ZetaSuite is an R package designed for analyzing multi-dimensional high-throughput screening data, particularly two-dimensional RNAi screens and single-cell RNA sequencing data. The package addresses the limitations of simple Z-based statistics when dealing with complex multi-dimensional datasets where experimental noise and off-target effects accumulate.
ZetaSuite includes an interactive web interface for easy-to-use analysis:
# Launch the Shiny app
ZetaSuiteApp()
# Launch without opening browser automatically
ZetaSuiteApp(launch.browser = FALSE)
# Launch on a specific port
ZetaSuiteApp(port = 3838)
The Shiny app provides: - Interactive data upload and visualization - Step-by-step analysis workflow with progress indicators - Real-time results and interactive plots - Data export capabilities for all analysis results - Built-in example dataset for demonstration - Bug report integration with GitHub issues
The package includes an example dataset from an in-house HTS2 screening experiment. This dataset contains:
library(ZetaSuite)
# Load example data
data(countMat)
data(negGene)
data(posGene)
data(nonExpGene)
data(ZseqList)
data(SVMcurve)
# Display data dimensions
cat("Count matrix dimensions:", dim(countMat), "\n")
## Count matrix dimensions: 1609 100
## Negative controls: 510 genes
## Positive controls: 299 genes
## Non-expressed genes: 722 genes
Quality control evaluates the ability of functional readouts to discriminate between negative and positive controls. This step provides diagnostic plots and SSMD (Strictly Standardized Mean Difference) scores.
## Performing PCA
## Read the 809 x 50 data matrix successfully!
## Using no_dims = 2, perplexity = 30.000000, and theta = 0.500000
## Computing input similarities...
## Building tree...
## Done in 0.10 seconds (sparsity = 0.172586)!
## Learning embedding...
## Iteration 50: error is 58.792481 (50 iterations in 0.16 seconds)
## Iteration 100: error is 58.044323 (50 iterations in 0.12 seconds)
## Iteration 150: error is 57.899429 (50 iterations in 0.10 seconds)
## Iteration 200: error is 57.735207 (50 iterations in 0.10 seconds)
## Iteration 250: error is 57.730947 (50 iterations in 0.13 seconds)
## Iteration 300: error is 1.477555 (50 iterations in 0.11 seconds)
## Iteration 350: error is 1.373214 (50 iterations in 0.09 seconds)
## Iteration 400: error is 1.345901 (50 iterations in 0.07 seconds)
## Iteration 450: error is 1.335231 (50 iterations in 0.08 seconds)
## Iteration 500: error is 1.328452 (50 iterations in 0.08 seconds)
## Iteration 550: error is 1.323155 (50 iterations in 0.08 seconds)
## Iteration 600: error is 1.320530 (50 iterations in 0.08 seconds)
## Iteration 650: error is 1.318362 (50 iterations in 0.07 seconds)
## Iteration 700: error is 1.315591 (50 iterations in 0.08 seconds)
## Iteration 750: error is 1.313996 (50 iterations in 0.09 seconds)
## Iteration 800: error is 1.311416 (50 iterations in 0.12 seconds)
## Iteration 850: error is 1.308957 (50 iterations in 0.12 seconds)
## Iteration 900: error is 1.307332 (50 iterations in 0.10 seconds)
## Iteration 950: error is 1.306168 (50 iterations in 0.09 seconds)
## Iteration 1000: error is 1.305032 (50 iterations in 0.08 seconds)
## Iteration 1050: error is 1.304725 (50 iterations in 0.08 seconds)
## Iteration 1100: error is 1.303595 (50 iterations in 0.08 seconds)
## Iteration 1150: error is 1.302924 (50 iterations