--- title: "Colonoscopy follow-up measure example" author: "Kenneth Nieser" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Colonoscopy follow-up measure example} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 6 ) ``` This vignette includes an example of hospital profiling based on a measure of whether patients receive appropriate recommendations for a follow-up colonoscopy. ```{r setup} library(QualityMeasure) ``` ------------------------------------------------------------- First, we'll load the dataset included with the `QualityMeasure` package. ```{r} df <- colonoscopy knitr::kable(head(df), 'simple') ``` Next, we will calculate reliability using the Beta-Binomial method for aggregated data. ```{r} BB.results <- calcBetaBin(df = df, df.aggregate = T, n = 'n', x = 'x') ``` Beta-Binomial parameter estimates are: alpha = `r round(BB.results$alpha,3)` and beta = `r round(BB.results$beta, 3)`. The between-entity variance in rates is `r round(BB.results$var.b, 3)`. Below is a summary of the distribution of entity-level reliability estimates. ```{r} summary(BB.results$est.BB) ``` We can also plot entity-level reliability results by sample size. ```{r} plot.df <- data.frame( n = df$n, rel = BB.results$est.BB ) fig <- ggplot(data = plot.df, aes(x = n, y = rel)) + geom_point(size = 3) + geom_hline(yintercept = median(BB.results$est.BB), linetype = 'dashed', col = 'red', linewidth = 2) + annotate('text', x = 1700, y = 0.92, label = 'Median reliability', size = 6, col = 'red') + xlab('Entity sample size') + ylab('Reliability') + theme_classic() + theme( panel.grid.major = element_line(), panel.grid.minor = element_line(), axis.text = element_text(size = 16), axis.ticks.length = unit(.25, 'cm'), axis.title = element_text(size = 18, face = 'bold') ) fig ```