
Package ‘causaloptim’
October 17, 2024

Encoding UTF-8

Type Package

Title An Interface to Specify Causal Graphs and Compute Bounds on
Causal Effects

Version 1.0.0

Date 2024-10-16

Maintainer Michael C Sachs <sachsmc@gmail.com>

Description When causal quantities are not identifiable from the observed data, it still may be possible
to bound these quantities using the observed data. We outline a class of problems for which the
derivation of tight bounds is always a linear programming problem and can therefore, at least
theoretically, be solved using a symbolic linear optimizer. We extend and generalize the
approach of Balke and Pearl (1994) <doi:10.1016/B978-1-55860-332-5.50011-0> and we provide
a user friendly graphical interface for setting up such problems via directed acyclic
graphs (DAG), which only allow for problems within this class to be depicted. The user can
then define linear constraints to further refine their assumptions to meet their specific
problem, and then specify a causal query using a text interface. The program converts this
user defined DAG, query, and constraints, and returns tight bounds. The bounds can be
converted to R functions to evaluate them for specific datasets, and to latex code for
publication. The methods and proofs of tightness and validity of the bounds are described in
a paper by Sachs, Jonzon, Gabriel, and Sjölander (2022)
<doi:10.1080/10618600.2022.2071905>.

License MIT + file LICENSE

Imports shiny, rcdd

Depends R (>= 3.5.0), igraph

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), knitr, rmarkdown

VignetteBuilder knitr

URL https://sachsmc.github.io/causaloptim/

BugReports https://github.com/sachsmc/causaloptim/issues/

Config/testthat/edition 3

1

https://doi.org/10.1016/B978-1-55860-332-5.50011-0
https://doi.org/10.1080/10618600.2022.2071905
https://sachsmc.github.io/causaloptim/
https://github.com/sachsmc/causaloptim/issues/

2 Contents

NeedsCompilation no

Author Michael C Sachs [aut, cre],
Erin E Gabriel [aut],
Arvid Sjölander [aut],
Gustav Jonzon [aut],
Alexander A Balke [ctb] ((C++ code)),
Colorado Reed [ctb] ((graph-creator.js))

Repository CRAN

Date/Publication 2024-10-17 09:00:02 UTC

Contents
causaloptim-package . 3
analyze_graph . 3
btm_var . 5
causalproblemcheck . 6
check_constraints_violated . 7
check_linear_objective . 8
check_parents . 9
constraintscheck . 10
create_causalmodel . 10
create_effect_vector . 12
create_linearcausalproblem . 13
create_q_matrix . 14
create_response_function . 15
find_all_paths . 16
get_default_effect . 16
graphrescheck . 17
initialize_graph . 18
interpret_bounds . 18
latex_bounds . 19
list_to_path . 20
optimize_effect_2 . 20
opt_effect . 21
parse_constraints . 22
parse_effect . 22
plot.linearcausalproblem . 23
plot_graphres . 24
print.causalmodel . 25
print.linearcausalproblem . 25
querycheck . 26
rdirichlet . 26
sample_distribution . 27
simulate_bounds . 28
specify_graph . 29
update_effect . 29

causaloptim-package 3

Index 31

causaloptim-package An Interface to Specify Causal Graphs and Compute Bounds on
Causal Effects

Description

Specify causal graphs using a visual interactive interface and then analyze them and compute sym-
bolic bounds for the causal effects in terms of the observable parameters.

Details

Run the shiny app by results <- specify_graph(). See detailed instructions in the vignette
browseVignettes("causaloptim").

Author(s)

Michael C Sachs, Arvid Sjölander, Gustav Jonzon, Alexander Balke, Colorado Reed, and Erin
Gabriel Maintainer: Michael C Sachs <sachsmc at gmail.com>

References

Sachs, M. C., Jonzon, G., Sjölander, A., & Gabriel, E. E. (2023). A general method for deriving
tight symbolic bounds on causal effects. Journal of Computational and Graphical Statistics, 32(2),
567-576. https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2071905 .

See Also

browseVignettes('causaloptim') specify_graph

analyze_graph Analyze the causal graph and effect to determine constraints and ob-
jective

Description

The graph must contain certain edge and vertex attributes which are documented in the Details
below. The shiny app run by specify_graph will return a graph in this format.

Usage

analyze_graph(graph, constraints, effectt)

https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2071905

4 analyze_graph

Arguments

graph An igraph-package object that represents a directed acyclic graph with certain
attributes. See Details.

constraints A vector of character strings that represent the constraints on counterfactual
quantities

effectt A character string that represents the causal effect of interest

Details

The graph object must contain the following named vertex attributes:

name The name of each vertex must be a valid R object name starting with a letter and no special
characters. Good candidate names are for example, Z1, Z2, W2, X3, etc.

leftside An indicator of whether the vertex is on the left side of the graph, 1 if yes, 0 if no.

latent An indicator of whether the variable is latent (unobserved). There should always be a vari-
able Ul on the left side that is latent and a parent of all variables on the left side, and another
latent variable Ur on the right side that is a parent of all variables on the right side.

nvals The number of possible values that the variable can take on, the default and minimum is 2
for 2 categories (0,1). In general, a variable with nvals of K can take on values 0, 1, ..., (K-1).

