
Package ‘arcgislayers’
July 5, 2024

Type Package

Title An Interface to ArcGIS Data Services

Version 0.3.0

Description Enables users of 'ArcGIS Enterprise', 'ArcGIS Online', or
'ArcGIS Platform' to read, write, publish, or manage vector and raster
data via ArcGIS location services REST API endpoints
<https://developers.arcgis.com/rest/>.

License Apache License (>= 2)

Encoding UTF-8

Imports arcgisutils (>= 0.2.0), arcpbf (>= 0.1.2), cli, httr2 (>=
1.0.0), jsonify, lifecycle, RcppSimdJson, rlang, sf, terra,
utils

RoxygenNote 7.3.1

Suggests dbplyr, dplyr, rmarkdown, testthat (>= 3.0.0), tidyselect,
vctrs

Config/testthat/edition 3

URL https://r.esri.com/arcgislayers/,

https://github.com/R-ArcGIS/arcgislayers

BugReports https://github.com/R-ArcGIS/arcgislayers/issues

NeedsCompilation no

Author Josiah Parry [aut, cre] (<https://orcid.org/0000-0001-9910-865X>),
Eli Pousson [ctb] (<https://orcid.org/0000-0001-8280-1706>),
Kenneth Vernon [ctb] (<https://orcid.org/0000-0003-0098-5092>),
Martha Bass [ctb] (<https://orcid.org/0009-0004-0268-5426>)

Maintainer Josiah Parry <josiah.parry@gmail.com>

Repository CRAN

Date/Publication 2024-07-05 15:00:02 UTC

1

https://developers.arcgis.com/rest/
https://r.esri.com/arcgislayers/
https://github.com/R-ArcGIS/arcgislayers
https://github.com/R-ArcGIS/arcgislayers/issues
https://orcid.org/0000-0001-9910-865X
https://orcid.org/0000-0001-8280-1706
https://orcid.org/0000-0003-0098-5092
https://orcid.org/0009-0004-0268-5426

2 add_features

Contents
add_features . 2
add_item . 4
arc_open . 6
arc_raster . 8
arc_read . 9
arc_select . 11
clear_query . 13
create_feature_server . 15
get_layer . 16
get_layer_estimates . 17
prepare_spatial_filter . 18
query_layer_attachments . 20
truncate_layer . 22
update_params . 23

Index 24

add_features Add Features to Feature Layer

Description

Delete features from a feature layer based on object ID, a where clause, or a spatial filter.

Usage

add_features(
x,
.data,
chunk_size = 2000,
match_on = c("name", "alias"),
rollback_on_failure = TRUE,
token = arc_token()

)

update_features(
x,
.data,
match_on = c("name", "alias"),
token = arc_token(),
rollback_on_failure = TRUE,
...

)

delete_features(
x,

add_features 3

object_ids = NULL,
where = NULL,
filter_geom = NULL,
predicate = "intersects",
rollback_on_failure = TRUE,
token = arc_token(),
...

)

Arguments

x an object of class FeatureLayer

.data an object of class sf or data.frame

chunk_size the maximum number of features to add at a time

match_on whether to match on the alias or the field name. Default, the alias. See Details
for more.

rollback_on_failure

default TRUE. Specifies whether the edits should be applied only if all submitted
edits succeed.

token default arc_token(). An httr2_token.

... additional query parameters passed to the API.

object_ids a numeric vector of object IDs to be deleted.

where a simple SQL where statement indicating which features should be deleted.
When the where statement evaluates to TRUE, those values will be deleted.

filter_geom an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.

predicate Spatial predicate to use with filter_geom. Default "intersects". Possible
options are "intersects", "contains", "crosses", "overlaps", "touches",
and "within".

Details

[Experimental]
For a more detailed guide to adding, updating, and deleting features, view the tutorial on the R-
ArcGIS Bridge website.

Regarding the match_on argument:when publishing an object to an ArcGIS Portal from R, the
object’s names are provided as the alias. The object’s names are subject to change according to the
standards of the ArcGIS REST API. For example. "Sepal.Length" is changed to "Sepal_Width"
in the name field but the alias remains "Sepal.Length". For that reason, we match on the alias
name by default. Change this argument to match based on the field name.

