x = "ANY"):
signature(r = "slong", x = "ANY"):
signature(r = "ANY", x = "ulong"):
signature(r = "ANY", x = "slong"):
solution of the triangular system op2(op1(r)) %*% y = x, where op1=ifelse(upper.tri,
triu, tril) and op2=ifelse(transpose, t, identity) and upper.tri and transpose
are optional logical arguments with default values TRUE and FALSE, respectively. The “other”
operand must be atomic or inherit from virtual class flint. If x is missing, then the return
value is the inverse of op2(op1(r)), as if x were the identity matrix. Operands are promoted
as necessary and must be conformable (have compatible dimensions). Non-array x are handled
as length(x)-by-1 matrices. If r and (if not missing) x are both formally rational, then the
solution is exact and the return value is an fmpq matrix.

chol signature(x = "ulong"):
signature(x = "slong"):
coerces x to class arf and dispatches.

chol2inv signature(x = "ulong"):
signature(x = "slong"):
returns the inverse of the positive definite matrix whose upper triangular Cholesky factor
is the upper triangular part of x. The return value is the exact inverse, being computed as
tcrossprod(backsolve(x)).

ulong-class 59

coerce signature(from = "ANY", to = "ulong"):
signature(from = "ANY", to = "slong"):
returns the value of ulong(from) or slong(from).

colSums signature(x = "ulong"):
signature(x = "slong"):
returns a ulong or (in case of overflow) fmpz vector or array containing the column sums of
x, defined as sums over dimensions 1:dims.

colMeans signature(x = "ulong"):
signature(x = "slong"):
returns an fmpq vector or array containing the column means of x, defined as means over
dimensions 1:dims.

det, determinant signature(x = "ulong"):
signature(x = "slong"):
coerces x to class fmpz and dispatches.

format signature(x = "ulong"):
signature(x = "slong"):
returns a character vector suitable for printing. Optional arguments control the output; see
format-methods.

is.finite signature(x = "ulong"):
signature(x = "slong"):
returns a logical vector whose elements are all TRUE, as ulong and slong have no representa-
tion for NaN, -Inf, and Inf.

is.infinite, is.na, is.nan signature(x = "ulong"):
signature(x = "slong"):
returns a logical vector whose elements are all FALSE, as ulong and slong have no represen-
tation for NaN, -Inf, and Inf.

is.unsorted signature(x = "ulong"):
signature(x = "slong"):
returns a logical indicating if x is not sorted in nondecreasing order (increasing order if op-
tional argument strictly is set to TRUE).

mean signature(x = "ulong"):
signature(x = "slong"):
returns the arithmetic mean. An error is signaled if the argument length is 0, because the return
type is fmpq which cannot represent the result of division by 0.

rowSums signature(x = "ulong"):
signature(x = "slong"):
returns a ulong or (in case of overflow) fmpz vector or array containing the row sums of x,
defined as sums over dimensions (dims+1):length(dim(x)).

rowMeans signature(x = "ulong"):
signature(x = "slong"):
returns an fmpq vector or array containing the row means of x, defined as means over dimen-
sions (dims+1):length(dim(x)).

solve signature(a = "ulong", b = "ulong"):
signature(a = "slong", b = "slong"):
signature(a = "ulong", b = "ANY"):

60 ulong-class

signature(a = "slong", b = "ANY"):
signature(a = "ANY", b = "ulong"):
signature(a = "ANY", b = "slong"):
solution of the general system a %*% x = b. The “other” operand must be atomic or inherit
from virtual class flint. If b is missing, then the return value is the inverse of a, as if b
were the identity matrix. Operands are promoted as necessary and must be conformable (have
compatible dimensions). Non-array b are handled as length(b)-by-1 matrices. If a and (if
not missing) b are both formally rational, then the solution is exact and the return value is an
fmpq matrix.

References

The FLINT documentation of the underlying C types: https://flintlib.org/doc/flint.html

See Also

Virtual class flint.

Examples

showClass("ulong")
showClass("slong")
showMethods(classes = c("ulong", "slong"))

https://flintlib.org/doc/flint.html

Index

!,acb-method (acb-class), 5
!,acf-method (acf-class), 9
!,arb-method (arb-class), 13
!,arf-method (arf-class), 27
!,fmpq-method (fmpq-class), 40
!,fmpz-method (fmpz-class), 44
!,mag-method (mag-class), 49
!,slong-method (ulong-class), 55
!,ulong-method (ulong-class), 55
∗ array

c.flint, 32
∗ character

format-methods, 48
∗ classes

acb-class, 5
acf-class, 9
arb-class, 13
arf-class, 27
asVector, 31
flint-class, 34
fmpq-class, 40
fmpz-class, 44
mag-class, 49
ulong-class, 55

∗ manip
c.flint, 32

∗ math
arb_dirichlet_zeta, 18
arb_hypgeom_2f1, 20
arb_hypgeom_bessel_j, 21
arb_hypgeom_gamma, 22
arb_hypgeom_gamma_lower, 24
arb_lambertw, 26
Constants, 33

∗ methods
format-methods, 48
Part, 54

∗ package
flint-package, 2

∗ print
format-methods, 48

∗ utilities
flint-package, 2

+,acb,missing-method (acb-class), 5
+,acf,missing-method (acf-class), 9
+,arb,missing-method (arb-class), 13
+,arf,missing-method (arf-class), 27
+,fmpq,missing-method (fmpq-class), 40
+,fmpz,missing-method (fmpz-class), 44
+,mag,missing-method (mag-class), 49
+,slong,missing-method (ulong-class), 55
+,ulong,missing-method (ulong-class), 55
-,acb,missing-method (acb-class), 5
-,acf,missing-method (acf-class), 9
-,arb,missing-method (arb-class), 13
-,arf,missing-method (arf-class), 27
-,fmpq,missing-method (fmpq-class), 40
-,fmpz,missing-method (fmpz-class), 44
-,mag,missing-method (mag-class), 49
-,slong,missing-method (ulong-class), 55
-,ulong,missing-method (ulong-class), 55
[, 35
[,ANY,ANY,flint-method (flint-class), 34
[,ANY,flint,ANY-method (flint-class), 34
[,ANY,flint,flint-method (flint-class),

34
[,flint,ANY,ANY-method (flint-class), 34
[,flint,ANY,flint-method (flint-class),