in 0.08 seconds)
## Iteration 1200: error is 1.302380 (50 iterations in 0.08 seconds)
## Iteration 1250: error is 1.302024 (50 iterations in 0.09 seconds)
## Iteration 1300: error is 1.300993 (50 iterations in 0.12 seconds)
## Iteration 1350: error is 1.300642 (50 iterations in 0.10 seconds)
## Iteration 1400: error is 1.300298 (50 iterations in 0.10 seconds)
## Iteration 1450: error is 1.299912 (50 iterations in 0.09 seconds)
## Iteration 1500: error is 1.299262 (50 iterations in 0.10 seconds)
## Iteration 1550: error is 1.299266 (50 iterations in 0.09 seconds)
## Iteration 1600: error is 1.298967 (50 iterations in 0.09 seconds)
## Iteration 1650: error is 1.298878 (50 iterations in 0.08 seconds)
## Iteration 1700: error is 1.298853 (50 iterations in 0.08 seconds)
## Iteration 1750: error is 1.298294 (50 iterations in 0.09 seconds)
## Iteration 1800: error is 1.298310 (50 iterations in 0.08 seconds)
## Iteration 1850: error is 1.298140 (50 iterations in 0.08 seconds)
## Iteration 1900: error is 1.297553 (50 iterations in 0.09 seconds)
## Iteration 1950: error is 1.297613 (50 iterations in 0.08 seconds)
## Iteration 2000: error is 1.297542 (50 iterations in 0.08 seconds)
## Iteration 2050: error is 1.297567 (50 iterations in 0.09 seconds)
## Iteration 2100: error is 1.297434 (50 iterations in 0.09 seconds)
## Iteration 2150: error is 1.296847 (50 iterations in 0.09 seconds)
## Iteration 2200: error is 1.296559 (50 iterations in 0.09 seconds)
## Iteration 2250: error is 1.296587 (50 iterations in 0.09 seconds)
## Iteration 2300: error is 1.296799 (50 iterations in 0.09 seconds)
## Iteration 2350: error is 1.296697 (50 iterations in 0.09 seconds)
## Iteration 2400: error is 1.297259 (50 iterations in 0.09 seconds)
## Iteration 2450: error is 1.297224 (50 iterations in 0.09 seconds)
## Iteration 2500: error is 1.297293 (50 iterations in 0.09 seconds)
## Iteration 2550: error is 1.296932 (50 iterations in 0.09 seconds)
## Iteration 2600: error is 1.296870 (50 iterations in 0.09 seconds)
## Iteration 2650: error is 1.296522 (50 iterations in 0.09 seconds)
## Iteration 2700: error is 1.296477 (50 iterations in 0.09 seconds)
## Iteration 2750: error is 1.296097 (50 iterations in 0.09 seconds)
## Iteration 2800: error is 1.295994 (50 iterations in 0.09 seconds)
## Iteration 2850: error is 1.295679 (50 iterations in 0.09 seconds)
## Iteration 2900: error is 1.295474 (50 iterations in 0.09 seconds)
## Iteration 2950: error is 1.295486 (50 iterations in 0.09 seconds)
## Iteration 3000: error is 1.295618 (50 iterations in 0.09 seconds)
## Iteration 3050: error is 1.295736 (50 iterations in 0.09 seconds)
## Iteration 3100: error is 1.295910 (50 iterations in 0.09 seconds)
## Iteration 3150: error is 1.296099 (50 iterations in 0.09 seconds)
## Iteration 3200: error is 1.295855 (50 iterations in 0.09 seconds)
## Iteration 3250: error is 1.296204 (50 iterations in 0.09 seconds)
## Iteration 3300: error is 1.295575 (50 iterations in 0.09 seconds)
## Iteration 3350: error is 1.295451 (50 iterations in 0.09 seconds)
## Iteration 3400: error is 1.295312 (50 iterations in 0.13 seconds)
## Iteration 3450: error is 1.294831 (50 iterations in 0.14 seconds)
## Iteration 3500: error is 1.294681 (50 iterations in 0.10 seconds)
## Iteration 3550: error is 1.294288 (50 iterations in 0.09 seconds)
## Iteration 3600: error is 1.293997 (50 iterations in 