Value

• add_features() returns a data.frame with columns objectId, uniqueId, globalId, success

• update_features() returns a list with an element named updateResults which is a data.frame
with columns objectId, uniqueId, globalId, success

https://r.esri.com/r-bridge-site/location-services/workflows/add-delete-update.html
https://r.esri.com/r-bridge-site/location-services/workflows/add-delete-update.html

4 add_item

• delete_features() returns a list with an element named deleteResults which is a data.frame
with columns objectId, uniqueId, globalId, success

Examples

Not run:
this is pseudo-code and will not work
flayer <- arc_open(furl)

add sf objects to existing feature service
add_features(flayer, sfobj)

delete all features
delete_features(flayer, where = "1 = 1")

update features
update_features(flayer, dfobj)

End(Not run)

add_item Publish Content

Description

Publishes an sf or data.frame object to an ArcGIS Portal as a FeatureCollection.

Usage

add_item(
x,
title,
description = "",
tags = character(0),
snippet = "",
categories = character(0),
async = FALSE,
type = "Feature Service",
token = arc_token()

)

publish_item(
item_id,
publish_params = .publish_params(),
file_type = "featureCollection",
token = arc_token()

)

add_item 5

publish_layer(
x,
title,
...,
publish_params = .publish_params(title, target_crs = sf::st_crs(x)),
token = arc_token()

)

.publish_params(
name = NULL,
description = NULL,
copyright = NULL,
target_crs = 3857,
max_record_count = 2000L

)

Arguments

x an object of class data.frame. This can be an sf object or tibble or any other
subclass of data.frame.

title A user-friendly string title for the layer that can be used in a table of contents.

description a length 1 character vector containing the description of the item that is being
added. Note that the value cannot be larger than 64kb.

tags a character vector of tags to add to the item.

snippet a length 1 character vector with no more than 2048 characters.

categories a character vector of the categories of the item.

async default FALSE. Cannot be changed at this time.

type default "Feature Service". Must not be changed at this time.

token an httr2_token as created by auth_code() or similar

item_id the ID of the item to be published.

publish_params a list of named values of the publishParameters. Must match the values in the
/publish endpoint documentation.

file_type default "featureCollection". Cannot be changed.

... arguments passed into add_item().

name a scalar character of the name of the layer. Must be unique.

copyright an optional character scalar containing copyright text to add to the published
Feature Service.

target_crs the CRS of the Feature Service to be created. By default, EPSG:3857.

max_record_count

the maximum number of records that can be returned from the created Feature
Service.

https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm#GUID-9E8F8526-5D58-4706-95F3-432905CC3303

6 arc_open

Details

[Experimental]

• add_item() takes a data.frame like object and uploads it as an item in your portal.

• publish_item() takes an ID of an item in your portal and publishes it as a feature service.

• publish_layer() is a high-level wrapper that first adds an object as an item in your portal
and subsequently publishes it for you.

• .publish_params() is a utility function to specify optional publish parameters such as copy-
right text, and the spatial reference of the published feature collection.

Note that there is only support for feature services meaning that only tables and feature layers can
be made by these functions.

Publish Parameters:
When publishing an item to a portal, a number of publish parameters can be provided. Most
importantly is the targetSR which will be the CRS of the hosted feature service. By default this
is EPSG:3857.
publish_layer() will use the CRS of the input object, x, by default. If publishing content in
two steps with add_item() and publish_item(), use .publish_params() to craft your publish
parameters. Ensure that the CRS provided to target_crs matches that of the item you added
with add_item().

Value

A named list containing the url of the newly published service.

Examples

Not run:
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
x <- nc[1:5, 13]

token <- auth_code()
set_arc_token(token)

publish_res <- publish_layer(
x, "North Carolina SIDS sample"

)

End(Not run)

arc_open Open connection to remote resource

Description

Provided a URL, create an object referencing the remote resource. The resultant object acts as a
reference to the remote data source.

https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm#GUID-9E8F8526-5D58-4706-95F3-432905CC3303

arc_open 7

Usage

arc_open(url, token = arc_token())

Arguments

url The url of the remote resource. Must be of length one.

token your authorization token.