34
[,flint,flint,ANY-method (flint-class),

34
[,flint,flint,flint-method

(flint-class), 34
[<-,ANY,ANY,ANY,flint-method

(flint-class), 34
[<-,ANY,ANY,flint,ANY-method

(flint-class), 34
[<-,ANY,ANY,flint,flint-method

61

62 INDEX

(flint-class), 34
[<-,ANY,flint,ANY,ANY-method

(flint-class), 34
[<-,ANY,flint,ANY,flint-method

(flint-class), 34
[<-,ANY,flint,flint,ANY-method

(flint-class), 34
[<-,ANY,flint,flint,flint-method

(flint-class), 34
[<-,flint,ANY,ANY,ANY-method

(flint-class), 34
[<-,flint,ANY,ANY,flint-method

(flint-class), 34
[<-,flint,ANY,flint,ANY-method

(flint-class), 34
[<-,flint,ANY,flint,flint-method

(flint-class), 34
[<-,flint,flint,ANY,ANY-method

(flint-class), 34
[<-,flint,flint,ANY,flint-method

(flint-class), 34
[<-,flint,flint,flint,ANY-method

(flint-class), 34
[<-,flint,flint,flint,flint-method

(flint-class), 34
[[,ANY,ANY,flint-method (flint-class),

34
[[,ANY,flint,ANY-method (flint-class),

34
[[,ANY,flint,flint-method

(flint-class), 34
[[,flint,ANY,ANY-method (flint-class),

34
[[,flint,ANY,flint-method

(flint-class), 34
[[,flint,flint,ANY-method

(flint-class), 34
[[,flint,flint,flint-method

(flint-class), 34
[[<-,ANY,ANY,ANY,flint-method

(flint-class), 34
[[<-,ANY,ANY,flint,ANY-method

(flint-class), 34
[[<-,ANY,ANY,flint,flint-method

(flint-class), 34
[[<-,ANY,flint,ANY,ANY-method

(flint-class), 34
[[<-,ANY,flint,ANY,flint-method

(flint-class), 34
[[<-,ANY,flint,flint,ANY-method

(flint-class), 34
[[<-,ANY,flint,flint,flint-method

(flint-class), 34
[[<-,flint,ANY,ANY,ANY-method

(flint-class), 34
[[<-,flint,ANY,ANY,flint-method

(flint-class), 34
[[<-,flint,ANY,flint,ANY-method

(flint-class), 34
[[<-,flint,ANY,flint,flint-method

(flint-class), 34
[[<-,flint,flint,ANY,ANY-method

(flint-class), 34
[[<-,flint,flint,ANY,flint-method

(flint-class), 34
[[<-,flint,flint,flint,ANY-method

(flint-class), 34
[[<-,flint,flint,flint,flint-method

(flint-class), 34
$,flint-method (flint-class), 34
$<-,flint-method (flint-class), 34
%*%,ANY,acb-method (acb-class), 5
%*%,ANY,acf-method (acf-class), 9
%*%,ANY,arb-method (arb-class), 13
%*%,ANY,arf-method (arf-class), 27
%*%,ANY,fmpq-method (fmpq-class), 40
%*%,ANY,fmpz-method (fmpz-class), 44
%*%,ANY,mag-method (mag-class), 49
%*%,ANY,slong-method (ulong-class), 55
%*%,ANY,ulong-method (ulong-class), 55
%*%,acb,ANY-method (acb-class), 5
%*%,acb,acb-method (acb-class), 5
%*%,acb,acf-method (acb-class), 5
%*%,acb,arb-method (acb-class), 5
%*%,acb,arf-method (acb-class), 5
%*%,acb,fmpq-method (acb-class), 5
%*%,acb,fmpz-method (acb-class), 5
%*%,acb,mag-method (acb-class), 5
%*%,acb,slong-method (acb-class), 5
%*%,acb,ulong-method (acb-class), 5
%*%,acf,ANY-method (acf-class), 9
%*%,acf,acb-method (acf-class), 9
%*%,acf,acf-method (acf-class), 9
%*%,acf,arb-method (acf-class), 9
%*%,acf,arf-method (acf-class), 9
%*%,acf,fmpq-method (acf-class), 9

INDEX 63

%*%,acf,fmpz-method (acf-class), 9
%*%,acf,mag-method (acf-class), 9
%*%,acf,slong-method (acf-class), 9
%*%,acf,ulong-method (acf-class), 9
%*%,arb,ANY-method (arb-class), 13
%*%,arb,acb-method (arb-class), 13
%*%,arb,acf-method (arb-class), 13
%*%,arb,arb-method (arb-class), 13
%*%,arb,arf-method (arb-class), 13
%*%,arb,fmpq-method (arb-class), 13
%*%,arb,fmpz-method (arb-class), 13
%*%,arb,mag-method (arb-class), 13
%*%,arb,slong-method (arb-class), 13
%*%,arb,ulong-method (arb-class), 13
%*%,arf,ANY-method (arf-class), 27
%*%,arf,acb-method (arf-class), 27
%*%,arf,acf-method (arf-class), 27
%*%,arf,arb-method (arf-class), 27
%*%,arf,arf-method (arf-class), 27
%*%,arf,fmpq-method (arf-class), 27
%*%,arf,fmpz-method (arf-class), 27
%*%,arf,mag-method (arf-class), 27
%*%,arf,slong-method (arf-class), 27
%*%,arf,ulong-method (arf-class), 27
%*%,fmpq,ANY-method (fmpq-class), 40
%*%,fmpq,acb-method (fmpq-class), 40
%*%,fmpq,acf-method (fmpq-class), 40
%*%,fmpq,arb-method (fmpq-class), 40
%*%,fmpq,arf-method (fmpq-class), 40
%*%,fmpq,fmpq-method (fmpq-class), 40
%*%,fmpq,fmpz-method (fmpq-class), 40
%*%,fmpq,mag-method (fmpq-class), 40
%*%,fmpq,slong-method (fmpq-class), 40
%*%,fmpq,ulong-method (fmpq-class), 40
%*%,fmpz,ANY-method (fmpz-class), 44
%*%,fmpz,acb-method (fmpz-class), 44
%*%,fmpz,acf-method (fmpz-class), 44
%*%,fmpz,arb-method (fmpz-class), 44
%*%,fmpz,arf-method (fmpz-class), 44
%*%,fmpz,fmpq-method (fmpz-class), 44
%*%,fmpz,fmpz-method (fmpz-class), 44
%*%,fmpz,mag-method (fmpz-class), 44
%*%,fmpz,slong-method (fmpz-class), 44
%*%,fmpz,ulong-method (fmpz-class), 44
%*%,mag,ANY-method (mag-class), 49
%*%,mag,acb-method (mag-class), 49
%*%,mag,acf-method (mag-class), 49
%*%,mag,arb-method (mag-class), 49

%*%,mag,arf-method (mag-class), 49
%*%,mag,fmpq-method (mag-class), 49
%*%,mag,fmpz-method (mag-class), 49
%*%,mag,mag-method (mag-class), 49
%*%,mag,slong-method (mag-class), 49
%*%,mag,ulong-method (mag-class), 49
%*%,slong,ANY-method (ulong-class), 55
%*%,slong,acb-method (ulong-class), 55
%*%,slong,acf-method (ulong-class), 55
%*%,slong,arb-method (ulong-class), 55
%*%,slong,arf-method (ulong-class), 55
%*%,slong,fmpq-method (ulong-class), 55
%*%,slong,fmpz-method (ulong-class), 55
%*%,slong,mag-method (ulong-class), 55
%*%,slong,slong-method (ulong-class), 55
%*%,slong,ulong-method (ulong-class), 55
%*%,ulong,ANY-method (ulong-class), 55
%*%,ulong,acb-method (ulong-class), 55
%*%,ulong,acf-method (ulong-class), 55
%*%,ulong,arb-method (ulong-class), 55
%*%,ulong,arf-method (ulong-class), 55
%*%,ulong,fmpq-method (ulong-class), 55
%*%,ulong,fmpz-method (ulong-class), 55
%*%,ulong,mag-method (ulong-class), 55
%*%,ulong,slong-method (ulong-class), 55
%*%,ulong,ulong-method (ulong-class), 55

acb, 18–20, 22–26, 34, 39, 49, 52–55
acb (acb-class), 5
acb-class, 5
acb.array (acb-class), 5
acb_dirichlet_hurwitz

(arb_dirichlet_zeta), 18
acb_dirichlet_lerch_phi

(arb_dirichlet_zeta), 18
acb_dirichlet_zeta

(arb_dirichlet_zeta), 18
acb_hypgeom_2f1 (arb_hypgeom_2f1), 20
acb_hypgeom_bessel_i

(arb_hypgeom_bessel_j), 21
acb_hypgeom_bessel_j

(arb_hypgeom_bessel_j), 21
acb_hypgeom_bessel_k

(arb_hypgeom_bessel_j), 21
acb_hypgeom_bessel_y

(arb_hypgeom_bessel_j), 21
acb_hypgeom_beta (arb_hypgeom_gamma), 22
acb_hypgeom_beta_lower

(arb_hypgeom_gamma_lower), 24

64 INDEX

acb_hypgeom_gamma (arb_hypgeom_gamma),
22

acb_hypgeom_gamma_lower
(arb_hypgeom_gamma_lower), 24

acb_hypgeom_gamma_upper
(arb_hypgeom_gamma_lower), 24

acb_hypgeom_lgamma (arb_hypgeom_gamma),
22

acb_hypgeom_polygamma
(arb_hypgeom_gamma), 22

acb_hypgeom_rgamma (arb_hypgeom_gamma),
22

acb_lambertw (arb_lambertw), 26
ACF (acf-class), 9
acf, 9, 34, 39, 49, 52–55
acf (acf-class), 9
acf-class, 9
ACF.array (acf-class), 9
acf.array (acf-class), 9
all.equal,ANY,flint-method

