## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE ) ## ----load-package, echo=TRUE-------------------------------------------------- library(MultiLevelOptimalBayes) ## ----eval = FALSE------------------------------------------------------------- # mlob( # formula, # data, # group, # balancing.limit = 0.2, # conf.level = 0.95, # jackknife = FALSE, # punish.coeff = 2, # ... # ) ## ----------------------------------------------------------------------------- result_iris <- mlob( Sepal.Length ~ Sepal.Width + Petal.Length, data = iris, group = "Species", conf.level = 0.99, jackknife = FALSE ) summary(result_iris) ## ----------------------------------------------------------------------------- result_chick <- mlob( weight ~ Time, data = ChickWeight, group = "Diet", punish.coeff = 1.5, jackknife = FALSE ) print(result_chick) summary(result_chick) ## ----------------------------------------------------------------------------- result_mtcars <- mlob( mpg ~ hp + wt + am + hp:wt + hp:am, data = mtcars, group = "cyl", balancing.limit = 0.35 ) summary(result_mtcars) ## ----------------------------------------------------------------------------- # Get a basic result for demonstration result <- mlob(weight ~ Time, data = ChickWeight, group = 'Diet', jackknife = FALSE) # Print method - displays coefficients, standard errors, confidence intervals, Z-values, and p-values print(result) ## ----------------------------------------------------------------------------- # Summary method - comprehensive summary with significance stars and comparison to unoptimized ML summary(result) ## ----------------------------------------------------------------------------- # Extract coefficients as a data frame coef(result) # Extract standard errors se(result) # Extract variance-covariance matrix (diagonal only) vcov(result) # Extract confidence intervals confint(result) # Extract confidence intervals for specific parameters confint(result, "beta_b") # Extract confidence intervals with different confidence level confint(result, level = 0.99) ## ----------------------------------------------------------------------------- # Convert results to a data frame format as.data.frame(result) # Get dimensions (number of parameters) dim(result) # Get number of parameters length(result) # Get parameter names names(result) ## ----------------------------------------------------------------------------- # Update model with new parameters (e.g., different confidence level) updated_result <- update(result, conf.level = 0.99) summary(updated_result) ## ----------------------------------------------------------------------------- methods(class = "mlob_result") ## ----------------------------------------------------------------------------- # Run analysis result <- mlob(weight ~ Time, data = ChickWeight, group = 'Diet', jackknife = FALSE) # Get basic information cat("Number of parameters:", length(result), "\n") cat("Parameter names:", paste(names(result), collapse = ", "), "\n") # Extract key statistics coefficients <- coef(result) standard_errors <- se(result) confidence_intervals <- confint(result, level = 0.99) # Create a custom summary table custom_summary <- data.frame( Parameter = names(result), Estimate = as.numeric(coefficients), SE = as.numeric(standard_errors), CI_Lower = confidence_intervals[, 1], CI_Upper = confidence_intervals[, 2] ) print(custom_summary)