In addition, there must be the following edge attributes:

rlconnect An indicator of whether the edge goes from the right side to the left side. Should be 0
for all edges.

edge.monotone An indicator of whether the effect of the edge is monotone, meaning that if V1 ->
V2 and the edge is monotone, then a > b implies V2(V1 = a) >= V2(V1 = b). Only available
for binary variables (nvals = 2).

The effectt parameter describes your causal effect of interest. The effectt parameter must be of the
form

p{V11(X=a)=a; V12(X=a)=b;...} op1 p{V21(X=b)=a; V22(X=c)=b;...} op2 ...

where Vij are names of variables in the graph, a, b are numeric values from 0:(nvals - 1), and op
are either - or +. You can specify a single probability statement (i.e., no operator). Note that the
probability statements begin with little p, and use curly braces, and items inside the probability
statements are separated by ;. The variables may be potential outcomes which are denoted by
parentheses. Variables may also be nested inside potential outcomes. Pure observations such as p{Y
= 1} are not allowed if the left side contains any variables. There are 2 important rules to follow: 1)
Only variables on the right side can be in the probability events, and if the left side is not empty: 2)
none of the variables in the left side that are intervened upon can have any children in the left side,
and all paths from the left to the right must be blocked by the intervention set. Here the intervention
set is anything that is inside the smooth brackets (i.e., variable set to values).

All of the following are valid effect statements:

p{Y(X = 1) = 1} - p{Y(X = 0) = 1}

p{X(Z = 1) = 1; X(Z = 0) = 0}

p{Y(M(X = 0), X = 1) = 1} - p{Y(M(X = 0), X = 0) = 1}

btm_var 5

The constraints are specified in terms of potential outcomes to constrain by writing the potential
outcomes, values of their parents, and operators that determine the constraint (equalities or inequal-
ities). For example, X(Z = 1) >= X(Z = 0)

Value

A an object of class "linearcausalproblem", which is a list with the following components. This list
can be passed to optimize_effect_2 which interfaces with the symbolic optimization program. Print
and plot methods are also available.

variables Character vector of variable names of potential outcomes, these start with ’q’ to match
Balke’s notation

parameters Character vector of parameter names of observed probabilities, these start with ’p’ to
match Balke’s notation

constraints Character vector of parsed constraints

objective Character string defining the objective to be optimized in terms of the variables

p.vals Matrix of all possible values of the observed data vector, corresponding to the list of param-
eters.

q.vals Matrix of all possible values of the response function form of the potential outcomes, corre-
sponding to the list of variables.

parsed.query A nested list containing information on the parsed causal query.

objective.nonreduced The objective in terms of the original variables, before algebraic variable
reduction. The nonreduced variables can be obtained by concatenating the columns of q.vals.

response.functions List of response functions.

graph The graph as passed to the function.

R A matrix with coefficients relating the p.vals to the q.vals p = R * q

c0 A vector of coefficients relating the q.vals to the objective function theta = c0 * q

iqR A matrix with coefficients to represent the inequality constraints

Examples

confounded exposure and outcome
b <- initialize_graph(igraph::graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y))
analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")

btm_var Recursive function to get the last name in a list

Description

Recursive function to get the last name in a list

Usage

btm_var(x, name = NULL)

6 causalproblemcheck

Arguments

x a list

name name of the top element of the list

Value

The name of the deepest nested list element

Examples

btm_var(list(X = list(Y = list(K = 1))))

causalproblemcheck Check conditions on causal problem

Description

Check that a given causal problem (a causal DAG together with a causal query) satisfies conditions
that guarantee that the optimization problem is linear.

Usage

causalproblemcheck(digraph, query)

Arguments

digraph An igraph object representing a digraph.
Expected vertex attributes: leftside, latent and nvals.
Optional vertex attributes: exposure and outcome.
Expected edge attributes: rlconnect and edge.monotone.

query A string representing a causal query / effect.

Value

TRUE if conditions are met; FALSE otherwise.

Examples

b <- graph_from_literal(X - +Y, Ur - +X, Ur - +Y)
V(b)$leftside <- c(0, 0, 0)
V(b)$latent <- c(0, 0, 1)
V(b)$nvals <- c(2, 2, 2)
V(b)$exposure <- c(1, 0, 0)
V(b)$outcome <- c(0, 1, 0)
E(b)$rlconnect <- c(0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0)

check_constraints_violated 7

effectt <- "p{Y(X=1)=1}-p{Y(X=0)=1}"
causalproblemcheck(digraph = b, query = effectt)

check_constraints_violated

Check whether any of the observable constraints implied by the causal
model are violated for a given distribution of observables

Description

Check whether any of the observable constraints implied by the causal model are violated for a
given distribution of observables

Usage

check_constraints_violated(obj, probs, tol = 1e-12)

Arguments

obj An object of class "causalmodel"

probs A named vector of observable probabilities, in the same order as obj$data$parameters

tol Tolerance for checking (in)equalities

Value

Either TRUE (violated) or FALSE (not violated) with messages indicating what constraints are
violated if any.