(flint-class), 34
all.equal,flint,ANY-method

(flint-class), 34
all.equal,flint,flint-method

(flint-class), 34
all.equal.numeric, 36
anyDuplicated,flint-method

(flint-class), 34
anyNA,acb-method (acb-class), 5
anyNA,acf-method (acf-class), 9
anyNA,arb-method (arb-class), 13
anyNA,arf-method (arf-class), 27
anyNA,fmpq-method (fmpq-class), 40
anyNA,fmpz-method (fmpz-class), 44
anyNA,mag-method (mag-class), 49
anyNA,slong-method (ulong-class), 55
anyNA,ulong-method (ulong-class), 55
arb, 5, 6, 18–20, 22–26, 29, 33, 34, 39, 49,

51–55
arb (arb-class), 13
arb-class, 13
arb.array (arb-class), 13
arb_const_e (Constants), 33
arb_const_log10 (Constants), 33
arb_const_log2 (Constants), 33
arb_const_pi (Constants), 33
arb_dirichlet_hurwitz

(arb_dirichlet_zeta), 18

arb_dirichlet_lerch_phi
(arb_dirichlet_zeta), 18

arb_dirichlet_zeta, 18
arb_hypgeom_2f1, 20
arb_hypgeom_bessel_i

(arb_hypgeom_bessel_j), 21
arb_hypgeom_bessel_j, 21
arb_hypgeom_bessel_k

(arb_hypgeom_bessel_j), 21
arb_hypgeom_bessel_y

(arb_hypgeom_bessel_j), 21
arb_hypgeom_beta, 25
arb_hypgeom_beta (arb_hypgeom_gamma), 22
arb_hypgeom_beta_lower, 22, 24
arb_hypgeom_beta_lower

(arb_hypgeom_gamma_lower), 24
arb_hypgeom_gamma, 22, 25
arb_hypgeom_gamma_lower, 22, 24, 24
arb_hypgeom_gamma_upper

(arb_hypgeom_gamma_lower), 24
arb_hypgeom_lgamma (arb_hypgeom_gamma),

22
arb_hypgeom_polygamma

(arb_hypgeom_gamma), 22
arb_hypgeom_rgamma (arb_hypgeom_gamma),

22
arb_lambertw, 26
arf, 5, 10, 14, 15, 34, 39, 42, 46, 49, 52, 53,

55, 58
arf (arf-class), 27
arf-class, 27
arf.array (arf-class), 27
array, 6, 10, 15, 28, 41, 45, 50, 56
as, 31
as.array,flint-method (flint-class), 34
as.character, 39
as.complex,flint-method (flint-class),

34
as.data.frame,flint-method

(flint-class), 34
as.data.frame.array, 36
as.data.frame.matrix, 36
as.data.frame.vector, 36
as.Date,flint-method (flint-class), 34
as.double,flint-method (flint-class), 34
as.integer,flint-method (flint-class),

34
as.list, 39

INDEX 65

as.logical,flint-method (flint-class),
34

as.matrix,flint-method (flint-class), 34
as.numeric, 36
as.numeric,flint-method (flint-class),

34
as.POSIXct,flint-method (flint-class),

34
as.POSIXlt,flint-method (flint-class),

34
as.raw,flint-method (flint-class), 34
as.vector, 31
as.vector,acb-method (acb-class), 5
as.vector,acf-method (acf-class), 9
as.vector,arb-method (arb-class), 13
as.vector,arf-method (arf-class), 27
as.vector,fmpq-method (fmpq-class), 40
as.vector,fmpz-method (fmpz-class), 44
as.vector,mag-method (mag-class), 49
as.vector,slong-method (ulong-class), 55
as.vector,ulong-method (ulong-class), 55
asVector, 7, 12, 16, 29, 31, 42, 46, 52, 58

backsolve,acb,acb-method (acb-class), 5
backsolve,acb,acf-method (acb-class), 5
backsolve,acb,ANY-method (acb-class), 5
backsolve,acb,arb-method (acb-class), 5
backsolve,acb,arf-method (acb-class), 5
backsolve,acb,fmpq-method (acb-class), 5
backsolve,acb,fmpz-method (acb-class), 5
backsolve,acb,mag-method (acb-class), 5
backsolve,acb,slong-method (acb-class),

5
backsolve,acb,ulong-method (acb-class),

5
backsolve,acf,acb-method (acf-class), 9
backsolve,acf,acf-method (acf-class), 9
backsolve,acf,ANY-method (acf-class), 9
backsolve,acf,arb-method (acf-class), 9
backsolve,acf,arf-method (acf-class), 9
backsolve,acf,fmpq-method (acf-class), 9
backsolve,acf,fmpz-method (acf-class), 9
backsolve,acf,mag-method (acf-class), 9
backsolve,acf,slong-method (acf-class),

9
backsolve,acf,ulong-method (acf-class),

9
backsolve,ANY,acb-method (acb-class), 5
backsolve,ANY,acf-method (acf-class), 9

backsolve,ANY,arb-method (arb-class), 13
backsolve,ANY,arf-method (arf-class), 27
backsolve,ANY,fmpq-method (fmpq-class),

40
backsolve,ANY,fmpz-method (fmpz-class),

44
backsolve,ANY,mag-method (mag-class), 49
backsolve,ANY,slong-method

(ulong-class), 55
backsolve,ANY,ulong-method

(ulong-class), 55
backsolve,arb,acb-method (arb-class), 13
backsolve,arb,acf-method (arb-class), 13
backsolve,arb,ANY-method (arb-class), 13
backsolve,arb,arb-method (arb-class), 13
backsolve,arb,arf-method (arb-class), 13
backsolve,arb,fmpq-method (arb-class),

13
backsolve,arb,fmpz-method (arb-class),

13
backsolve,arb,mag-method (arb-class), 13
backsolve,arb,slong-method (arb-class),

13
backsolve,arb,ulong-method (arb-class),

13
backsolve,arf,acb-method (arf-class), 27
backsolve,arf,acf-method (arf-class), 27
backsolve,arf,ANY-method (arf-class), 27
backsolve,arf,arb-method (arf-class), 27
backsolve,arf,arf-method (arf-class), 27
backsolve,arf,fmpq-method (arf-class),

27
backsolve,arf,fmpz-method (arf-class),

27
backsolve,arf,mag-method (arf-class), 27
backsolve,arf,slong-method (arf-class),

27
backsolve,arf,ulong-method (arf-class),

27
backsolve,fmpq,acb-method (fmpq-class),

40
backsolve,fmpq,acf-method (fmpq-class),

40
backsolve,fmpq,ANY-method (fmpq-class),

40
backsolve,fmpq,arb-method (fmpq-class),

40
backsolve,fmpq,arf-method (fmpq-class),

66 INDEX

40
backsolve,fmpq,fmpq-method

(fmpq-class), 40
backsolve,fmpq,fmpz-method

(fmpq-class), 40
backsolve,fmpq,mag-method (fmpq-class),

40
backsolve,fmpq,slong-method

(fmpq-class), 40
backsolve,fmpq,ulong-method

(fmpq-class), 40
backsolve,fmpz,acb-method (fmpz-class),

44
backsolve,fmpz,acf-method (fmpz-class),

44
backsolve,fmpz,ANY-method (fmpz-class),

44
backsolve,fmpz,arb-method (fmpz-class),

44
backsolve,fmpz,arf-method (fmpz-class),

44
backsolve,fmpz,fmpq-method

(fmpz-class), 44
backsolve,fmpz,fmpz-method

(fmpz-class), 44
backsolve,fmpz,mag-method (fmpz-class),

44
backsolve,fmpz,slong-method

(fmpz-class), 44
backsolve,fmpz,ulong-method

(fmpz-class), 44
backsolve,mag,acb-method (mag-class), 49
backsolve,mag,acf-method (mag-class), 49
backsolve,mag,ANY-method (mag-class), 49
backsolve,mag,arb-method (mag-class), 49
backsolve,mag,arf-method (mag-class), 49
backsolve,mag,fmpq-method (mag-class),

