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Building Time Trees

Expected tutorial time

This tutorial takes approximately an hour to complete, including 45 minutes of BEAST2 run time. You can reduce the run time by following the suggestions in the tip boxes above each code chunk that runs BEAST2.
<br><br>

There are many options for building time trees using BEAST2. Here we demonstrate how to use
TyCHE to fit a type-linked clock for heterogeneous evolution to B-cell data.

Inferring time-resolved phylogenies requires a clock model, which describes the relationship between
evolution and time within the population. A “strict clock” model assumes a constant rate of
evolution over time. Other models allow clock rates to vary, such as the uncorrelated lognormal
distribution relaxed clock.

Inferring time trees for cell populations using natural mutations is challenging because cellular evo-
lution is highly heterogenous. For example, B cells undergo periods of rapid somatic hypermutation
in germinal centers during immune responses before becoming quiescent memory cells.

In contrast to other methods, TyCHE simultaneously reconstructs ancestral trait states and dates
of tree nodes using type-specific clock rates.

Requirements

This tutorial requires Dowser 2.4 or later.

You will also need to have BEAST2, TyCHE and rootfreqs installed on your machine.
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For Mac and Windows machines, we recommend: Click to download the BEAST 2.7.7
dmg. Open the dmg file and drag the BEAST application to your Applications folder.

Click to download the BEAST 2.7.7 zip. Right click on the zip file to extract the BEAST folder.

OR download the appropriate version from https://github.com/CompEvol/beast2/releases/tag/v2.7.7
or www.beast2.org.

2. Open BEAUti, click on the “File” menu, and select “Manage Packages. . . ”.

3. In the package manager, find and install the “BEAST Classic” package.

4. Follow this tutorial to install the TyCHE package “by hand”: www.beast2.org/managing-
packages

5. Follow this tutorial to install the rootfreqs package “by hand”: www.beast2.org/managing-
packages

For Linux machines, we recommend running:

# Choose appropriate version for your architecture (x86 or aarch64)
BEAST=BEAST.v2.7.7.Linux.x86.tgz # or BEAST=BEAST.v2.7.7.Linux.aarch64.tgz

# download file and uncompress
curl -O https://github.com/CompEvol/beast2/releases/download/v2.7.7/$BEAST
tar -xvzf $BEAST

# optionally remove the compressed file
rm $BEAST

# run BEAST, at least with help, to allow it to set up its directories
~/beast/bin/beast -help

# install BEAST Classic package
~/beast/bin/packagemanager -add BEAST_CLASSIC

# install TyCHE package (currently not released on BEAST package manager)
curl -O https://github.com/hoehnlab/tyche/releases/download/v0.0.3/TyCHE.v0.0.3.zip
unzip -o -d ~/.beast/2.7/TyCHE TyCHE.v0.0.3.zip
rm -f TyCHE.v0.0.3.zip

# install rootfreqs package
ROOTFREQS=rootfreqs.package.v0.0.2.zip
curl -O https://github.com/rbouckaert/rootfreqs/releases/download/v0.0.2/$ROOTFREQS
unzip -o -d ~/.beast/2.7/rootfreqs $ROOTFREQS
rm -f $ROOTFREQS
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Download and set up XML templates

BEAST models are specified and run through XML files. A template is required to run BEAST2
through Dowser.

We provide several BEAST XML templates in the xml-templates repository. You can download
these and modify them as needed. Additionally, you can create your own XML templates for custom
analyses.

The templates used in this tutorial are:

• StrictClock/StrictClock_Standard_EmpFreq.xml: A simple strict clock model with em-
pirical nucleotide frequencies.

• TypeLinked/TypeLinkedExpectedOccupancy_EstTraitClockRates_EmpFreq.xml: A trait-
linked clock model using an expected occupancy method for determining the proportion of
each branch in each state, estimating separate clock rates for each state, and using empirical
nucleotide frequencies.