Details

To extract data from the remote resource utilize arc_select() for objects of class FeatureLayer
or Table. For ImageServers, utilize arc_raster().

[Experimental]

Value

Depending on the provided URL returns a FeatureLayer, Table, FeatureServer, ImageServer,
or MapServer. Each of these objects is a named list containing the properties of the service.

See Also

arc_select arc_raster

Examples

Not run:
FeatureLayer
furl <- paste0(

"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer/0"

)

arc_open(furl)

Table
furl <- paste0(

"https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/",
"USA_Wetlands/FeatureServer/1"

)

arc_open(furl)

ImageServer
arc_open(

"https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer"
)

FeatureServer
furl <- paste0(

"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer"

8 arc_raster

)

arc_open(furl)

MapServer
map_url <- paste0(

"https://services.arcgisonline.com/ArcGIS/rest/services/",
"World_Imagery/MapServer"

)

arc_open(map_url)

End(Not run)

arc_raster Read from an Image Server

Description

Given an ImageServer export an image as a terra SpatRaster object. See terra::rast.

Usage

arc_raster(
x,
xmin,
xmax,
ymin,
ymax,
bbox_crs = NULL,
crs = sf::st_crs(x),
width = NULL,
height = NULL,
format = "tiff",
token = arc_token()

)

Arguments

x an ImageServer as created with arc_open().

xmin the minimum bounding longitude value.

xmax the maximum bounding longitude value.

ymin that minimum bounding latitude value.

ymax the maximum bounding latitude value.

bbox_crs the CRS of the values passed to xmin, xmax, ymin, and ymax. If not specified,
uses the CRS of x.

arc_read 9

crs the CRS of the resultant raster image and the provided bounding box defined by
xmin, xmax, ymin, ymax (passed outSR query parameter).

width default NULL. Cannot exceed x[["maxImageWidth"]].
height default NULL. Cannot exceed x[["maxImageHeight"]].
format default "tiff". Must be one of "jpgpng", "png", "png8", "png24", "jpg", "bmp",

"gif", "tiff", "png32", "bip", "bsq", "lerc".
token default arc_token() authorization token.

Details

[Experimental]

Value

An object of class SpatRaster.

Examples

Not run:
img_url <- "https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer"

landsat <- arc_open(img_url)

arc_raster(
landsat,
xmin = -71,
ymin = 43,
xmax = -67,
ymax = 47.5,
bbox_crs = 4326,
width = 100,
height = 100

)

End(Not run)

arc_read Read an ArcGIS FeatureLayer, Table, or ImageServer

Description

arc_read() combines the functionality of arc_open() with arc_select() or arc_raster() to
read an ArcGIS FeatureLayer, Table, or ImageServer to an sf or SpatRaster object. Option-
ally, set, check, or modify names for the returned data frame or sf object using the col_names and
name_repair parameters. For ease of use and convenience, arc_read() allows users to access
and query a FeatureLayer, Table, or ImageServer with a single function call instead of combin-
ing arc_open() and arc_select(). The conventions of col_select are based on functions for
reading tabular data in the {readr} package.

10 arc_read

Usage

arc_read(
url,
col_names = TRUE,
col_select = NULL,
n_max = Inf,
name_repair = "unique",
crs = NULL,
...,
fields = NULL,
alias = c("drop", "label", "replace"),
token = arc_token()

)

Arguments

url The url of the remote resource. Must be of length one.

col_names Default TRUE. Column names or name handling rule. col_names can be TRUE,
FALSE, NULL, or a character vector:

• If TRUE, use existing default column names for the layer or table. If FALSE
or NULL, column names will be generated automatically: X1, X2, X3 etc.

• If col_names is a character vector, values replace the existing column names.
col_names can’t be length 0 or longer than the number of fields in the re-
turned layer.

col_select Default NULL. A character vector of the field names to be returned. By default,
all fields are returned.

n_max Defaults to Inf or an option set with options("arcgislayers.n_max" = <max records>).
Maximum number of records to return.

name_repair Default "unique". See vctrs::vec_as_names() for details. If name_repair
= NULL, names are set directly.

crs the spatial reference to be returned. If the CRS is different than the CRS for the
input FeatureLayer, a transformation will occur server-side. Ignored if x is a
Table.