Examples

graph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ur -+ X, Ur -+ Y))

iv_model <- create_causalmodel(graph, prob.form = list(out = c("X", "Y"), cond = "Z"))
check_constraints_violated(iv_model, probs = sample_distribution(iv_model))

8 check_linear_objective

check_linear_objective

Check linearity of objective function implied by a causal model and
effect

Description

Check linearity of objective function implied by a causal model and effect

Usage

check_linear_objective(causal_model, effectt)

Arguments

causal_model An object of class "causalmodel" as produce by create_causalmodel

effectt A character string that represents the causal effect of interest

Details

The effectt parameter describes your causal effect of interest. The effectt parameter must be of the
form

p{V11(X=a)=a; V12(X=a)=b;...} op1 p{V21(X=b)=a; V22(X=c)=b;...} op2 ...

where Vij are names of variables in the graph, a, b are numeric values from 0:(nvals - 1), and op
are either - or +. You can specify a single probability statement (i.e., no operator). Note that the
probability statements begin with little p, and use curly braces, and items inside the probability
statements are separated by ;. The variables may be potential outcomes which are denoted by
parentheses. Variables may also be nested inside potential outcomes.

All of the following are valid effect statements:

p{Y(X = 1) = 1} - p{Y(X = 0) = 1}

p{X(Z = 1) = 1; X(Z = 0) = 0}

p{Y(M(X = 0), X = 1) = 1} - p{Y(M(X = 0), X = 0) = 1}

The effect must be fully specified, that is, all parents of a variable that is intervened upon need to be
specified. The function cannot infer missing values or marginalize over some parents but not others.

Value

A logical value that is TRUE if the objective function is linear

check_parents 9

Examples

regular IV case

ivgraph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ur -+ X, Ur -+ Y))
prob.form <- list(out = c("Y", "X"), cond = "Z")

iv_model <- create_causalmodel(graph = ivgraph,
prob.form = prob.form)

check_linear_objective(iv_model, effectt = "p{Y(X = 1) = 1}")

#' ## contaminated IV case

civgraph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Z-+ Y, Ur -+ X, Ur -+ Y))

cont_iv <- create_causalmodel(graph = civgraph, prob.form = prob.form)

check_linear_objective(cont_iv, effectt = "p{Y(X = 1) = 1}")

check_parents Check for paths from from to to

Description

Check for paths from from to to

Usage

check_parents(parent_lookup, from, to, prev = NULL)

Arguments

parent_lookup A list of vectors

from character

to character

prev Should always be null when first called

Value

A list of paths or null if no path is found

Examples

parent_lookup <- list(M = "Am", Y = c("M", "Ay"), A = NULL, Am = "A", Ay = "A")
check_parents(parent_lookup, "A", "Y")

10 create_causalmodel

constraintscheck Check constraints

Description

Check that a user-provided constraint is parsable, has valid variables and relations.

Usage

constraintscheck(constrainttext, graphres)

Arguments

constrainttext A string representing a constraint.

graphres An igraph object representing a DAG.

Value

TRUE if all check pass; else FALSE.

Examples

graphres <- graph_from_literal(Z -+ X, X -+ Y, Ul -+ Z, Ur -+ X, Ur -+ Y)
V(graphres)$leftside <- c(1, 0, 0, 1, 0)
V(graphres)$latent <- c(0, 0, 0, 1, 1)
V(graphres)$nvals <- c(3, 2, 2, 2, 2)
V(graphres)$exposure <- c(0, 1, 0, 0, 0)
V(graphres)$outcome <- c(0, 0, 1, 0, 0)
E(graphres)$rlconnect <- c(0, 0, 0, 0, 0)
E(graphres)$edge.monotone <- c(0, 0, 0, 0, 0)
constrainttext <- "X(Z = 1) >= X(Z = 0)"
constraintscheck(constrainttext = constrainttext, graphres = graphres) # TRUE

create_causalmodel Create a structural causal model from a graph or a set of response
functions

Description

Given either a graph or a set of response functions (i.e., either graph or respvars may be provided),
and a specification of what conditional probabilities are observed, produce a causal model.

create_causalmodel 11

Usage

create_causalmodel(
graph = NULL,
respvars = NULL,
prob.form,
p.vals,
constraints = NULL,
right.vars = NULL

)

Arguments

graph A graph with special edge and vertex attributes, as produced by initialize_graph

respvars List of response functions as produced by create_response_function

prob.form A list with two named elements "out", "cond" where each element is a character
vector of variable names that appear in p.vals

p.vals Data frame defining which probabilities are observable. The variable names of
p.vals must all appear in prob.form. If missing, will assume that all combinations
of the variables values are observed.

constraints A vector of character strings that represent the constraints on counterfactual
quantities

right.vars A vector of character strings indicating which variables are on the right side of
the graph. Only required when graph is NULL. See examples.

Details

It is assumed that probabilities of the form p(out | cond) are observed, for each combination of
values in p.vals. cond may be NULL in which case nothing is conditioned on.