You can specify the path to the template in the template argument of getTimeTreesIterate, or
you can pass a connection object to the template argument, e.g. getTimeTreesIterate(...,
template = url(<url-to-github-file-raw>), ...). In this tutorial, we assume you have down-
loaded the above templates to your working directory.

Setting up data

This step proceeds as in tree building, but it is important to specify the column of the trait you want
to analyze in the formatClones step. In this example we are using simulated data from germinal
center and “other” tissue. However, this could be any discrete trait value such as cell types.

library(dowser)
library(dplyr)
library(ggtree)

# load example AIRR tsv data
data(ExampleAirrTyCHE)

# set up time/date trait
ExampleAirrTyCHE$sample_time <- as.numeric(ExampleAirrTyCHE$sample_time)

# trait value of interest
trait="location"

clones <- formatClones(
ExampleAirrTyCHE,
traits = c(trait, "sample_time"),
germ = "germline_alignment"

)
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# Column shows which location the B cell was obtained from
print(table(ExampleAirrTyCHE[[trait]]))

##
## germinal_center other
## 100 100

Estimating the GC clock rate

The type-linked clock models implemented in TyCHE link each trait to a separate molecular clock
rate which can be either fixed or estimated as a parameter. The models perform best when there is
prior information about the rate of one or both populations.

If you do not have an external estimate of the clock rate for each trait, you can estimate the clock
rate using a using root-to-tip regression or by fitting a strict clock model to GC B cells.

Here we estimate the clock rate of germinal center B cells using BEAST2 with a strict clock model.

gc_cells = filter(ExampleAirrTyCHE, location=="germinal_center")
gcf = formatClones(gc_cells, traits=c("location","sample_time"),

germ="germline_alignment")

gctrees = getTrees(gcf, build="pml", sub_model="HKY")

plotTrees(gctrees)[[1]] + geom_tippoint(aes(color=sample_time))
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Tip

With two processors available, the next step takes about 15 minutes to run, depending on your
machine. For a quick demonstration set smaller mcmc_length or iterations, but expect results to
be unconverged.

getTimeTreesIterate will run BEAST2 on each clone in parallel (here, nproc=2, so 2 clones at a
time).

# edit to your BEAST installation path
beast <- "/Applications/BEAST 2.7.7/bin/"

# estimate clock rate of GC B cells
# if you don't care about convergence, reduce mcmc_length
# ensure you are providing the correct path to the template file downloaded earlier (see Requirements)
gctree = getTimeTreesIterate(gcf,

beast=beast,
template="StrictClock_Standard_EmpFreq.xml",
dir="temp",
id="gc_strict",
time="sample_time",
mcmc_length=1e6,
iterations=10,
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nproc=2,
CLOCK_RATE_INIT=0.001,
KAPPA_PRIOR_M=0.67,
KAPPA_PRIOR_S=0.2,
ignore=c("freqParameter"))

gcrate_tree = mean(sapply(gctree$parameters, function(x)filter(x,item=="geneticClockRate")$mean))
print(gcrate_tree)

## [1] 0.000363

If it is not feasible to run a strict clock analysis, you can use the slope from a root-to-tip regression.
Here, we estimate the clock rate of germinal center B cells using a root-to-tip regression.

gcrate_slope = mean(correlationTest(gctrees, time="sample_time")$slope)
print(gcrate_slope)

## [1] 0.0003686277

Run getTimeTreesIterate with a TyCHE template

We can now run a trait-linked TyCHE model using the estimated GC rate. Here, we use the
TraitLinkedExpectedOccupancy model, which uses an expected occupancy method to determine the
proportion of each branch in each state.

Features of this template:

• Allows estimation of clock rates:
– we provide values of the mean (TRAIT_RATE_MEAN_1, TRAIT_RATE_MEAN_2) and sigma
(TRAIT_RATE_SIGMA_1, TRAIT_RATE_SIGMA_2) for the prior normal distributions of each
clock rate.