... Additional arguments passed to arc_select() if URL is a FeatureLayer or
Table or arc_raster() if URL is an ImageLayer.

fields Default NULL. a character vector of the field names to returned. By default all
fields are returned. Ignored if col_names is supplied.

alias Use of field alias values. Default c("drop", "label", "replace"),. There
are three options:

• "drop", field alias values are ignored.
• "label": field alias values are assigned as a label attribute for each field.
• "replace": field alias values replace existing column names. col_names

must TRUE for this option to be applied.

token your authorization token.

arc_select 11

Details

[Experimental]

Value

An sf object, a data.frame, or an object of class SpatRaster.

See Also

arc_select(); arc_raster()

Examples

Not run:
furl <- "https://sampleserver6.arcgisonline.com/arcgis/rest/services/Census/MapServer/3"

read entire service
arc_read(furl)

apply tolower() to column names
arc_read(url, name_repair = tolower)

use paste0 to prevent CRAN check NOTE
furl <- paste0(

"https://sampleserver6.arcgisonline.com/arcgis/rest/services/",
"EmergencyFacilities/FeatureServer/0"

)

use field aliases as column names
arc_read(furl, col_names = "alias")

read an ImageServer directly
img_url <- "https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer"

arc_read(
img_url,
width = 100, height = 100,
xmin = -71, ymin = 43,
xmax = -67, ymax = 47.5,
bbox_crs = 4326

)

End(Not run)

arc_select Query a Feature Service

12 arc_select

Description

arc_select() takes a FeatureLayer, Table, of ImageServer object and returns data from the
layer as an sf object or data.frame respectively.

Usage

arc_select(
x,
...,
fields = NULL,
where = NULL,
crs = sf::st_crs(x),
geometry = TRUE,
filter_geom = NULL,
predicate = "intersects",
n_max = Inf,
page_size = NULL,
token = arc_token()

)

Arguments

x an object of class FeatureLayer, Table, or ImageServer.

... additional query parameters passed to the API.

fields a character vector of the field names that you wish to be returned. By default all
fields are returned.

where a simple SQL where statement indicating which features should be selected.

crs the spatial reference to be returned. If the CRS is different than the CRS for the
input FeatureLayer, a transformation will occur server-side. Ignored if x is a
Table.

geometry default TRUE. If geometries should be returned. Ignored for Table objects.

filter_geom an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.

predicate Spatial predicate to use with filter_geom. Default "intersects". Possible
options are "intersects", "contains", "crosses", "overlaps", "touches",
and "within".

n_max the maximum number of features to return. By default returns every feature
available. Unused at the moment.

page_size the maximum number of features to return per request. Useful when requests
return a 500 error code. See Details.

token your authorization token.

clear_query 13

Details

See reference documentation for possible arguments.

FeatureLayers can contain very dense geometries with a lot of coordinates. In those cases, the
feature service may time out before all geometries can be returned. To address this issue, we can
reduce the number of features returned per each request by reducing the value of the page_size
parameter.

arc_select() works by sending a single request that counts the number of features that will be
returned by the current query. That number is then used to calculate how many "pages" of re-
sponses are needed to fetch all the results. The number of features returned (page size) is set to the
maxRecordCount property of the layer by default. However, by setting page_size to be smaller
than the maxRecordCount we can return fewer geometries per page and avoid time outs.

[Experimental]

Value

An sf object, or a data.frame

Examples

Not run:
define the feature layer url
furl <- paste0(

"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest",
"/services/PLACES_LocalData_for_BetterHealth/FeatureServer/0"

)

flayer <- arc_open(furl)

arc_select(
flayer,
fields = c("StateAbbr", "TotalPopulation")

)

arc_select(
flayer,
fields = c("OBJECTID", "PlaceName"),
where = "TotalPopulation > 1000000"

)

End(Not run)

clear_query Utility functions

Description

Utility functions

https://developers.arcgis.com/rest/services-reference/enterprise/query-feature-service-layer-.htm#GUID-BC2AD141-3386-49FB-AA09-FF341145F614

14 clear_query

Usage

clear_query(x)

list_fields(x)

pull_field_aliases(x)

list_items(x)

refresh_layer(x)

Arguments

x an object of class FeatureLayer, Table, or ImageServer.