49
backsolve,mag,fmpz-method (mag-class),

49
backsolve,mag,mag-method (mag-class), 49
backsolve,mag,slong-method (mag-class),

49
backsolve,mag,ulong-method (mag-class),

49
backsolve,slong,acb-method

(ulong-class), 55
backsolve,slong,acf-method

(ulong-class), 55
backsolve,slong,ANY-method

(ulong-class), 55
backsolve,slong,arb-method

(ulong-class), 55
backsolve,slong,arf-method

(ulong-class), 55
backsolve,slong,fmpq-method

(ulong-class), 55
backsolve,slong,fmpz-method

(ulong-class), 55
backsolve,slong,mag-method

(ulong-class), 55
backsolve,slong,slong-method

(ulong-class), 55
backsolve,slong,ulong-method

(ulong-class), 55
backsolve,ulong,acb-method

(ulong-class), 55
backsolve,ulong,acf-method

(ulong-class), 55
backsolve,ulong,ANY-method

(ulong-class), 55
backsolve,ulong,arb-method

(ulong-class), 55
backsolve,ulong,arf-method

(ulong-class), 55
backsolve,ulong,fmpq-method

(ulong-class), 55
backsolve,ulong,fmpz-method

(ulong-class), 55
backsolve,ulong,mag-method

(ulong-class), 55
backsolve,ulong,slong-method

(ulong-class), 55
backsolve,ulong,ulong-method

(ulong-class), 55
bug.report, 3

c, 32, 36
c,flint-method (flint-class), 34
c.flint, 32, 36
cbind, 32, 36
cbind.data.frame, 36
cbind.flint, 36
cbind.flint (c.flint), 32
cbind2, 32, 36
cbind2,ANY,flint-method (flint-class),

34

INDEX 67

cbind2,flint,ANY-method (flint-class),
34

cbind2,flint,flint-method
(flint-class), 34

chol,acb-method (acb-class), 5
chol,acf-method (acf-class), 9
chol,arb-method (arb-class), 13
chol,arf-method (arf-class), 27
chol,fmpq-method (fmpq-class), 40
chol,fmpz-method (fmpz-class), 44
chol,mag-method (mag-class), 49
chol,slong-method (ulong-class), 55
chol,ulong-method (ulong-class), 55
chol2inv,acb-method (acb-class), 5
chol2inv,acf-method (acf-class), 9
chol2inv,arb-method (arb-class), 13
chol2inv,arf-method (arf-class), 27
chol2inv,fmpq-method (fmpq-class), 40
chol2inv,fmpz-method (fmpz-class), 44
chol2inv,mag-method (mag-class), 49
chol2inv,slong-method (ulong-class), 55
chol2inv,ulong-method (ulong-class), 55
coerce,ANY,acb-method (acb-class), 5
coerce,ANY,acf-method (acf-class), 9
coerce,ANY,arb-method (arb-class), 13
coerce,ANY,arf-method (arf-class), 27
coerce,ANY,flint-method (flint-class),

34
coerce,ANY,fmpq-method (fmpq-class), 40
coerce,ANY,fmpz-method (fmpz-class), 44
coerce,ANY,mag-method (mag-class), 49
coerce,ANY,slong-method (ulong-class),

55
coerce,ANY,ulong-method (ulong-class),

55
colMeans,acb-method (acb-class), 5
colMeans,acf-method (acf-class), 9
colMeans,arb-method (arb-class), 13
colMeans,arf-method (arf-class), 27
colMeans,fmpq-method (fmpq-class), 40
colMeans,fmpz-method (fmpz-class), 44
colMeans,mag-method (mag-class), 49
colMeans,slong-method (ulong-class), 55
colMeans,ulong-method (ulong-class), 55
colSums,acb-method (acb-class), 5
colSums,acf-method (acf-class), 9
colSums,arb-method (arb-class), 13
colSums,arf-method (arf-class), 27

colSums,fmpq-method (fmpq-class), 40
colSums,fmpz-method (fmpz-class), 44
colSums,mag-method (mag-class), 49
colSums,slong-method (ulong-class), 55
colSums,ulong-method (ulong-class), 55
Complex,acb-method (acb-class), 5
Complex,acf-method (acf-class), 9
Complex,arb-method (arb-class), 13
Complex,arf-method (arf-class), 27
Complex,fmpq-method (fmpq-class), 40
Complex,fmpz-method (fmpz-class), 44
Complex,mag-method (mag-class), 49
Complex,slong-method (ulong-class), 55
Complex,ulong-method (ulong-class), 55
Constants, 33
crossprod,acb,acb-method (acb-class), 5
crossprod,acb,acf-method (acb-class), 5
crossprod,acb,ANY-method (acb-class), 5
crossprod,acb,arb-method (acb-class), 5
crossprod,acb,arf-method (acb-class), 5
crossprod,acb,fmpq-method (acb-class), 5
crossprod,acb,fmpz-method (acb-class), 5
crossprod,acb,mag-method (acb-class), 5
crossprod,acb,slong-method (acb-class),

5
crossprod,acb,ulong-method (acb-class),

5
crossprod,acf,acb-method (acf-class), 9
crossprod,acf,acf-method (acf-class), 9
crossprod,acf,ANY-method (acf-class), 9
crossprod,acf,arb-method (acf-class), 9
crossprod,acf,arf-method (acf-class), 9
crossprod,acf,fmpq-method (acf-class), 9
crossprod,acf,fmpz-method (acf-class), 9
crossprod,acf,mag-method (acf-class), 9
crossprod,acf,slong-method (acf-class),

9
crossprod,acf,ulong-method (acf-class),

9
crossprod,ANY,acb-method (acb-class), 5
crossprod,ANY,acf-method (acf-class), 9
crossprod,ANY,arb-method (arb-class), 13
crossprod,ANY,arf-method (arf-class), 27
crossprod,ANY,fmpq-method (fmpq-class),

40
crossprod,ANY,fmpz-method (fmpz-class),

44
crossprod,ANY,mag-method (mag-class), 49

68 INDEX

crossprod,ANY,slong-method
(ulong-class), 55

crossprod,ANY,ulong-method
(ulong-class), 55

crossprod,arb,acb-method (arb-class), 13
crossprod,arb,acf-method (arb-class), 13
crossprod,arb,ANY-method (arb-class), 13
crossprod,arb,arb-method (arb-class), 13
crossprod,arb,arf-method (arb-class), 13
crossprod,arb,fmpq-method (arb-class),

13
crossprod,arb,fmpz-method (arb-class),

13
crossprod,arb,mag-method (arb-class), 13
crossprod,arb,slong-method (arb-class),

13
crossprod,arb,ulong-method (arb-class),

13
crossprod,arf,acb-method (arf-class), 27
crossprod,arf,acf-method (arf-class), 27
crossprod,arf,ANY-method (arf-class), 27
crossprod,arf,arb-method (arf-class), 27
crossprod,arf,arf-method (arf-class), 27
crossprod,arf,fmpq-method (arf-class),

27
crossprod,arf,fmpz-method (arf-class),

27
crossprod,arf,mag-method (arf-class), 27
crossprod,arf,slong-method (arf-class),