0.09 seconds)
## Iteration 3650: error is 1.294622 (50 iterations in 0.12 seconds)
## Iteration 3700: error is 1.294882 (50 iterations in 0.14 seconds)
## Iteration 3750: error is 1.294623 (50 iterations in 0.10 seconds)
## Iteration 3800: error is 1.294572 (50 iterations in 0.13 seconds)
## Iteration 3850: error is 1.294384 (50 iterations in 0.10 seconds)
## Iteration 3900: error is 1.294524 (50 iterations in 0.09 seconds)
## Iteration 3950: error is 1.294261 (50 iterations in 0.09 seconds)
## Iteration 4000: error is 1.293976 (50 iterations in 0.09 seconds)
## Iteration 4050: error is 1.293548 (50 iterations in 0.09 seconds)
## Iteration 4100: error is 1.293581 (50 iterations in 0.09 seconds)
## Iteration 4150: error is 1.293121 (50 iterations in 0.09 seconds)
## Iteration 4200: error is 1.293244 (50 iterations in 0.09 seconds)
## Iteration 4250: error is 1.292858 (50 iterations in 0.09 seconds)
## Iteration 4300: error is 1.292534 (50 iterations in 0.09 seconds)
## Iteration 4350: error is 1.292016 (50 iterations in 0.12 seconds)
## Iteration 4400: error is 1.292296 (50 iterations in 0.16 seconds)
## Iteration 4450: error is 1.292060 (50 iterations in 0.10 seconds)
## Iteration 4500: error is 1.292095 (50 iterations in 0.12 seconds)
## Iteration 4550: error is 1.292097 (50 iterations in 0.12 seconds)
## Iteration 4600: error is 1.292091 (50 iterations in 0.09 seconds)
## Iteration 4650: error is 1.292083 (50 iterations in 0.09 seconds)
## Iteration 4700: error is 1.292329 (50 iterations in 0.10 seconds)
## Iteration 4750: error is 1.292624 (50 iterations in 0.13 seconds)
## Iteration 4800: error is 1.292570 (50 iterations in 0.10 seconds)
## Iteration 4850: error is 1.292417 (50 iterations in 0.10 seconds)
## Iteration 4900: error is 1.292668 (50 iterations in 0.12 seconds)
## Iteration 4950: error is 1.292599 (50 iterations in 0.10 seconds)
## Iteration 5000: error is 1.292317 (50 iterations in 0.10 seconds)
## Iteration 5050: error is 1.292413 (50 iterations in 0.10 seconds)
## Iteration 5100: error is 1.292734 (50 iterations in 0.10 seconds)
## Iteration 5150: error is 1.292651 (50 iterations in 0.10 seconds)
## Iteration 5200: error is 1.292424 (50 iterations in 0.10 seconds)
## Iteration 5250: error is 1.292275 (50 iterations in 0.10 seconds)
## Iteration 5300: error is 1.292080 (50 iterations in 0.10 seconds)
## Iteration 5350: error is 1.292122 (50 iterations in 0.10 seconds)
## Iteration 5400: error is 1.291716 (50 iterations in 0.10 seconds)
## Iteration 5450: error is 1.291369 (50 iterations in 0.10 seconds)
## Iteration 5500: error is 1.291324 (50 iterations in 0.10 seconds)
## Iteration 5550: error is 1.291381 (50 iterations in 0.10 seconds)
## Iteration 5600: error is 1.291031 (50 iterations in 0.10 seconds)
## Iteration 5650: error is 1.291606 (50 iterations in 0.10 seconds)
## Iteration 5700: error is 1.292028 (50 iterations in 0.12 seconds)
## Iteration 5750: error is 1.291639 (50 iterations in 0.14 seconds)
## Iteration 5800: error is 1.291714 (50 iterations in 0.12 seconds)
## Iteration 5850: error is 1.291560 (50 iterations in 0.14 seconds)
## Iteration 5900: error is 1.291424 (50 iterations in 0.10 seconds)
## Iteration 5950: error is 1.291357 (50 iterations in 0.10 seconds)
## Iteration 6000: error is 1.291374 (50 iterations in 0.12 seconds)
## Iteration 6050: error is 1.291860 (50 iterations in 0.14 