• Uses empirical nucleotide frequencies as the equilibrium frequencies.
– Dowser will automatically calculate these frequencies from the input sequences.
– Recommended for most data, especially BCRs.

getTimeTreesIterate is designed to run each analysis iteratively, checking for convergence after
each iteration. If the analyses converge before reaching the max iterations, it will stop early. It
will run each analysis for mcmc_length MCMC samples (here, 1e6), and it will repeat this up to
iterations times (here, 20), so here we have a maximum of 2e7 MCMC samples.

The convergence check is based on the ESS of the parameters reported in the log files. You can
exclude parameters from this ESS check using the ignore argument (here, we ignore freqParameter,
as it is a fixed value).

Tip

This step takes about 30 minutes to run, depending on your machine.
For a quick demonstration set smaller `mcmc_length` or `iterations`, but expect
results to be unconverged.
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<br><br>

mixed_trees <- getTimeTreesIterate(
clones,
beast = beast,
template = "TraitLinkedExpectedOccupancy_EstTraitClockRates_EmpFreq.xml",
trait = trait,
time = "sample_time",
dir = "temp",
id = "tyche_eo_est",
log_every = "auto",
nproc = 2,
KAPPA_PRIOR_M = 0.67,
KAPPA_PRIOR_S = 0.2,
TRAIT_RATE_MEAN_1 = gcrate_tree,
TRAIT_RATE_MEAN_2 = 0.000001,
TRAIT_RATE_SIGMA_1 = gcrate_tree * 0.01,
TRAIT_RATE_SIGMA_2 = 0.001,
RATE_INDICATORS = "1 0",
TRANSITION_RATE_ALPHA_1 = 0.1,
TRANSITION_RATE_ALPHA_2 = 1.0,
TRANSITION_RATE_BETA_1 = 0.1,
TRANSITION_RATE_BETA_2 = 1.0,
log_target = 2000,
mcmc_length = 1e6,
ignore = c("freqParameter"),
iterations = 20

)

getTimeTreesIterate will run BEAST2 on each clone in parallel (here, nproc=2, so 2 at a time).

To capture sufficient information about the posterior distribution while keeping log files from
becoming overly large or unwieldy, we provide the option to set log_every="auto". This will
automatically set the logging frequency based on the mcmc_length and log_target (here, 2000, so
we aim to have around 2000 samples in the log file). You can also set a fixed logging frequency by
providing an integer value.

The rate indicators (RATE_INDICATORS) specify which traits can transition to each other. In a
primary immune response we recommend setting this to "1 0", as GC B cells can transition to
other tissues, but not vice versa. If your data comprises chronic infections or repeated vaccinations,
you may want to allow transitions in both directions, so you would set this to "1 1". Note: traits
are always sorted ASCII alphabetically.

You can also specify alpha (shape) and beta (rate) values for the prior gamma distributions of the
transition rates between traits. We recommend setting the same prior for each transition rate except
in rare cases.

The prior distribution on kappa is used by the nucleotide substitution model, and we recommend
these values for BCR analyses.

See ?getTimeTreesIterate and TyCHE and BEAST2 documentation for more details.
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Visualize the results

After the analyses have converged, you can visualize the time trees.

Note: plotTrees sets a default value for the scale bar of 0.01, which is appropriate for trees with
genetic distance branch lengths (mutations per site), but time trees typically require a larger scale
bar. In this case, we know the data spans 200 time units, so we set scale=10 to make the scale bar
more visually interpretable.

plotTrees(mixed_trees, scale=10)[[1]] + geom_point(aes(fill=location), pch=21, size=3)

The parameters column of mixed_trees contains a table that collates the output from the BEAST2
analysis. Columns include the parameter (item), the posterior mean, standard error, standard
deviation, median, 95% highest posterior density interval, autocorrelation time (ACT), effective
sample size, and geometric mean.