The constraints are specified in terms of potential outcomes to constrain by writing the potential
outcomes, values of their parents, and operators that determine the constraint (equalities or inequal-
ities). For example, X(Z = 1) >= X(Z = 0)

Value

An object of class "causalmodel"

Examples

regular IV case

graph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ur -+ X, Ur -+ Y))

iv_model <- create_causalmodel(graph, prob.form = list(out = c("X", "Y"), cond = "Z"))
with monotonicity
iv_model_mono <- create_causalmodel(graph, prob.form = list(out = c("X", "Y"), cond = "Z"),

constraints = list("X(Z = 1) >= X(Z = 0)"))

#showing the use of right.vars

12 create_effect_vector

b <- initialize_graph(graph_from_literal(Ul -+ X -+ Y -+ Y2, Ur -+ Y, Ur -+ Y2))
V(b)$latent <- c(1, 0, 1, 0, 1)
respvars <- create_response_function(b)
create_causalmodel(graph = b, constraints = "Y2(Y = 1) >= Y2(Y = 0)",

p.vals = expand.grid(X = 0:1, Y2 = 0:1),
prob.form = list(out = "Y2", cond = "X"))

need to specify right.vars because it cannot be inferred from the response functions alone
create_causalmodel(graph = NULL, respvars = respvars,

constraints = "Y2(Y = 1) >= Y2(Y = 0)",
p.vals = expand.grid(X = 0:1, Y2 = 0:1),
prob.form = list(out = "Y2", cond = "X"),
right.vars = c("Y", "Y2"))

create_effect_vector Translate target effect to vector of response variables

Description

Translate target effect to vector of response variables

Usage

create_effect_vector(causal_model, effect)

Arguments

causal_model An object of class "causalmodel" as produced by create_causalmodel

effect Effect list, as returned by parse_effect

Value

A list with the target effect in terms of qs

Examples

graph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ul -+ Z, Ur -+ X, Ur -+ Y))
constraints <- "X(Z = 1) >= X(Z = 0)"
effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}"
p.vals <- expand.grid(Z = 0:1, X = 0:1, Y = 0:1)
prob.form <- list(out = c("X", "Y"), cond = "Z")
effect <- parse_effect(effectt)
ivmod <- create_causalmodel(graph, respvars = NULL, p.vals = p.vals, prob.form = prob.form,

constraints = constraints)
var.eff <- create_effect_vector(ivmod, effect)

create_linearcausalproblem 13

create_linearcausalproblem

Create linear causal problem from causal model and effect

Description

A more flexible alternative to analyze_graph that takes as inputs the causal model and effect.

Usage

create_linearcausalproblem(causal_model, effectt)

Arguments

causal_model An object of class "causalmodel" as produce by create_causalmodel

effectt A character string that represents the causal effect of interest

Details

The effectt parameter describes your causal effect of interest. The effectt parameter must be of the
form

p{V11(X=a)=a; V12(X=a)=b;...} op1 p{V21(X=b)=a; V22(X=c)=b;...} op2 ...

where Vij are names of variables in the graph, a, b are numeric values from 0:(nvals - 1), and op
are either - or +. You can specify a single probability statement (i.e., no operator). Note that the
probability statements begin with little p, and use curly braces, and items inside the probability
statements are separated by ;. The variables may be potential outcomes which are denoted by
parentheses. Variables may also be nested inside potential outcomes. Pure observations such as p{Y
= 1} are not allowed if the left side contains any variables. There are 2 important rules to follow: 1)
Only variables on the right side can be in the probability events, and if the left side is not empty: 2)
none of the variables in the left side that are intervened upon can have any children in the left side,
and all paths from the left to the right must be blocked by the intervention set. Here the intervention
set is anything that is inside the smooth brackets (i.e., variable set to values).

All of the following are valid effect statements:

p{Y(X = 1) = 1} - p{Y(X = 0) = 1}

p{X(Z = 1) = 1; X(Z = 0) = 0}

p{Y(M(X = 0), X = 1) = 1} - p{Y(M(X = 0), X = 0) = 1}

Value

A an object of class "linearcausalproblem", which is a list with the following components. This list
can be passed to optimize_effect_2 which interfaces with the symbolic optimization program. Print
and plot methods are also available.

variables Character vector of variable names of potential outcomes, these start with ’q’ to match
Balke’s notation

14 create_q_matrix

parameters Character vector of parameter names of observed probabilities, these start with ’p’ to
match Balke’s notation

constraints Character vector of parsed constraints

objective Character string defining the objective to be optimized in terms of the variables

p.vals Matrix of all possible values of the observed data vector, corresponding to the list of param-
eters.

q.vals Matrix of all possible values of the response function form of the potential outcomes, corre-
sponding to the list of variables.

parsed.query A nested list containing information on the parsed causal query.

objective.nonreduced The objective in terms of the original variables, before algebraic variable
reduction. The nonreduced variables can be obtained by concatenating the columns of q.vals.

response.functions List of response functions.

graph The graph as passed to the function.