seconds)
## Iteration 6100: error is 1.292112 (50 iterations in 0.10 seconds)
## Iteration 6150: error is 1.291984 (50 iterations in 0.14 seconds)
## Iteration 6200: error is 1.292128 (50 iterations in 0.10 seconds)
## Iteration 6250: error is 1.292029 (50 iterations in 0.10 seconds)
## Iteration 6300: error is 1.291498 (50 iterations in 0.10 seconds)
## Iteration 6350: error is 1.291751 (50 iterations in 0.10 seconds)
## Iteration 6400: error is 1.291543 (50 iterations in 0.11 seconds)
## Iteration 6450: error is 1.291437 (50 iterations in 0.12 seconds)
## Iteration 6500: error is 1.290894 (50 iterations in 0.15 seconds)
## Iteration 6550: error is 1.290728 (50 iterations in 0.11 seconds)
## Iteration 6600: error is 1.290844 (50 iterations in 0.15 seconds)
## Iteration 6650: error is 1.290725 (50 iterations in 0.11 seconds)
## Iteration 6700: error is 1.290618 (50 iterations in 0.10 seconds)
## Iteration 6750: error is 1.290392 (50 iterations in 0.11 seconds)
## Iteration 6800: error is 1.290561 (50 iterations in 0.10 seconds)
## Iteration 6850: error is 1.290726 (50 iterations in 0.13 seconds)
## Iteration 6900: error is 1.290605 (50 iterations in 0.12 seconds)
## Iteration 6950: error is 1.290722 (50 iterations in 0.11 seconds)
## Iteration 7000: error is 1.290728 (50 iterations in 0.10 seconds)
## Iteration 7050: error is 1.290776 (50 iterations in 0.10 seconds)
## Iteration 7100: error is 1.290636 (50 iterations in 0.10 seconds)
## Iteration 7150: error is 1.290769 (50 iterations in 0.12 seconds)
## Iteration 7200: error is 1.290527 (50 iterations in 0.12 seconds)
## Iteration 7250: error is 1.290889 (50 iterations in 0.10 seconds)
## Iteration 7300: error is 1.291001 (50 iterations in 0.10 seconds)
## Iteration 7350: error is 1.290998 (50 iterations in 0.10 seconds)
## Iteration 7400: error is 1.290449 (50 iterations in 0.11 seconds)
## Iteration 7450: error is 1.290416 (50 iterations in 0.10 seconds)
## Iteration 7500: error is 1.290082 (50 iterations in 0.10 seconds)
## Iteration 7550: error is 1.290365 (50 iterations in 0.10 seconds)
## Iteration 7600: error is 1.290188 (50 iterations in 0.10 seconds)
## Iteration 7650: error is 1.290155 (50 iterations in 0.10 seconds)
## Iteration 7700: error is 1.290437 (50 iterations in 0.10 seconds)
## Iteration 7750: error is 1.290429 (50 iterations in 0.10 seconds)
## Iteration 7800: error is 1.290518 (50 iterations in 0.10 seconds)
## Iteration 7850: error is 1.290362 (50 iterations in 0.10 seconds)
## Iteration 7900: error is 1.290091 (50 iterations in 0.10 seconds)
## Iteration 7950: error is 1.289676 (50 iterations in 0.10 seconds)
## Iteration 8000: error is 1.289429 (50 iterations in 0.10 seconds)
## Iteration 8050: error is 1.289620 (50 iterations in 0.11 seconds)
## Iteration 8100: error is 1.289368 (50 iterations in 0.10 seconds)
## Iteration 8150: error is 1.289605 (50 iterations in 0.10 seconds)
## Iteration 8200: error is 1.290116 (50 iterations in 0.10 seconds)
## Iteration 8250: error is 1.289835 (50 iterations in 0.10 seconds)
## Iteration 8300: error is 1.290155 (50 iterations in 0.10 seconds)
## Iteration 8350: error is 1.290026 (50 iterations in 0.10 seconds)
## Iteration 8400: error is 1.290042 (50 iterations in 0.10 seconds)
## Iteration 8450: error is 1.289886 (50 iterations in 0.10 seconds)
## Iteration 8500: error is 1.289983 (50 iterations in 0.10 seconds)