27
crossprod,arf,ulong-method (arf-class),

27
crossprod,fmpq,acb-method (fmpq-class),

40
crossprod,fmpq,acf-method (fmpq-class),

40
crossprod,fmpq,ANY-method (fmpq-class),

40
crossprod,fmpq,arb-method (fmpq-class),

40
crossprod,fmpq,arf-method (fmpq-class),

40
crossprod,fmpq,fmpq-method

(fmpq-class), 40
crossprod,fmpq,fmpz-method

(fmpq-class), 40
crossprod,fmpq,mag-method (fmpq-class),

40

crossprod,fmpq,slong-method
(fmpq-class), 40

crossprod,fmpq,ulong-method
(fmpq-class), 40

crossprod,fmpz,acb-method (fmpz-class),
44

crossprod,fmpz,acf-method (fmpz-class),
44

crossprod,fmpz,ANY-method (fmpz-class),
44

crossprod,fmpz,arb-method (fmpz-class),
44

crossprod,fmpz,arf-method (fmpz-class),
44

crossprod,fmpz,fmpq-method
(fmpz-class), 44

crossprod,fmpz,fmpz-method
(fmpz-class), 44

crossprod,fmpz,mag-method (fmpz-class),
44

crossprod,fmpz,slong-method
(fmpz-class), 44

crossprod,fmpz,ulong-method
(fmpz-class), 44

crossprod,mag,acb-method (mag-class), 49
crossprod,mag,acf-method (mag-class), 49
crossprod,mag,ANY-method (mag-class), 49
crossprod,mag,arb-method (mag-class), 49
crossprod,mag,arf-method (mag-class), 49
crossprod,mag,fmpq-method (mag-class),

49
crossprod,mag,fmpz-method (mag-class),

49
crossprod,mag,mag-method (mag-class), 49
crossprod,mag,slong-method (mag-class),

49
crossprod,mag,ulong-method (mag-class),

49
crossprod,slong,acb-method

(ulong-class), 55
crossprod,slong,acf-method

(ulong-class), 55
crossprod,slong,ANY-method

(ulong-class), 55
crossprod,slong,arb-method

(ulong-class), 55
crossprod,slong,arf-method

(ulong-class), 55

INDEX 69

crossprod,slong,fmpq-method
(ulong-class), 55

crossprod,slong,fmpz-method
(ulong-class), 55

crossprod,slong,mag-method
(ulong-class), 55

crossprod,slong,slong-method
(ulong-class), 55

crossprod,slong,ulong-method
(ulong-class), 55

crossprod,ulong,acb-method
(ulong-class), 55

crossprod,ulong,acf-method
(ulong-class), 55

crossprod,ulong,ANY-method
(ulong-class), 55

crossprod,ulong,arb-method
(ulong-class), 55

crossprod,ulong,arf-method
(ulong-class), 55

crossprod,ulong,fmpq-method
(ulong-class), 55

crossprod,ulong,fmpz-method
(ulong-class), 55

crossprod,ulong,mag-method
(ulong-class), 55

crossprod,ulong,slong-method
(ulong-class), 55

crossprod,ulong,ulong-method
(ulong-class), 55

cut, 36
cut,flint-method (flint-class), 34

data.frame, 36
Den, 44
Den (Part), 54
Den,fmpq-method (Part), 54
Den<- (Part), 54
Den<-,fmpq-method (Part), 54
det,acb-method (acb-class), 5
det,acf-method (acf-class), 9
det,arb-method (arb-class), 13
det,arf-method (arf-class), 27
det,fmpq-method (fmpq-class), 40
det,fmpz-method (fmpz-class), 44
det,mag-method (mag-class), 49
det,slong-method (ulong-class), 55
det,ulong-method (ulong-class), 55
determinant, 8, 12, 17, 30, 43, 47

determinant,acb-method (acb-class), 5
determinant,acf-method (acf-class), 9
determinant,arb-method (arb-class), 13
determinant,arf-method (arf-class), 27
determinant,fmpq-method (fmpq-class), 40
determinant,fmpz-method (fmpz-class), 44
determinant,mag-method (mag-class), 49
determinant,slong-method (ulong-class),

55
determinant,ulong-method (ulong-class),

55
diag, 36
diag,flint-method (flint-class), 34
diag<-,flint-method (flint-class), 34
diff, 39
dim,flint-method (flint-class), 34
dim<-,flint,NULL-method (flint-class),

34
dim<-,flint,numeric-method

(flint-class), 34
dimnames,flint-method (flint-class), 34
dimnames<-,flint,list-method

(flint-class), 34
dimnames<-,flint,NULL-method

(flint-class), 34
drop, 37
drop,flint-method (flint-class), 34
duplicated,flint-method (flint-class),

34

Extract, 35

findInterval, 37
findInterval,flint-method

(flint-class), 34
flint, 3, 5–18, 27–32, 40–58, 60
flint (flint-class), 34
flint-class, 34
flint-package, 2
flint.array (flint-class), 34
flintABI, 34, 55, 57
flintABI (flint-package), 2
flintClass (flint-package), 2
flintLength, 37
flintLength (flint-package), 2
flintPrec, 6, 10, 11, 15, 28
flintPrec (flint-package), 2
flintRnd, 6, 10, 15, 28, 49, 51
flintRnd (flint-package), 2

70 INDEX

flintSize (flint-package), 2
flintTriple, 39
flintTriple (flint-package), 2
flintVersion (flint-package), 2
fmpq, 34, 35, 39, 42, 43, 46, 47, 54, 55, 58–60
fmpq (fmpq-class), 40
fmpq-class, 40
fmpq.array (fmpq-class), 40
fmpz, 26, 34, 35, 39–41, 55, 58, 59
fmpz (fmpz-class), 44
fmpz-class, 44
fmpz.array (fmpz-class), 44
format, 38, 39
format,acb-method (format-methods), 48
format,acf-method (format-methods), 48
format,arb-method (format-methods), 48
format,arf-method (format-methods), 48
format,fmpq-method (format-methods), 48
format,fmpz-method (format-methods), 48
format,mag-method (format-methods), 48
format,slong-method (format-methods), 48
format,ulong-method (format-methods), 48
format-methods, 48

help, 3
help.search, 3

identical, 36, 37
identical,flint,flint-method

(flint-class), 34
Imag, 9, 13
Imag (Part), 54
Imag,acb-method (Part), 54
Imag,acf-method (Part), 54
Imag<- (Part), 54
Imag<-,acb-method (Part), 54
Imag<-,acf-method (Part), 54
initialize, 34
is.array,flint-method (flint-class), 34
is.finite,acb-method (acb-class), 5
is.finite,acf-method (acf-class), 9
is.finite,arb-method (arb-class), 13
is.finite,arf-method (arf-class), 27
is.finite,fmpq-method (fmpq-class), 40
is.finite,fmpz-method (fmpz-class), 44
is.finite,mag-method (mag-class), 49
is.finite,slong-method (ulong-class), 55
is.finite,ulong-method (ulong-class), 55
is.infinite,acb-method (acb-class), 5

is.infinite,acf-method (acf-class), 9
is.infinite,arb-method (arb-class), 13
is.infinite,arf-method (arf-class), 27
is.infinite,fmpq-method (fmpq-class), 40
is.infinite,fmpz-method (fmpz-class), 44
is.infinite,mag-method (mag-class), 49
is.infinite,slong-method (ulong-class),

55
is.infinite,ulong-method (ulong-class),

55
is.matrix,flint-method (flint-class), 34
is.na,acb-method (acb-class), 5
is.na,acf-method (acf-class), 9
is.na,arb-method (arb-class), 13
is.na,arf-method (arf-class), 27
is.na,fmpq-method (fmpq-class), 40
is.na,fmpz-method (fmpz-class), 44
is.na,mag-method (mag-class), 49
is.na,slong-method (ulong-class), 55
is.na,ulong-method (ulong-class), 55
is.na<-,flint-method (flint-class), 34
is.nan,acb-method (acb-class), 5
is.nan,acf-method (acf-class), 9
is.nan,arb-method (arb-class), 13
is.nan,arf-method (arf-class), 27
is.nan,fmpq-method (fmpq-class), 40
is.nan,fmpz-method (fmpz-class), 44
is.nan,mag-method (mag-class), 49
is.nan,slong-method (ulong-class), 55
is.nan,ulong-method (ulong-class), 55
is.unsorted,acb-method (acb-class), 5
is.unsorted,acf-method (acf-class), 9
is.unsorted,arb-method (arb-class), 13
is.unsorted,arf-method (arf-class), 27
is.unsorted,fmpq-method (fmpq-class), 40
is.unsorted,fmpz-method (fmpz-class), 44
is.unsorted,mag-method (mag-class), 49
is.unsorted,slong-method (ulong-class),