R A matrix with coefficients relating the p.vals to the q.vals p = R * q

c0 A vector of coefficients relating the q.vals to the objective function theta = c0 * q

iqR A matrix with coefficients to represent the inequality constraints

Examples

confounded exposure and outcome
b <- initialize_graph(igraph::graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y))
confmod <- create_causalmodel(graph = b, prob.form = list(out = c("X", "Y"), cond = NULL))
create_linearcausalproblem(confmod, effectt = "p{Y(X = 1) = 1}")

create_q_matrix Translate response functions into matrix of counterfactuals

Description

Translate response functions into matrix of counterfactuals

Usage

create_q_matrix(respvars, right.vars, cond.vars, constraints)

Arguments

respvars A list of functions as returned by create_response_function

right.vars Vertices of graph on the right side

cond.vars Vertices of graph on the left side

constraints A vector of character strings that represent the constraints

create_response_function 15

Value

A list of 3 data frames of counterfactuals and their associated labels

Examples

graphres <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ul -+ Z, Ur -+ X, Ur -+ Y))
constraints <- "X(Z = 1) >= X(Z = 0)"
cond.vars <- V(graphres)[V(graphres)$leftside == 1 & names(V(graphres)) != "Ul"]
right.vars <- V(graphres)[V(graphres)$leftside == 0 & names(V(graphres)) != "Ur"]
respvars <- create_response_function(graphres)
create_q_matrix(respvars, right.vars, cond.vars, constraints)

create_response_function

Translate regular DAG to response functions

Description

Translate regular DAG to response functions

Usage

create_response_function(graph)

Arguments

graph An aaa-igraph-package object that represents a directed acyclic graph that con-
tains certain edge attributes. The shiny app returns a graph in this format and
initialize_graph will add them to a regular igraph object with sensible defaults.

Value

A list of functions representing the response functions

Examples

confounded exposure and outcome
b <- initialize_graph(igraph::graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y))
create_response_function(b)

16 get_default_effect

find_all_paths Find all paths in a causal model

Description

Given a set of response functions, find all directed paths from from to to

Usage

find_all_paths(respvars, from, to)

Arguments

respvars A set of response functions as created by create_response_function

from A character string indicating the start of the path

to A character string indicating the end of the path

Value

A list with all the paths or a list with NULL if there are none

Examples

b <- initialize_graph(igraph::graph_from_literal(X -+ Z, Z -+ Y, X -+ Y, Ur -+ Z, Ur -+ Y))
medmod <- create_response_function(b)
find_all_paths(medmod, "X", "Y")
igraph::all_simple_paths(b, "X", "Y", mode = "out")

get_default_effect Define default effect for a given graph

Description

Define default effect for a given graph

Usage

get_default_effect(graphres)

Arguments

graphres The graph object, should have vertex attributes "outcome" and "exposure"

Value

A string that can be passed to parse_effect

graphrescheck 17

Examples

graphres <- graph_from_literal(Z -+ X, X -+ Y, Ul -+ Z, Ur -+ X, Ur -+ Y)
V(graphres)$leftside <- c(1, 0, 0, 1, 0)
V(graphres)$latent <- c(0, 0, 0, 1, 1)
V(graphres)$nvals <- c(3, 2, 2, 2, 2)
V(graphres)$exposure <- c(0, 1, 0, 0, 0)
V(graphres)$outcome <- c(0, 0, 1, 0, 0)
E(graphres)$rlconnect <- c(0, 0, 0, 0, 0)
E(graphres)$edge.monotone <- c(0, 0, 0, 0, 0)
get_default_effect(graphres = graphres) == "p{Y(X = 1)=1} - p{Y(X = 0)=1}" # TRUE

graphrescheck Check conditions on digraph

Description

Check that a given digraph satisfies the conditions of ’no left to right edges’, ’no cycles’, ’valid
number of categories’ and ’valid variable names’. Optionally returns the digraph if all checks are
passed.

Usage

graphrescheck(graphres, ret = FALSE)

Arguments

graphres An igraph object representing a digraph.

ret A logical value. Default is FALSE. Set to TRUE to also return graphres if all
checks are passed.

Value

If ret=FALSE (default): TRUE if all checks pass; else FALSE. If ret=TRUE: graphres if all checks
pass; else FALSE.

Examples

graphres <- graph_from_literal(X -+ Y, X -+ M, M -+ Y, Ul -+ X, Ur -+ M, Ur -+ Y)
V(graphres)$leftside <- c(1, 0, 0, 1, 0)
V(graphres)$latent <- c(0, 0, 0, 1, 1)
V(graphres)$nvals <- c(2, 2, 2, 2, 2)
V(graphres)$exposure <- c(0, 0, 0, 0, 0)
V(graphres)$outcome <- c(0, 0, 0, 0, 0)
E(graphres)$rlconnect <- c(0, 0, 0, 0, 0, 0)
E(graphres)$edge.monotone <- c(0, 0, 0, 0, 0, 0)
graphrescheck(graphres = graphres) # TRUE

18 interpret_bounds

initialize_graph Initialize an igraph object for use with causaloptim

Description

Checks for required attributes and adds defaults if missing

Usage

initialize_graph(graph)

Arguments

graph An object of class igraph

Value

An igraph with the vertex attributes leftside, latent, and nvals, and edge attributes rlconnect and
edge.monotone