## Iteration 8550: error is 1.289664 (50 iterations in 0.11 seconds)
## Iteration 8600: error is 1.289917 (50 iterations in 0.12 seconds)
## Iteration 8650: error is 1.289612 (50 iterations in 0.11 seconds)
## Iteration 8700: error is 1.289587 (50 iterations in 0.12 seconds)
## Iteration 8750: error is 1.289933 (50 iterations in 0.12 seconds)
## Iteration 8800: error is 1.290099 (50 iterations in 0.11 seconds)
## Iteration 8850: error is 1.289897 (50 iterations in 0.10 seconds)
## Iteration 8900: error is 1.290232 (50 iterations in 0.11 seconds)
## Iteration 8950: error is 1.289500 (50 iterations in 0.11 seconds)
## Iteration 9000: error is 1.288861 (50 iterations in 0.11 seconds)
## Iteration 9050: error is 1.288386 (50 iterations in 0.13 seconds)
## Iteration 9100: error is 1.288436 (50 iterations in 0.11 seconds)
## Iteration 9150: error is 1.287972 (50 iterations in 0.11 seconds)
## Iteration 9200: error is 1.288008 (50 iterations in 0.14 seconds)
## Iteration 9250: error is 1.287712 (50 iterations in 0.11 seconds)
## Iteration 9300: error is 1.288005 (50 iterations in 0.14 seconds)
## Iteration 9350: error is 1.287876 (50 iterations in 0.11 seconds)
## Iteration 9400: error is 1.287635 (50 iterations in 0.10 seconds)
## Iteration 9450: error is 1.287788 (50 iterations in 0.11 seconds)
## Iteration 9500: error is 1.287926 (50 iterations in 0.11 seconds)
## Iteration 9550: error is 1.287479 (50 iterations in 0.13 seconds)
## Iteration 9600: error is 1.287173 (50 iterations in 0.14 seconds)
## Iteration 9650: error is 1.287117 (50 iterations in 0.12 seconds)
## Iteration 9700: error is 1.286703 (50 iterations in 0.14 seconds)
## Iteration 9750: error is 1.286660 (50 iterations in 0.13 seconds)
## Iteration 9800: error is 1.286627 (50 iterations in 0.14 seconds)
## Iteration 9850: error is 1.286453 (50 iterations in 0.13 seconds)
## Iteration 9900: error is 1.286301 (50 iterations in 0.11 seconds)
## Iteration 9950: error is 1.286328 (50 iterations in 0.11 seconds)
## Iteration 10000: error is 1.286097 (50 iterations in 0.13 seconds)
## Fitting performed in 20.67 seconds.
# Display QC plots
cat("QC analysis completed. Generated", length(qc_results), "diagnostic plots.\n")
## QC analysis completed. Generated 4 diagnostic plots.
This plot shows the distribution of raw scores across all readouts for positive and negative controls.
Global evaluation of sample separation based on all readouts.
Side-by-side comparison of score distributions between control groups.
Z-score normalization standardizes the data using negative controls as reference, making readouts comparable across different conditions.
# Calculate Z-scores
zscore_matrix <- Zscore(countMat, negGene)
# Display first few rows and columns
cat("Z-score matrix dimensions:", dim(zscore_matrix), "\n")
## Z-score matrix dimensions: 1609 100
## First 5 rows and columns:
## X5621.1 X157.1 X2451.1 X6798.1 X2570.1
## HLA-DOB -2.498000 1.8430201 0.20901748 0.7276768 1.80779786
## DOK2 1.665303 -2.3679279 0.45552333 2.6441584 1.49359264
## POU3F1 0.126659 -1.1401584 0.09130339 -0.8482665 -0.32759624
## VWC2 1.170266 0.3294906 -0.74381915 -0.7616473 1.52798191
## FGFBP3 2.042632 -1.7006933 -1.53998400 -0.7430438 0.06798774
Event coverage quantifies the proportion of readouts that exceed different Z-score thresholds for each gene, creating the foundation for zeta score calculations.