Details

[Experimental]

• list_fields() returns a data.frame of the fields in a FeatureLayer or Table

• list_items() returns a data.frame containing the layers or tables in a FeatureServer or
MapServer

• clear_query() removes any saved query in a FeatureLayer or Table object

• refresh_layer() syncs a FeatureLayer or Table with the remote resource picking up any
changes that may have been made upstream. Returns an object of class x.

• pull_field_aliases() returns a named list of the field aliases from a FeatureLayer or
Table

Value

See Details.

Examples

Not run:
furl <- paste0(

"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer/0"

)

flayer <- arc_open(furl)

list fields available in a layer
list_fields(flayer)

remove any queries stored in the query attribute
clear_query(update_params(flayer, outFields = "*"))

refresh metadata of an object

create_feature_server 15

refresh_layer(flayer)

map_url <- paste0(
"https://services.arcgisonline.com/ArcGIS/rest/services/",
"World_Imagery/MapServer"

)

list all items in a server object
list_items(arc_open(map_url))

End(Not run)

create_feature_server Create a FeatureServer

Description

Creates an empty FeatureServer with no additional layers.

Usage

create_feature_server(
service_name,
description = "",
crs = 3857,
capabilities = c("create", "delete", "query", "update", "editing"),
query_formats = c("json", "geojson"),
initial_extent = list(xmin = NULL, xmax = NULL, ymin = NULL, ymax = NULL),
max_record_count = 1000L,
allow_updates = TRUE,
copyright = "",
has_static_data = FALSE,
xss_prevention = xss_defaults(),
token = arc_token()

)

xss_defaults()

Arguments

service_name Feature Service name.

description default blank. The description of the feature server.

crs default 3857. A coordinate reference system to set for the feature server. Must
be compatible with sf::st_crs().

capabilities default full capabilities. Character vector of capabilities.

query_formats default json and geojson. May be restricted by site-wide settings.

16 get_layer

initial_extent optional. A named list with element of xmin, xmax, ymin, and ymax. Values
must be in the same CRS as crs.

max_record_count

default 1000. The maximum number of records that can be retrieved from a
layer in one request.

allow_updates default TRUE. Determine if geometries can be updated.

copyright default blank. Copyright notice to provide in the Feature Server
has_static_data

default FALSE. Indicates if data is changing.

xss_prevention cross-site-scripting prevention is enabled by default. See details for more.

token an httr2_token as created by auth_code() or similar

Details

[Experimental]

Value

If a FeatureServer is created successfully, a FeatureServer object is returned based on the newly
created feature server’s url.

Examples

Not run:
set_arc_token(auth_code())
create_feature_server("My empty feature server")

End(Not run)

get_layer Extract a layer from a Feature or Map Server

Description

These helpers provide easy access to the layers contained in a FeatureServer or MapServer.

Usage

get_layer(x, id = NULL, name = NULL, token = arc_token())

get_all_layers(x, token = arc_token())

get_layers(x, id = NULL, name = NULL, token = arc_token())

get_layer_estimates 17

Arguments

x an object of class FeatureServer or MapServer

id default NULL. A numeric vector of unique ID of the layer you want to retrieve.
This is a scalar in get_layer().

name default NULL. The name associated with the layer you want to retrieve. name is
mutually exclusive with id. This is a scalar in get_layer().

token your authorization token.

Details

[Experimental]

The id and name arguments must match the field values of the respective names as seen in the output
of list_items()

Value

• get_layer() returns a single FeatureLayer or Table based on its ID

• get_layers() returns a list of the items specified by the id or name argument

• get_all_layers() returns a named list with an element layers and tables. Each a list
containing FeatureLayer and Tables respectively.