The effective sample size (ESS) of a parameter is a measure of how much independent information
your MCMC sample contains. Even though MCMC generates many samples, they are typically
autocorrelated—each sample depends on the previous one. ESS is the number of independent draws
from the target distribution with the same estimation power and can be thought of as the sample
size for that parameter.
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A higher ESS means your sample more reliably represents the posterior distribution. Low ESS
indicates that you need more information, which can indicate the need for longer MCMC runs. We
typically recommend an ESS of at least 200 for each estimated parameter.

The autocorrelation time (ACT) of a parameter measures how strongly each sample in the MCMC
chain depends on previous samples. The ACT tells you how long the MCMC chain takes to produce
a roughly independent sample. ACT is inversely related to ESS.

If we’re interested in the estimated tree height, we can filter the parameters table for TreeHeight:

print(mixed_trees$parameters[[2]] %>% filter(item=="TreeHeight"))

## item mean stderr stddev median X95.HPDlo X95.HPDup ACT ESS geometric.mean
## 1 TreeHeight 236.0621 1.595335 19.36631 234.2536 201.9269 275.1676 122150.1 147.3636 235.2881

Our model likely hasn’t converged, with multiple parameters having ESS values below 200, particu-
larly the posterior which describes how well the model has converged as a whole. The mean tree
height is around 236 time units, with a 95% highest posterior density interval from about 200 to
275 time units. Since we know the data spans 200 time units, this is a high estimate, but this is
unsurprising given that the ESS is below 200 and the analysis has likely not converged.

The parameters available will depend on the model you used and what is specified for logging in the
XML template. In this case, we can see all the items that were logged:

print(mixed_trees$parameters[[2]]$item)

## [1] "posterior" "likelihood"
## [3] "prior" "treeLikelihood.tyche_eo_est_2"
## [5] "TreeHeight" "rateIndicator.type.1"
## [7] "rateIndicator.type.2" "relativeGeoRates.type.1"
## [9] "relativeGeoRates.type.2" "typeSwitchClockRate"
## [11] "kappa.tyche_eo_est_2" "BayesianSkyline"
## [13] "bPopSizes.1" "bPopSizes.2"
## [15] "bPopSizes.3" "bPopSizes.4"
## [17] "bPopSizes.5" "bGroupSizes.1"
## [19] "bGroupSizes.2" "bGroupSizes.3"
## [21] "bGroupSizes.4" "bGroupSizes.5"
## [23] "freqParameter.tyche_eo_est_2.1" "freqParameter.tyche_eo_est_2.2"
## [25] "freqParameter.tyche_eo_est_2.3" "freqParameter.tyche_eo_est_2.4"
## [27] "traitfrequencies.type.1" "traitfrequencies.type.2"
## [29] "typeLinkedRates.1" "typeLinkedRates.2"

These include the posterior, likelihood, and prior probabilities of the full model; the tree likelihood;
estimated values of the tree height, the clock rates for each trait (typeLinkedRates), the relative tran-
sition rates between traits (relativeGeoRates), the rate of switching traits (typeSwitchClockRate);
parameters relating to BayesianSkyline (BayesianSkyline, bPopSizes, bGroupSizes); and some
fixed parameters that are included in logging for record-keeping convenience (the kappa value of the
HKY substitution model, the empirical frequencies of the nucleotides, the frequencies of the traits).

If you want to revisit an analysis and no longer have the mixed_trees object in your R environment,
you can use readBEAST to read in the BEAST log and tree files from the directory (dir) you
specified in getTimeTreesIterate. Because of this, it is important to always specify a unique
combination of dir and id for each analysis.
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mixed_trees <- readBEAST(clones, dir="temp", id="tyche_eo_est", beast=beast, trait=trait)

See ?readBEAST for more details.

Tip

You can find all of BEAST’s output files, including the trees, logs, console logs, and TreeAnnotator
outputs, in the dir you specified (here, “temp”). You can view these files using BEAST tools such
as Tracer.
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