# Calculate event coverage
ec_results <- EventCoverage(zscore_matrix, negGene, posGene, binNum = 100, combine = TRUE)
# Display event coverage plots
cat("Event coverage analysis completed.\n")
## Event coverage analysis completed.
Zeta scores represent the area under the event coverage curve, quantifying the cumulative regulatory effect of each gene across all Z-score thresholds.
# Calculate zeta scores without SVM correction
zeta_scores <- Zeta(zscore_matrix, ZseqList, SVM = FALSE)
# Display summary statistics
cat("Zeta score summary:\n")
## Zeta score summary:
## Number of genes: 1609
## Zeta_D range: 0 2.508444
## Zeta_I range: 0.3968725 7.805159
##
## Top 10 genes by Zeta_D (decrease direction):
top_decrease <- head(zeta_scores[order(zeta_scores$Zeta_D, decreasing = TRUE), ], 10)
print(top_decrease)
## Zeta_D Zeta_I
## IL11RA 2.508444 4.156137
## HNRNPK 2.363447 2.711962
## SRSF3 1.739961 7.805159
## 59J23 1.312221 3.726192
## 30K23 1.246972 3.163956
## 61J23 1.181724 3.836434
## 61N23 1.174474 3.582877
## 59L23 1.167224 3.770289
## 55I23 1.167224 3.208053
## 58B23 1.167224 4.409694
SVM analysis creates decision boundaries to separate positive and negative controls, enabling background correction in zeta score calculations.
Screen Strength analysis determines optimal cutoff thresholds by balancing sensitivity and specificity, using the ratio of apparent FDR to baseline FDR.
# Calculate FDR cutoffs and Screen Strength
fdr_results <- FDRcutoff(zeta_scores, negGene, posGene, nonExpGene, combine = TRUE)
## Screen Strength analysis completed.
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## FDR cutoff results summary:
## Number of thresholds tested: 101
## Screen Strength range: -0.05104725 0.7336667
# Show optimal thresholds (SS > 0.8)
optimal_thresholds <- fdr_table[fdr_table$SS > 0.8, ]
cat("\nOptimal thresholds (SS > 0.8):\n")
##
## Optimal thresholds (SS > 0.8):
## [1] Cut_Off aFDR SS TotalHits Num_nonExp Type
## <0 rows> (or 0-length row.names)
Based on the Screen Strength analysis, select appropriate thresholds for hit identification.
# Example: Select threshold with SS > 0.8 and reasonable number of hits
selected_threshold <- fdr_table[fdr_table$SS > 0.8 & fdr_table$TotalHits > 50, ]
if(nrow(selected_threshold) > 0) {
best_threshold <- selected_threshold[which.max(selected_threshold$SS), ]
cat("Recommended threshold:", best_threshold$Cut_Off, "\n")
cat("Screen Strength:", best_threshold$SS, "\n")
cat("Total hits:", best_threshold$TotalHits, "\n")
# Identify hits
combined_zeta <- zeta_scores$Zeta_D + zeta_scores$Zeta_I
hits <- names(combined_zeta[combined_zeta >= best_threshold$Cut_Off])
cat("Number of hits identified:", length(hits), "\n")
}
ZetaSuite also provides functionality for single-cell RNA-seq quality control, helping to differentiate high-quality cells from damaged ones.