Examples

Not run:
FeatureServer
furl <- paste0(
"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer"

)

fserv <- arc_open(furl)

fserv
get_layer(fserv, 0)
get_layers(fserv, name = c("Tracts", "ZCTAs"))
get_all_layers(fserv)

End(Not run)

get_layer_estimates Get Estimates

Description

Get Estimates

18 prepare_spatial_filter

Usage

get_layer_estimates(x, token = arc_token())

Arguments

x an object of class FeatureLayer, Table, or ImageServer.
token your authorization token.

Value

A named list containing all estimate info. If extent is present, it is available as an object of class
bbox.

References

ArcGIS REST Doc

Examples

furl <- paste0(
"https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services/",
"USA_Counties_Generalized_Boundaries/FeatureServer/0"

)

county_fl <- arc_open(furl)
get_layer_estimates(county_fl)

prepare_spatial_filter

Prepare JSON for use as a spatial filter based on feature geometry or
bounding box input

Description

prepare_spatial_filter() prepares a named list with ESRI JSON geometry for use as a spatial
filter based on a a sfc, sfg, or bbox input object.

match_spatial_rel() takes a scalar character vector with a predicate name to a type of ESRI
spatial relation.

Usage

prepare_spatial_filter(
filter_geom,
crs,
predicate,
error_call = rlang::caller_env()

)

match_spatial_rel(predicate, error_call = rlang::caller_env())

https://developers.arcgis.com/rest/services-reference/enterprise/get-estimates-feature-service-layer-.htm

prepare_spatial_filter 19

Arguments

filter_geom an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.

crs a representation of a coordinate reference system.

predicate Spatial predicate to use with filter_geom. Default "intersects". Possible
options are "intersects", "contains", "crosses", "overlaps", "touches",
and "within".

error_call default rlang::caller_env().

Details

Using sfc objects as filter_geom

[Experimental]

If an sfc object is provided it will be transformed to the layers spatial reference. If the sfc is missing
a CRS (or is an sfg object) it is assumed to use the same spatial reference as the FeatureLayer. If the
sfc object has multiple features, the features are unioned with sf::st_union(). If an sfc object
has MULTIPOLYGON geometry, the features are unioned before being cast to POLYGON geometry with
sf::st_cast(). All geometries are checked for validity before conversion.

Value

prepare_spatial_filter() returns a named list with the geometryType, geometry (as Esri
JSON), and spatial relation predicate.

match_spatial_rel() returns one of the following spatial binary predicates:

• esriSpatialRelIntersects

• esriSpatialRelContains

• esriSpatialRelCrosses

• esriSpatialRelOverlaps

• esriSpatialRelTouches

• esriSpatialRelWithin

Examples

prepare_spatial_filter(sf::st_point(c(0, 5)), 4326, "intersects")

20 query_layer_attachments

query_layer_attachments

Query and download attachments

Description

Get metadata about attachments associated with features in a layer. Query attachment information
using query_layer_attachments() and download attachments using download_attachments().

Usage

query_layer_attachments(
x,
definition_expression = "1=1",
attachments_definition_expression = NULL,
object_ids = NULL,
global_ids = NULL,
attachment_types = NULL,
keywords = NULL,
...,
token = arc_token()

)

download_attachments(
attachments,
out_dir,
...,
overwrite = FALSE,
.progress = TRUE,
token = arc_token()

)

Arguments

x an object of class FeatureLayer, Table, or ImageServer.
definition_expression

default 1 = 1. A SQL where clause that is applied to the layer. Only those records
that conform to this expression will be returned. This parameter is required if
neither object_ids or global_ids have been defined.

attachments_definition_expression

default NULL. A SQL where calsue that is applied to the attachment metadata.
only attachments that conform to this expression will be returned.

object_ids mutually exclusive with definition_expression and global_ids. The object
IDs of the features to query attachments of.

global_ids mutally exclusive with definition_expression and object_ids. The global
IDs of the features to query attachments of.

query_layer_attachments 21

attachment_types

default NULL. A character vector of attachment types to filter on.

keywords default NULL. A character vector of the keywords to filter on.