55
is.unsorted,ulong-method (ulong-class),

55
isSymmetric, 37
isSymmetric,flint-method (flint-class),

34

length,flint-method (flint-class), 34
length<-,flint-method (flint-class), 34
log,acb-method (acb-class), 5
log,arb-method (arb-class), 13

INDEX 71

log,mag-method (mag-class), 49

mag, 5, 14, 15, 34, 39, 49, 55
mag (mag-class), 49
mag-class, 49
mag.array (mag-class), 49
match, 38
match,ANY,flint-method (flint-class), 34
match,flint,ANY-method (flint-class), 34
match,flint,flint-method (flint-class),

34
Math,acb-method (acb-class), 5
Math,acf-method (acf-class), 9
Math,arb-method (arb-class), 13
Math,arf-method (arf-class), 27
Math,fmpq-method (fmpq-class), 40
Math,fmpz-method (fmpz-class), 44
Math,mag-method (mag-class), 49
Math,slong-method (ulong-class), 55
Math,ulong-method (ulong-class), 55
Math2,acb-method (acb-class), 5
Math2,acf-method (acf-class), 9
Math2,arb-method (arb-class), 13
Math2,arf-method (arf-class), 27
Math2,fmpq-method (fmpq-class), 40
Math2,fmpz-method (fmpz-class), 44
Math2,mag-method (mag-class), 49
Math2,slong-method (ulong-class), 55
Math2,ulong-method (ulong-class), 55
mean,acb-method (acb-class), 5
mean,acf-method (acf-class), 9
mean,arb-method (arb-class), 13
mean,arf-method (arf-class), 27
mean,fmpq-method (fmpq-class), 40
mean,fmpz-method (fmpz-class), 44
mean,mag-method (mag-class), 49
mean,slong-method (ulong-class), 55
mean,ulong-method (ulong-class), 55
Mid, 9, 17, 18
Mid (Part), 54
Mid,acb-method (Part), 54
Mid,arb-method (Part), 54
Mid<- (Part), 54
Mid<-,acb-method (Part), 54
Mid<-,arb-method (Part), 54
mtfrm, 38
mtfrm,flint-method (flint-class), 34

NA, 37

NA_character_, 3, 38
NA_integer_, 3, 37, 40, 44, 55
NA_real_, 4
names,flint-method (flint-class), 34
names<-,flint,character-method

(flint-class), 34
names<-,flint,NULL-method

(flint-class), 34
news, 3
norm, 38
norm,flint,ANY-method (flint-class), 34
Num, 44
Num (Part), 54
Num,fmpq-method (Part), 54
Num<- (Part), 54
Num<-,fmpq-method (Part), 54

object.size, 4
Ops,acb,acb-method (acb-class), 5
Ops,acb,acf-method (acb-class), 5
Ops,acb,ANY-method (acb-class), 5
Ops,acb,arb-method (acb-class), 5
Ops,acb,arf-method (acb-class), 5
Ops,acb,fmpq-method (acb-class), 5
Ops,acb,fmpz-method (acb-class), 5
Ops,acb,mag-method (acb-class), 5
Ops,acb,slong-method (acb-class), 5
Ops,acb,ulong-method (acb-class), 5
Ops,acf,acb-method (acf-class), 9
Ops,acf,acf-method (acf-class), 9
Ops,acf,ANY-method (acf-class), 9
Ops,acf,arb-method (acf-class), 9
Ops,acf,arf-method (acf-class), 9
Ops,acf,fmpq-method (acf-class), 9
Ops,acf,fmpz-method (acf-class), 9
Ops,acf,mag-method (acf-class), 9
Ops,acf,slong-method (acf-class), 9
Ops,acf,ulong-method (acf-class), 9
Ops,ANY,acb-method (acb-class), 5
Ops,ANY,acf-method (acf-class), 9
Ops,ANY,arb-method (arb-class), 13
Ops,ANY,arf-method (arf-class), 27
Ops,ANY,fmpq-method (fmpq-class), 40
Ops,ANY,fmpz-method (fmpz-class), 44
Ops,ANY,mag-method (mag-class), 49
Ops,ANY,slong-method (ulong-class), 55
Ops,ANY,ulong-method (ulong-class), 55
Ops,arb,acb-method (arb-class), 13
Ops,arb,acf-method (arb-class), 13

72 INDEX

Ops,arb,ANY-method (arb-class), 13
Ops,arb,arb-method (arb-class), 13
Ops,arb,arf-method (arb-class), 13
Ops,arb,fmpq-method (arb-class), 13
Ops,arb,fmpz-method (arb-class), 13
Ops,arb,mag-method (arb-class), 13
Ops,arb,slong-method (arb-class), 13
Ops,arb,ulong-method (arb-class), 13
Ops,arf,acb-method (arf-class), 27
Ops,arf,acf-method (arf-class), 27
Ops,arf,ANY-method (arf-class), 27
Ops,arf,arb-method (arf-class), 27
Ops,arf,arf-method (arf-class), 27
Ops,arf,fmpq-method (arf-class), 27
Ops,arf,fmpz-method (arf-class), 27
Ops,arf,mag-method (arf-class), 27
Ops,arf,slong-method (arf-class), 27
Ops,arf,ulong-method (arf-class), 27
Ops,fmpq,acb-method (fmpq-class), 40
Ops,fmpq,acf-method (fmpq-class), 40
Ops,fmpq,ANY-method (fmpq-class), 40
Ops,fmpq,arb-method (fmpq-class), 40
Ops,fmpq,arf-method (fmpq-class), 40
Ops,fmpq,fmpq-method (fmpq-class), 40
Ops,fmpq,fmpz-method (fmpq-class), 40
Ops,fmpq,mag-method (fmpq-class), 40
Ops,fmpq,slong-method (fmpq-class), 40
Ops,fmpq,ulong-method (fmpq-class), 40
Ops,fmpz,acb-method (fmpz-class), 44
Ops,fmpz,acf-method (fmpz-class), 44
Ops,fmpz,ANY-method (fmpz-class), 44
Ops,fmpz,arb-method (fmpz-class), 44
Ops,fmpz,arf-method (fmpz-class), 44
Ops,fmpz,fmpq-method (fmpz-class), 44
Ops,fmpz,fmpz-method (fmpz-class), 44
Ops,fmpz,mag-method (fmpz-class), 44
Ops,fmpz,slong-method (fmpz-class), 44
Ops,fmpz,ulong-method (fmpz-class), 44
Ops,mag,acb-method (mag-class), 49
Ops,mag,acf-method (mag-class), 49
Ops,mag,ANY-method (mag-class), 49
Ops,mag,arb-method (mag-class), 49
Ops,mag,arf-method (mag-class), 49
Ops,mag,fmpq-method (mag-class), 49
Ops,mag,fmpz-method (mag-class), 49
Ops,mag,mag-method (mag-class), 49
Ops,mag,slong-method (mag-class), 49
Ops,mag,ulong-method (mag-class), 49