# Custom event coverage analysis
ec_custom <- EventCoverage(zscore_matrix, negGene, posGene,
binNum = 200, # More bins for finer resolution
combine = FALSE) # Separate decrease/increase directions
# Custom zeta score calculation with SVM
zeta_custom <- Zeta(zscore_matrix, ZseqList,
SVMcurve = svm_results,
SVM = TRUE) # Use SVM correction
# Custom FDR analysis
fdr_custom <- FDRcutoff(zeta_scores, negGene, posGene, nonExpGene,
combine = FALSE) # Analyze directions separately
# Example: Process multiple datasets
datasets <- list(dataset1 = list(countMat = countMat1, negGene = negGene1),
dataset2 = list(countMat = countMat2, negGene = negGene2))
results <- lapply(datasets, function(ds) {
zscore <- Zscore(ds$countMat, ds$negGene)
ec <- EventCoverage(zscore, ds$negGene, ds$posGene, binNum = 100)
zeta <- Zeta(zscore, ZseqList, SVM = FALSE)
return(list(zscore = zscore, ec = ec, zeta = zeta))
})
combine = TRUE
for faster event coverage
analysisbinNum
for large datasetsHao, Y., Shao, C., Zhao, G., Fu, X.D. (2021). ZetaSuite: A Computational Method for Analyzing Multi-dimensional High-throughput Data, Reveals Genes with Opposite Roles in Cancer Dependency. Forthcoming
Shao, C., Hao, Y., Qiu, J., Zhou, B., Li, H., Zhou, Y., Meng, F., Jiang, L., Gou, L.T., Xu, J., Li, Y., Wang, H., Yeo, G.W., Wang, D., Ji, X., Glass, C.K., Aza-Blanc, P., Fu, X.D. (2021). HTS2 Screen for Global Splicing Regulators Reveals a Key Role of the Pol II Subunit RPB9 in Coupling between Transcription and Pre-mRNA Splicing. Cell. Forthcoming
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-apple-darwin20
## Running under: macOS Sonoma 14.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ZetaSuite_1.0.2
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 xfun_0.52 bslib_0.9.0
## [4] ggplot2_3.5.2 shinyjs_2.1.0 htmlwidgets_1.6.4
## [7] lattice_0.22-6 vctrs_0.6.5 tools_4.4.1
## [10] generics_0.1.4 tibble_3.2.1 proxy_0.4-27
## [13] pkgconfig_2.0.3 Matrix_1.7-0 data.table_1.17.4
## [16] RColorBrewer_1.1-3 lifecycle_1.0.4 compiler_4.4.1
## [19] farver_2.1.2 stringr_1.5.1 mixtools_2.0.0.1
## [22] httpuv_1.6.16 htmltools_0.5.8.1 class_7.3-22
## [25] sass_0.4.10 yaml_2.3.10 lazyeval_0.2.2
## [28] plotly_4.10.4 pillar_1.10.2 later_1.4.2
## [31] jquerylib_0.1.4 tidyr_1.3.1 MASS_7.3-61
## [34] DT_0.33 cachem_1.1.0 nlme_3.1-166
## [37] mime_0.13 tidyselect_1.2.1 digest_0.6.37
## [40] Rtsne_0.17 stringi_1.8.7 dplyr_1.1.4
## [43] reshape2_1.4.4 purrr_1.0.4 kernlab_0.9-33
## [46] labeling_0.4.3 splines_4.4.1 fastmap_1.2.0
## [49] grid_4.4.1 cli_3.6.5 magrittr_2.0.3
## [52] dichromat_2.0-0.1 survival_3.7-0 e1071_1.7-16
## [55] withr_3.0.2 scales_1.4.0 promises_1.3.3
## [58] segmented_2.1-4 rmarkdown_2.29 httr_1.4.7
## [61] gridExtra_2.3 shiny_1.10.0 evaluate_1.0.3
## [64] knitr_1.50 viridisLite_0.4.2 mgcv_1.9-1
## [67] rlang_1.1.6 Rcpp_1.0.14 xtable_1.8-4
## [70] glue_1.8.0 shinydashboard_0.7.3 rstudioapi_0.17.1
## [73] jsonlite_2.0.0 R6_2.6.1 plyr_1.8.9