... unused

token your authorization token.

attachments a data.frame created by query_layer_attachments(). Must contain the
columns name, url, and contentType.

out_dir the path to the folder to download the file

overwrite default FALSE. A

.progress default TRUE. Whether a progress bar should be provided.

Value

query_layer_attachments() returns a data.frame.

download_attachments() returns a list. If an error occurs, the condition is captured and returned
in the list. Otherwise the path to the file that was downloaded is returned.

References

ArcGIS REST API Documentation

Examples

Not run:
create a url path that isn't too wide for CRAN
furl <- paste(

c(
"https://services1.arcgis.com/hLJbHVT9ZrDIzK0I",
"arcgis/rest/services/v8_Wide_Area_Search_Form_Feature_Layer___a2fe9c",
"FeatureServer/0"

),
collapse = "/"

)
connect to the layer
layer <- arc_open(furl)

get the attachment info
att <- query_layer_attachments(layer)

download them to a path
download_attachments(att, "layer_attachments")

End(Not run)

https://developers.arcgis.com/rest/services-reference/enterprise/query-attachments-feature-service-layer/

22 truncate_layer

truncate_layer Truncate a Feature Layer

Description

Removes all features in a Feature Layer or Table and resets the object ID counter. Truncating a
Feature Layer does not change the schema of the data (does not add, remove, or alter existing
database columns, constraints, or indexes).

Usage

truncate_layer(x, async = FALSE, attachment_only = FALSE, token = arc_token())

Arguments

x an object of class FeatureLayer, Table, or ImageServer.

async default FALSE. It is recommended to set TRUE for larger datasets.
attachment_only

default FALSE. Deletes all the attachments for this layer. None of the layer fea-
tures will be deleted when TRUE.

token your authorization token.

Value

a named list with the name "success" and a value of TRUE or FALSE

References

ArcGIS Developers Rest API Doc

Examples

Not run:

authorize using code flow
set_arc_token(auth_code())

create a FeatureLayer object
flayer <- arc_open("your-feature-layer-url")

truncate it
truncate_layer(flayer)

End(Not run)

https://developers.arcgis.com/rest/services-reference/online/truncate-feature-layer-.htm

update_params 23

update_params Modify query parameters

Description

update_params() takes named arguments and updates the query.

Usage

update_params(x, ...)

Arguments

x a FeatureLayer or Table object

... key value pairs of query parameters and values.

Value

An object of the same class as x

Examples

Not run:
furl <- paste0(

"https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services/",
"USA_Major_Cities_/FeatureServer/0"

)

flayer <- arc_open(furl)
update_params(flayer, outFields = "NAME")

End(Not run)

Index

.publish_params (add_item), 4

add_features, 2
add_item, 4
arc_open, 6
arc_open(), 9
arc_raster, 8
arc_raster(), 7, 9–11
arc_read, 9
arc_read(), 9
arc_select, 11
arc_select(), 7, 9–12

clear_query, 13
create_feature_server, 15

delete_features (add_features), 2
download_attachments

(query_layer_attachments), 20

get_all_layers (get_layer), 16
get_layer, 16
get_layer_estimates, 17
get_layers (get_layer), 16

list_fields (clear_query), 13
list_items (clear_query), 13

match_spatial_rel
(prepare_spatial_filter), 18

match_spatial_rel(), 18, 19

prepare_spatial_filter, 18
prepare_spatial_filter(), 18, 19
publish_item (add_item), 4
publish_layer (add_item), 4
pull_field_aliases (clear_query), 13

query_layer_attachments, 20

refresh_layer (clear_query), 13

sf::st_cast(), 19
sf::st_union(), 19

terra::rast, 8
truncate_layer, 22

update_features (add_features), 2
update_params, 23
update_params(), 23

vctrs::vec_as_names(), 10

xss_defaults (create_feature_server), 15

24

	add_features
	add_item
	arc_open
	arc_raster
	arc_read
	arc_select
	clear_query
	create_feature_server
	get_layer
	get_layer_estimates
	prepare_spatial_filter
	query_layer_attachments
	truncate_layer
	update_params
	Index