Ops,slong,acb-method (ulong-class), 55
Ops,slong,acf-method (ulong-class), 55
Ops,slong,ANY-method (ulong-class), 55
Ops,slong,arb-method (ulong-class), 55
Ops,slong,arf-method (ulong-class), 55
Ops,slong,fmpq-method (ulong-class), 55
Ops,slong,fmpz-method (ulong-class), 55
Ops,slong,mag-method (ulong-class), 55
Ops,slong,slong-method (ulong-class), 55
Ops,slong,ulong-method (ulong-class), 55
Ops,ulong,acb-method (ulong-class), 55
Ops,ulong,acf-method (ulong-class), 55
Ops,ulong,ANY-method (ulong-class), 55
Ops,ulong,arb-method (ulong-class), 55
Ops,ulong,arf-method (ulong-class), 55
Ops,ulong,fmpq-method (ulong-class), 55
Ops,ulong,fmpz-method (ulong-class), 55
Ops,ulong,mag-method (ulong-class), 55
Ops,ulong,slong-method (ulong-class), 55
Ops,ulong,ulong-method (ulong-class), 55
OptionalCharacter-class, 53
OptionalFunction, 53
OptionalInteger-class

(OptionalCharacter-class), 53
OptionalList-class

(OptionalCharacter-class), 53

Part, 54
print,flint-method (flint-class), 34

quantile, 38
quantile,flint-method (flint-class), 34

Rad, 18
Rad (Part), 54
Rad,arb-method (Part), 54
Rad<- (Part), 54
Rad<-,arb-method (Part), 54
rbind, 32, 38
rbind.flint, 38
rbind.flint (c.flint), 32
rbind2, 32, 38
rbind2,ANY,flint-method (flint-class),

34
rbind2,flint,ANY-method (flint-class),

34
rbind2,flint,flint-method

(flint-class), 34
Rdiff, 38

INDEX 73

Real, 9, 13
Real (Part), 54
Real,acb-method (Part), 54
Real,acf-method (Part), 54
Real<- (Part), 54
Real<-,acb-method (Part), 54
Real<-,acf-method (Part), 54
reg.finalizer, 34
rep, 38
rep,flint-method (flint-class), 34
rep.int,flint-method (flint-class), 34
rep_len,flint-method (flint-class), 34
rev, 39
round, 7, 11, 16, 29, 42, 46, 51, 57
rowMeans,acb-method (acb-class), 5
rowMeans,acf-method (acf-class), 9
rowMeans,arb-method (arb-class), 13
rowMeans,arf-method (arf-class), 27
rowMeans,fmpq-method (fmpq-class), 40
rowMeans,fmpz-method (fmpz-class), 44
rowMeans,mag-method (mag-class), 49
rowMeans,slong-method (ulong-class), 55
rowMeans,ulong-method (ulong-class), 55
rowSums,acb-method (acb-class), 5
rowSums,acf-method (acf-class), 9
rowSums,arb-method (arb-class), 13
rowSums,arf-method (arf-class), 27
rowSums,fmpq-method (fmpq-class), 40
rowSums,fmpz-method (fmpz-class), 44
rowSums,mag-method (mag-class), 49
rowSums,slong-method (ulong-class), 55
rowSums,ulong-method (ulong-class), 55

S4groupGeneric, 7, 11, 12, 16, 28, 29, 41, 42,
46, 51, 52, 57, 58

seq,flint-method (flint-class), 34
seq.int, 39
sequence,flint-method (flint-class), 34
show,flint-method (flint-class), 34
signif, 7, 11, 16, 29, 42, 46, 51, 57
slong, 18, 20, 22, 23, 25, 26, 33–35, 39
slong (ulong-class), 55
slong-class (ulong-class), 55
slong.array, 34
slong.array (ulong-class), 55
solve,acb,acb-method (acb-class), 5
solve,acb,acf-method (acb-class), 5
solve,acb,ANY-method (acb-class), 5
solve,acb,arb-method (acb-class), 5

solve,acb,arf-method (acb-class), 5
solve,acb,fmpq-method (acb-class), 5
solve,acb,fmpz-method (acb-class), 5
solve,acb,mag-method (acb-class), 5
solve,acb,slong-method (acb-class), 5
solve,acb,ulong-method (acb-class), 5
solve,acf,acb-method (acf-class), 9
solve,acf,acf-method (acf-class), 9
solve,acf,ANY-method (acf-class), 9
solve,acf,arb-method (acf-class), 9
solve,acf,arf-method (acf-class), 9
solve,acf,fmpq-method (acf-class), 9
solve,acf,fmpz-method (acf-class), 9
solve,acf,mag-method (acf-class), 9
solve,acf,slong-method (acf-class), 9
solve,acf,ulong-method (acf-class), 9
solve,ANY,acb-method (acb-class), 5
solve,ANY,acf-method (acf-class), 9
solve,ANY,arb-method (arb-class), 13
solve,ANY,arf-method (arf-class), 27
solve,ANY,fmpq-method (fmpq-class), 40
solve,ANY,fmpz-method (fmpz-class), 44
solve,ANY,mag-method (mag-class), 49
solve,ANY,slong-method (ulong-class), 55
solve,ANY,ulong-method (ulong-class), 55
solve,arb,acb-method (arb-class), 13
solve,arb,acf-method (arb-class), 13
solve,arb,ANY-method (arb-class), 13
solve,arb,arb-method (arb-class), 13
solve,arb,arf-method (arb-class), 13
solve,arb,fmpq-method (arb-class), 13
solve,arb,fmpz-method (arb-class), 13
solve,arb,mag-method (arb-class), 13
solve,arb,slong-method (arb-class), 13
solve,arb,ulong-method (arb-class), 13
solve,arf,acb-method (arf-class), 27
solve,arf,acf-method (arf-class), 27
solve,arf,ANY-method (arf-class), 27
solve,arf,arb-method (arf-class), 27
solve,arf,arf-method (arf-class), 27
solve,arf,fmpq-method (arf-class), 27
solve,arf,fmpz-method (arf-class), 27
solve,arf,mag-method (arf-class), 27
solve,arf,slong-method (arf-class), 27
solve,arf,ulong-method (arf-class), 27
solve,fmpq,acb-method (fmpq-class), 40
solve,fmpq,acf-method (fmpq-class), 40
solve,fmpq,ANY-method (fmpq-class), 40

74 INDEX

solve,fmpq,arb-method (fmpq-class), 40
solve,fmpq,arf-method (fmpq-class), 40
solve,fmpq,fmpq-method (fmpq-class), 40
solve,fmpq,fmpz-method (fmpq-class), 40
solve,fmpq,mag-method (fmpq-class), 40
solve,fmpq,slong-method (fmpq-class), 40
solve,fmpq,ulong-method (fmpq-class), 40
solve,fmpz,acb-method (fmpz-class), 44
solve,fmpz,acf-method (fmpz-class), 44
solve,fmpz,ANY-method (fmpz-class), 44
solve,fmpz,arb-method (fmpz-class), 44
solve,fmpz,arf-method (fmpz-class), 44
solve,fmpz,fmpq-method (fmpz-class), 44
solve,fmpz,fmpz-method (fmpz-class), 44
solve,fmpz,mag-method (fmpz-class), 44
solve,fmpz,slong-method (fmpz-class), 44
solve,fmpz,ulong-method (fmpz-class), 44
solve,mag,acb-method (mag-class), 49
solve,mag,acf-method (mag-class), 49
solve,mag,ANY-method (mag-class), 49
solve,mag,arb-method (mag-class), 49
solve,mag,arf-method (mag-class), 49
solve,mag,fmpq-method (mag-class), 49
solve,mag,fmpz-method (mag-class), 49
solve,mag,mag-method (mag-class), 49
solve,mag,slong-method (mag-class), 49
solve,mag,ulong-method (mag-class), 49
solve,slong,acb-method (ulong-class), 55
solve,slong,acf-method (ulong-class), 55
solve,slong,ANY-method (ulong-class), 55
solve,slong,arb-method (ulong-class), 55
solve,slong,arf-method (ulong-class), 55
solve,slong,fmpq-method (ulong-class),

55
solve,slong,fmpz-method (ulong-class),

55
solve,slong,mag-method (ulong-class), 55
solve,slong,slong-method (ulong-class),

55
solve,slong,ulong-method (ulong-class),

55
solve,ulong,acb-method (ulong-class), 55
solve,ulong,acf-method (ulong-class), 55
solve,ulong,ANY-method (ulong-class), 55
solve,ulong,arb-method (ulong-class), 55
solve,ulong,arf-method (ulong-class), 55
solve,ulong,fmpq-method (ulong-class),