Examples

b <- igraph::graph_from_literal(X -+ Y)
b2 <- initialize_graph(b)
V(b2)$nvals

interpret_bounds Convert bounds string to a function

Description

Convert bounds string to a function

Usage

interpret_bounds(bounds, parameters)

Arguments

bounds The bounds element as returned by optimize_effect

parameters Character vector defining parameters, as returned by analyze_graph

Value

A function that takes arguments for the parameters, i.e., the observed probabilities and returns a
vector of length 2: the lower bound and the upper bound.

latex_bounds 19

Examples

b <- graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(0,0,0)
V(b)$latent <- c(0,0,1)
V(b)$nvals <- c(2,2,2)
E(b)$rlconnect <- E(b)$edge.monotone <- c(0, 0, 0)
obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
bounds <- optimize_effect_2(obj)
bounds_func <- interpret_bounds(bounds$bounds, obj$parameters)
bounds_func(.1, .1, .4, .3)
vectorized
do.call(bounds_func, lapply(1:4, function(i) runif(5)))

latex_bounds Latex bounds equations

Description

Latex bounds equations

Usage

latex_bounds(bounds, parameters, prob.sym = "P", brackets = c("(", ")"))

Arguments

bounds Vector of bounds as returned by optimize_effect_2

parameters The parameters object as returned by analyze_graph

prob.sym Symbol to use for probability statements in latex, usually "P" or "pr"

brackets Length 2 vector with opening and closing bracket, usually c("(", ")"), or c("
\{", "\}")

Value

A character string with latex code for the bounds

Examples

b <- graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(0,0,0)
V(b)$latent <- c(0,0,1)
V(b)$nvals <- c(2,2,2)
E(b)$rlconnect <- E(b)$edge.monotone <- c(0, 0, 0)
obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
bounds <- optimize_effect_2(obj)
latex_bounds(bounds$bounds, obj$parameters)
latex_bounds(bounds$bounds, obj$parameters, "Pr")

20 optimize_effect_2

list_to_path Recursive function to translate an effect list to a path sequence

Description

Recursive function to translate an effect list to a path sequence

Usage

list_to_path(x, name = NULL)

Arguments

x A list of vars as returned by parse_effect

name The name of the outcome variable

Value

a list of characters describing the path sequence

Examples

nofill <- "p{Y(X = 1, M1 = 1, M2(X = 1, M1 = 1)) = 1}"
eff2 <- parse_effect(nofill)$vars[[1]][[1]]
list_to_path(eff2, "Y")

optimize_effect_2 Run the optimizer to obtain symbolic bounds

Description

Given an object with the linear programming problem set up, compute the bounds using rcdd.
Bounds are returned as text but can be converted to R functions using interpret_bounds, or latex
code using latex_bounds.

Usage

optimize_effect_2(obj)

Arguments

obj Object as returned by analyze_graph or create_linearcausalproblem

opt_effect 21

Value

An object of class "balkebound" that is a list that contains the bounds and logs as character strings,
and a function to compute the bounds

Examples

b <- initialize_graph(graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y))
obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
optimize_effect_2(obj)

opt_effect Compute a bound on the average causal effect

Description

This helper function does the heavy lifting for optimize_effect_2. For a given casual query, it
computes either a lower or an upper bound on the corresponding causal effect.

Usage

opt_effect(opt, obj)

Arguments

opt A string. Either "min" or "max" for a lower or an upper bound, respectively.

obj An object as returned by the function analyze_graph. Contains the casual
query to be estimated.

Value

An object of class optbound; a list with the following named components:

• expr is the main output; an expression of the bound as a print-friendly string,

• type is either "lower" or "upper" according to the type of the bound,

• dual_vertices is a numeric matrix whose rows are the vertices of the convex polytope of the
dual LP,

• dual_vrep is a V-representation of the dual convex polytope, including some extra data.

22 parse_effect

parse_constraints Parse text that defines a the constraints

Description

Parse text that defines a the constraints

Usage

parse_constraints(constraints, obsnames)

Arguments

constraints A list of character strings

obsnames Vector of names of the observed variables in the graph

Value

A data frame with columns indicating the variables being constrained, what the values of their
parents are for the constraints, and the operator defining the constraint (equality or inequalities).

Examples

constrainttext <- "X(Z = 1) >= X(Z = 0)"
obsnames <- c("Z", "X", "Y")
parse_constraints(constraints = constrainttext, obsnames = obsnames)

parse_effect Parse text that defines a causal effect

Description

Parse text that defines a causal effect

Usage

parse_effect(text)

Arguments

text Character string

plot.linearcausalproblem 23

Value

A nested list that contains the following components:

vars For each element of the causal query, this indicates potential outcomes as names of the list
elements, the variables that they depend on, and the values that any variables are being fixed
to.

oper The vector of operators (addition or subtraction) that combine the terms of the causal query.

values The values that the potential outcomes are set to in the query.

pcheck List of logicals for each element of the query that are TRUE if the element is a potential
outcome and FALSE if it is an observational quantity.

