## ----knitr, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load libraries----------------------------------------------------------- library(ale) ## ----attitude_str------------------------------------------------------------- str(attitude) ## ----attitude_summary--------------------------------------------------------- summary(attitude) ## ----lm_summary--------------------------------------------------------------- lm_attitude <- lm(rating ~ ., data = attitude) summary(lm_attitude) ## ----lm_simple, fig.width=7, fig.height=6------------------------------------- # For speed, these examples use retrieve_rds() to load pre-created objects # from an online repository. # To run the code yourself, execute the code blocks directly. serialized_objects_site <- "https://github.com/tripartio/ale/raw/main/download" ale_lm_attitude_simple <- retrieve_rds( # For speed, load a pre-created object by default. c(serialized_objects_site, 'ale_lm_attitude_simple.0.5.2.rds'), { # To run the code yourself, execute this code block directly. # For standard models like lm that store their data, # there is no need to specify the data argument. ALE(lm_attitude) } ) # saveRDS(ale_lm_attitude_simple, file.choose()) # Print all plots plot(ale_lm_attitude_simple) |> print(ncol = 2) ## ----lm_full_call------------------------------------------------------------- mb_lm_attitude <- retrieve_rds( # For speed, load a pre-created object by default. c(serialized_objects_site, 'mb_lm_attitude.0.5.2.rds'), { # To run the code yourself, execute this code block directly. # For standard models like lm that store their data, # there is no need to specify the data argument. ModelBoot(lm_attitude) # 100 bootstrap iterations by default } ) # saveRDS(mb_lm_attitude, file.choose()) ## ----lm_full_stats------------------------------------------------------------ mb_lm_attitude@model_stats ## ----lm_full_coefs------------------------------------------------------------ mb_lm_attitude@model_coefs ## ----lm_full_ale, fig.width=7, fig.height=6----------------------------------- plot(mb_lm_attitude) |> print(ncol = 2) ## ----gam_summary-------------------------------------------------------------- gam_attitude <- mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = attitude) summary(gam_attitude) ## ----gam_simple, fig.width=7, fig.height=6------------------------------------ ale_gam_attitude_simple <- retrieve_rds( # For speed, load a pre-created object by default. c(serialized_objects_site, 'ale_gam_attitude_simple.0.5.2.rds'), { # To run the code yourself, execute this code block directly. # For standard models like mgcv::gam that store their data, # there is no need to specify the data argument. ALE(gam_attitude) } ) # saveRDS(ale_gam_attitude_simple, file.choose()) plot(ale_gam_attitude_simple) |> print(ncol = 2) ## ----gam_full_stats----------------------------------------------------------- mb_gam_attitude <- retrieve_rds( # For speed, load a pre-created object by default. c(serialized_objects_site, 'mb_gam_attitude.0.5.2.rds'), { # To run the code yourself, execute this code block directly. # For standard models like mgcv::gam that store their data, # there is no need to specify the data argument. ModelBoot(gam_attitude) # 100 bootstrap iterations by default } ) # saveRDS(mb_gam_attitude, file.choose()) mb_gam_attitude@model_stats ## ----gam_full_coefs----------------------------------------------------------- mb_gam_attitude@model_coefs ## ----gam_full_ale, fig.width=7, fig.height=6---------------------------------- plot(mb_gam_attitude) |> print(ncol = 2) ## ----gam_summary_repeat------------------------------------------------------- gam_attitude_again <- mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = attitude) summary(gam_attitude_again) ## ----model_call_string-------------------------------------------------------- mb_gam_attitude_non_standard <- retrieve_rds( # For speed, load a pre-created object by default. c(serialized_objects_site, 'mb_gam_attitude_non_standard.0.5.2.rds'), { # To run the code yourself, execute this code block directly. # For standard models like mgcv::gam that store their data, # there is no need to specify the data argument. # 100 bootstrap iterations by default. ModelBoot( gam_attitude_again, model_call_string = 'mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = boot_data)' ) } ) # saveRDS(mb_gam_attitude_non_standard, file.choose()) mb_gam_attitude_non_standard@model_stats