55

solve,ulong,fmpz-method (ulong-class),
55

solve,ulong,mag-method (ulong-class), 55
solve,ulong,slong-method (ulong-class),

55
solve,ulong,ulong-method (ulong-class),

55
sort, 39
split, 39
Summary,acb-method (acb-class), 5
Summary,acf-method (acf-class), 9
Summary,arb-method (arb-class), 13
Summary,arf-method (arf-class), 27
summary,flint-method (flint-class), 34
Summary,fmpq-method (fmpq-class), 40
Summary,fmpz-method (fmpz-class), 44
Summary,mag-method (mag-class), 49
Summary,slong-method (ulong-class), 55
Summary,ulong-method (ulong-class), 55

t,flint-method (flint-class), 34
tcrossprod,acb,acb-method (acb-class), 5
tcrossprod,acb,acf-method (acb-class), 5
tcrossprod,acb,ANY-method (acb-class), 5
tcrossprod,acb,arb-method (acb-class), 5
tcrossprod,acb,arf-method (acb-class), 5
tcrossprod,acb,fmpq-method (acb-class),

5
tcrossprod,acb,fmpz-method (acb-class),

5
tcrossprod,acb,mag-method (acb-class), 5
tcrossprod,acb,slong-method

(acb-class), 5
tcrossprod,acb,ulong-method

(acb-class), 5
tcrossprod,acf,acb-method (acf-class), 9
tcrossprod,acf,acf-method (acf-class), 9
tcrossprod,acf,ANY-method (acf-class), 9
tcrossprod,acf,arb-method (acf-class), 9
tcrossprod,acf,arf-method (acf-class), 9
tcrossprod,acf,fmpq-method (acf-class),

9
tcrossprod,acf,fmpz-method (acf-class),

9
tcrossprod,acf,mag-method (acf-class), 9
tcrossprod,acf,slong-method

(acf-class), 9
tcrossprod,acf,ulong-method

(acf-class), 9

INDEX 75

tcrossprod,ANY,acb-method (acb-class), 5
tcrossprod,ANY,acf-method (acf-class), 9
tcrossprod,ANY,arb-method (arb-class),

13
tcrossprod,ANY,arf-method (arf-class),

27
tcrossprod,ANY,fmpq-method

(fmpq-class), 40
tcrossprod,ANY,fmpz-method

(fmpz-class), 44
tcrossprod,ANY,mag-method (mag-class),

49
tcrossprod,ANY,slong-method

(ulong-class), 55
tcrossprod,ANY,ulong-method

(ulong-class), 55
tcrossprod,arb,acb-method (arb-class),

13
tcrossprod,arb,acf-method (arb-class),

13
tcrossprod,arb,ANY-method (arb-class),

13
tcrossprod,arb,arb-method (arb-class),

13
tcrossprod,arb,arf-method (arb-class),

13
tcrossprod,arb,fmpq-method (arb-class),

13
tcrossprod,arb,fmpz-method (arb-class),

13
tcrossprod,arb,mag-method (arb-class),

13
tcrossprod,arb,slong-method

(arb-class), 13
tcrossprod,arb,ulong-method

(arb-class), 13
tcrossprod,arf,acb-method (arf-class),

27
tcrossprod,arf,acf-method (arf-class),

27
tcrossprod,arf,ANY-method (arf-class),

27
tcrossprod,arf,arb-method (arf-class),

27
tcrossprod,arf,arf-method (arf-class),

27
tcrossprod,arf,fmpq-method (arf-class),

27

tcrossprod,arf,fmpz-method (arf-class),
27

tcrossprod,arf,mag-method (arf-class),
27

tcrossprod,arf,slong-method
(arf-class), 27

tcrossprod,arf,ulong-method
(arf-class), 27

tcrossprod,fmpq,acb-method
(fmpq-class), 40

tcrossprod,fmpq,acf-method
(fmpq-class), 40

tcrossprod,fmpq,ANY-method
(fmpq-class), 40

tcrossprod,fmpq,arb-method
(fmpq-class), 40

tcrossprod,fmpq,arf-method
(fmpq-class), 40

tcrossprod,fmpq,fmpq-method
(fmpq-class), 40

tcrossprod,fmpq,fmpz-method
(fmpq-class), 40

tcrossprod,fmpq,mag-method
(fmpq-class), 40

tcrossprod,fmpq,slong-method
(fmpq-class), 40

tcrossprod,fmpq,ulong-method
(fmpq-class), 40

tcrossprod,fmpz,acb-method
(fmpz-class), 44

tcrossprod,fmpz,acf-method
(fmpz-class), 44

tcrossprod,fmpz,ANY-method
(fmpz-class), 44

tcrossprod,fmpz,arb-method
(fmpz-class), 44

tcrossprod,fmpz,arf-method
(fmpz-class), 44

tcrossprod,fmpz,fmpq-method
(fmpz-class), 44

tcrossprod,fmpz,fmpz-method
(fmpz-class), 44

tcrossprod,fmpz,mag-method
(fmpz-class), 44

tcrossprod,fmpz,slong-method
(fmpz-class), 44

tcrossprod,fmpz,ulong-method
(fmpz-class), 44

76 INDEX

tcrossprod,mag,acb-method (mag-class),
49

tcrossprod,mag,acf-method (mag-class),
49

tcrossprod,mag,ANY-method (mag-class),
49

tcrossprod,mag,arb-method (mag-class),
49

tcrossprod,mag,arf-method (mag-class),
49

tcrossprod,mag,fmpq-method (mag-class),
49

tcrossprod,mag,fmpz-method (mag-class),
49

tcrossprod,mag,mag-method (mag-class),
49

tcrossprod,mag,slong-method
(mag-class), 49

tcrossprod,mag,ulong-method
(mag-class), 49

tcrossprod,slong,acb-method
(ulong-class), 55

tcrossprod,slong,acf-method
(ulong-class), 55

tcrossprod,slong,ANY-method
(ulong-class), 55

tcrossprod,slong,arb-method
(ulong-class), 55

tcrossprod,slong,arf-method
(ulong-class), 55

tcrossprod,slong,fmpq-method
(ulong-class), 55

tcrossprod,slong,fmpz-method
(ulong-class), 55

tcrossprod,slong,mag-method
(ulong-class), 55

tcrossprod,slong,slong-method
(ulong-class), 55

tcrossprod,slong,ulong-method
(ulong-class), 55

tcrossprod,ulong,acb-method
(ulong-class), 55

tcrossprod,ulong,acf-method
(ulong-class), 55

tcrossprod,ulong,ANY-method
(ulong-class), 55

tcrossprod,ulong,arb-method
(ulong-class), 55

tcrossprod,ulong,arf-method
(ulong-class), 55

tcrossprod,ulong,fmpq-method
(ulong-class), 55

tcrossprod,ulong,fmpz-method
(ulong-class), 55

tcrossprod,ulong,mag-method
(ulong-class), 55

tcrossprod,ulong,slong-method
(ulong-class), 55

tcrossprod,ulong,ulong-method
(ulong-class), 55

ulong, 3, 34, 35, 37, 39
ulong (ulong-class), 55
ulong-class, 55
ulong.array (ulong-class), 55
unique,flint-method (flint-class), 34

vector, 31

xtfrm,acb-method (acb-class), 5
xtfrm,acf-method (acf-class), 9
xtfrm,arb-method (arb-class), 13

	flint-package
	acb-class
	acf-class
	arb-class
	arb_dirichlet_zeta
	arb_hypgeom_2f1
	arb_hypgeom_bessel_j
	arb_hypgeom_gamma
	arb_hypgeom_gamma_lower
	arb_lambertw
	arf-class
	asVector
	c.flint
	Constants
	flint-class
	fmpq-class
	fmpz-class
	format-methods
	mag-class
	OptionalCharacter-class
	Part
	ulong-class
	Index