Examples

effectt <- "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}"
parse_effect(text = effectt)

plot.linearcausalproblem

Plot the graph from the causal problem with a legend describing at-
tributes

Description

Plot the graph from the causal problem with a legend describing attributes

Usage

S3 method for class 'linearcausalproblem'
plot(x, ...)

Arguments

x object of class "linearcausalproblem"

... Not used

Value

Nothing

See Also

plot_graphres which plots the graph only

24 plot_graphres

Examples

b <- graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(0,0,0)
V(b)$latent <- c(0,0,1)
V(b)$nvals <- c(2,2,2)
V(b)$exposure <- c(1,0,0)
V(b)$outcome <- c(0,1,0)
E(b)$rlconnect <- c(0,0,0)
E(b)$edge.monotone <- c(0,0,0)
q <- "p{Y(X=1)=1}-p{Y(X=0)=1}"
obj <- analyze_graph(graph = b, constraints = NULL, effectt <- q)
plot(obj)

plot_graphres Plot the analyzed graph object

Description

Special plotting method for igraphs of this type

Usage

plot_graphres(graphres)

Arguments

graphres an igraph object

Value

None

See Also

plot.linearcausalproblem which plots a graph with attributes

Examples

b <- graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(0,0,0)
V(b)$latent <- c(0,0,1)
V(b)$nvals <- c(2,2,2)
V(b)$exposure <- c(1,0,0)
V(b)$outcome <- c(0,1,0)
E(b)$rlconnect <- c(0,0,0)
E(b)$edge.monotone <- c(0,0,0)
plot(b)

print.causalmodel 25

print.causalmodel Print relevant information about the causal model

Description

Print relevant information about the causal model

Usage

S3 method for class 'causalmodel'
print(x, omit_cf_constraints = FALSE, omit_obs_constraints = FALSE, ...)

Arguments

x object of class "causalmodel"
omit_cf_constraints

Do not print the counterfactual constraints
omit_obs_constraints

Do not print the observable constraints
... Not used

Value

x, invisibly

print.linearcausalproblem

Print the causal problem

Description

Print the causal problem

Usage

S3 method for class 'linearcausalproblem'
print(x, ...)

Arguments

x object of class "linearcausaloptim"
... Not used

Value

x, invisibly

26 rdirichlet

querycheck Check conditions on query

Description

Given an admissible causal DAG, check that given a causal query satisfies conditions that guarantee
the corresponding causal problem to be a linear program. Throws error messages detailing any
conditions violated.

Usage

querycheck(effecttext, graphres)

Arguments

effecttext A string representing a causal query.

graphres An igraph object representing a digraph.

Value

TRUE if effecttext is parsable, contains only variables in V(graphres) and satisfies conditions
for linearity; else FALSE.

Examples

graphres <- graph_from_literal(X -+ Y, X -+ M, M -+ Y, Ul -+ X, Ur -+ M, Ur -+ Y)
V(graphres)$leftside <- c(1, 0, 0, 1, 0)
V(graphres)$latent <- c(0, 0, 0, 1, 1)
V(graphres)$nvals <- c(2, 2, 2, 2, 2)
V(graphres)$exposure <- c(0, 0, 0, 0, 0)
V(graphres)$outcome <- c(0, 0, 0, 0, 0)
E(graphres)$rlconnect <- c(0, 0, 0, 0, 0, 0)
E(graphres)$edge.monotone <- c(0, 0, 0, 0, 0, 0)
effecttext <- "p{Y(M(X = 0), X = 1) = 1} - p{Y(M(X = 0), X = 0) = 1}"
querycheck(effecttext = effecttext, graphres = graphres) # TRUE

rdirichlet Sample from a Dirichlet distribution

Description

Generate a random vector from the k-dimensional symmetric Dirichlet distribution with concentra-
tion parameter alpha

Usage

rdirichlet(k, alpha = 1)

sample_distribution 27

Arguments

k Length of the vector

alpha Concentration parameters

Value

a numeric vector

Examples

qvals <- rdirichlet(16, 1)
sum(qvals)

sample_distribution Sample a distribution of observable probabilities that satisfy the
causal model

Description

Sample a distribution of observable probabilities that satisfy the causal model

Usage

sample_distribution(
obj,
simplex_sampler = function(k) {

rdirichlet(k, alpha = 1)
}

)

Arguments

obj An object of class "causalmodel"

simplex_sampler

A function to generate a random sample from the simplex in k dimensions,
where k is the number of variables (q parameters, obj$data$variables). By de-
fault this is uniform (symmetric dirichlet with parameter 1).

Value

A vector of observable probabilities that satisfy the causal model

28 simulate_bounds

Examples

graph <- initialize_graph(graph_from_literal(Z -+ X, X -+ Y, Ur -+ X, Ur -+ Y))
prob.form <- list(out = c("X", "Y"), cond = "Z")

iv_model <- create_causalmodel(graph, prob.form = prob.form)
sample_distribution(iv_model)

simulate_bounds Simulate bounds

Description

Run a simple simulation based on the bounds. For each simulation, sample the set of counterfactual
probabilities from a uniform distribution, translate into a multinomial distribution, and then compute
the objective and the bounds in terms of the observable variables.

Usage

simulate_bounds(obj, bounds, nsim = 1000)

Arguments

obj Object as returned by analyze_graph

bounds Object as returned by optimize_effect_2

nsim Number of simulation replicates

Value

A data frame with columns: objective, bound.lower, bound.upper

Examples

b <- initialize_graph(graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y))
obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
bounds <- optimize_effect_2(obj)
simulate_bounds(obj, bounds, nsim = 5)

specify_graph 29

specify_graph Shiny interface to specify network structure and compute bounds

Description

This launches the Shiny interface in the system’s default web browser. The results of the computa-
tion will be displayed in the browser, but they can also be returned to the R session by assigning the
result of the function call to an object. See below for information on what is returned.

Usage

specify_graph()

Value

If the button "Exit and return graph object" is clicked, then only the graph is returned as an aaa-
igraph-package object.

If the bounds are computed and the button "Exit and return objects to R" is clicked, then a list is
returned with the following elements:

graphres The graph as drawn and interpreted, an aaa-igraph-package object.

obj The objective and all necessary supporting information. This object is documented in ana-
lyze_graph. This can be passed directly to optimize_effect_2.

bounds.obs Object of class ’balkebound’ as returned by optimize_effect_2.

constraints Character vector of the specified constraints. NULL if no constraints.

effect Text describing the causal effect of interest.

boundsFunction Function that takes parameters (observed probabilities) as arguments, and returns
a vector of length 2 for the lower and upper bounds.

update_effect Update the effect in a linearcausalproblem object

Description

If you want to use the same graph and response function, but change the effect of interest, this can
save some computation time.

Usage

update_effect(obj, effectt)

Arguments

obj An object as returned by analyze_graph

effectt A character string that represents the causal effect of interest

30 update_effect

Value

A object of class linearcausalproblem, see analyze_graph for details

Examples

b <- igraph::graph_from_literal(X -+ Y, X -+ M, M -+ Y, Ul -+ X, Ur -+ Y, Ur -+ M)
V(b)$leftside <- c(1, 0, 0, 1, 0)
V(b)$latent <- c(0, 0, 0, 1, 1)
V(b)$nvals <- c(2, 2, 2, 2, 2)
E(b)$rlconnect <- c(0, 0, 0, 0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0, 0, 0, 0)
CDE0_query <- "p{Y(M = 0, X = 1) = 1} - p{Y(M = 0, X = 0) = 1}"
CDE0_obj <- analyze_graph(b, constraints = NULL, effectt = CDE0_query)
CDE0_bounds <- optimize_effect_2(CDE0_obj)
CDE0_boundsfunction <- interpret_bounds(bounds = CDE0_bounds$bounds,
parameters = CDE0_obj$parameters)
CDE1_query <- "p{Y(M = 1, X = 1) = 1} - p{Y(M = 1, X = 0) = 1}"
CDE1_obj <- update_effect(CDE0_obj, effectt = CDE1_query)
CDE1_bounds <- optimize_effect_2(CDE1_obj)
CDE1_boundsfunction <- interpret_bounds(bounds = CDE1_bounds$bounds,
parameters = CDE1_obj$parameters)

Index

aaa-igraph-package, 15, 29
analyze_graph, 3, 13, 18–21, 28–30

btm_var, 5

causaloptim (causaloptim-package), 3
causaloptim-package, 3
causalproblemcheck, 6
check_constraints_violated, 7
check_linear_objective, 8
check_parents, 9
constraintscheck, 10
create_causalmodel, 8, 10, 12, 13
create_effect_vector, 12
create_linearcausalproblem, 13, 20
create_q_matrix, 14
create_response_function, 11, 14, 15, 16

find_all_paths, 16

get_default_effect, 16
graphrescheck, 17

igraph-package, 4
initialize_graph, 11, 15, 18
interpret_bounds, 18, 20

latex_bounds, 19, 20
list_to_path, 20

opt_effect, 21
optimize_effect, 18
optimize_effect (optimize_effect_2), 20
optimize_effect_2, 5, 13, 19, 20, 21, 28, 29

parse_constraints, 22
parse_effect, 12, 16, 20, 22
plot.linearcausalproblem, 23, 24
plot_graphres, 23, 24
print.causalmodel, 25
print.linearcausalproblem, 25

querycheck, 26

rdirichlet, 26

sample_distribution, 27
simulate_bounds, 28
specify_graph, 3, 29

update_effect, 29

31

	causaloptim-package
	analyze_graph
	btm_var
	causalproblemcheck
	check_constraints_violated
	check_linear_objective
	check_parents
	constraintscheck
	create_causalmodel
	create_effect_vector
	create_linearcausalproblem
	create_q_matrix
	create_response_function
	find_all_paths
	get_default_effect
	graphrescheck
	initialize_graph
	interpret_bounds
	latex_bounds
	list_to_path
	optimize_effect_2
	opt_effect
	parse_constraints
	parse_effect
	plot.linearcausalproblem
	plot_graphres
	print.causalmodel
	print.linearcausalproblem
	querycheck
	rdirichlet
	sample_distribution
	simulate_bounds
	specify_graph
	update_effect
	Index

