Package 'Lifertable'

November 6, 2025

Type Package

Title Life and Fertility Tables Specially for Insects

Version 1.0.1

Description Life and Fertility Tables are appropriate to study the dynamics of arthropods populations. This package provides utilities for constructing Life Tables and Fertility Tables, related demographic parameters, and some simple graphs of interest. It also offers functions to transform the obtained data into a known format for better manipulation. In addition, two methods for obtaining the confidence interval are included.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

LazyData TRUE

Imports ggplot2, methods, stats, tidyr

Suggests openxlsx

Depends R (>= 3.5)

Author Carlos Abimael Sarmiento Sanchez [aut, cre],

Lauro Soto Rojas [ctb],

Alejandro Corona Ambriz [ctb],

Gabriel Arcangel Rodriguez Yam [ctb],

Yolanda Franco Islas [ctb],

Noe Ramirez Negrete [ctb],

Adriana Acevedo Alcala [ctb],

Esteban Rodriguez Leyva [ctb]

Maintainer Carlos Abimael Sarmiento Sanchez <cass9918@hotmail.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2025-11-06 03:20:02 UTC

Contents

```
14
Index
      16
as.data.frame.lifertableCIBootstrap
  Coerce CI to a Data Frame
```

Description

Function to coerce the object displaying the Confidence Interval into a data frame.

Usage

```
## S3 method for class 'lifertableCIBootstrap'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

x A lifertableCIBootstrap object.
 row.names NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
 ... additional arguments to be passed to or from methods.

Value

as.data.frame.lifertableCIBootstrap returns a data frame.

```
as.data.frame.lifertableCIJackknife

Coerce CI to a Data Frame
```

Description

Function to coerce the object displaying the Confidence Interval into a data frame.

Usage

```
## S3 method for class 'lifertableCIJackknife'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

x A lifertableCIJackknife object.

row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

. . . additional arguments to be passed to or from methods.

Value

as.data.frame.lifertableCIJackknife returns a data frame.

```
as.data.frame.lifertableLFT

Coerce Life Table to a Data Frame
```

Description

Function to coerce the object displaying Life Table into a data frame.

Usage

```
## S3 method for class 'lifertableLFT'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

```
x A lifertableLFT object

row.names NULL or a character vector giving the row names for the data frame. Missing values are not allowed.

... additional arguments to be passed to or from methods.
```

Value

```
as.data.frame.lifertableLFT returns a data frame.
```

```
as.data.frame.lifertableParmEst

Coerce Parameters to a Data Frame
```

Description

Function to coerce the object displaying Parameters into a data frame.

Usage

```
## S3 method for class 'lifertableParmEst'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

```
    x A lifertableParmEst object
    row.names NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
    ... additional arguments to be passed to or from methods.
```

Value

```
as.data.frame.lifertableParmEst returns a data frame.
```

Examples

```
as.data.frame.lifertableTotEggs
Coerce\ Total\ Eggs\ to\ a\ Data\ Frame
```

Description

Function to coerce the object displaying Total Eggs into a data frame.

6 Insects

Usage

```
## S3 method for class 'lifertableTotEggs'
as.data.frame(x, row.names = NULL, ...)
```

Arguments

x A lifertableTotEggs object.

row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed.

... additional arguments to be passed to or from methods.

Value

```
as.data.frame.lifertableTotEggs returns a data frame.
```

Examples

Insects

Insects data

Description

This dataset provides reference information on two groups of insects to illustrate the usage of functions within this package.

Usage

Insects

Format

A data frame with 404 rows and 6 columns:

Group Name of the group ("Group1", "Group2"). It is a variable of class "character".

Female The number of the female to which each row belongs. It is a variable of class "integer".

Age It is the age corresponding to the female. Stage in which it is found. It is a variable of class "integer".

Eggs Eggs laid by each female at each age. It is a variable of class "integer".

Sexrate Sexrate at each age. It is a variable of class "numeric".

Survival Survival at each age. It is a variable of class "numeric".

Source

This dataset serves as an example for running the provided code snippets or as a reference for analyzing the functionality of this package.

lifertable

Life and Fertility Table

Description

This function enables users to obtain Life and Fertility Tables, offering various configuration options for optimal usage. See "Details" section.

Usage

```
lifertable(
  ColumnFemale,
  ColumnAge,
  ColumnEggs,
  SexRate,
  Survival = 1,
  ColumnGroups,
  data,
  adultStage = 0,
  CI = FALSE,
  technique = "jackknife",
  reSamples = 1000,
  TotalEggs = FALSE
)
## S3 method for class 'lifertable'
print(x, ...)
## S3 method for class 'lifertableCIBootstrap'
```

```
print(x, title = TRUE, ...)
## S3 method for class 'lifertableCIJackknife'
print(x, title = TRUE, ...)
## S3 method for class 'lifertableLFT'
print(x, ...)
## S3 method for class 'lifertableParmEst'
print(x, ...)
## S3 method for class 'lifertableTest'
print(x, ...)
## S3 method for class 'lifertableTest'
print(x, ...)
```

Arguments

ColumnFemale	Data vector containing information on Females.
ColumnAge	Data vector containing information on Age.

ColumnEggs Data vector containing information on the Number of Eggs Laid.

SexRate Sex rate of eggs laid by the female at a certain age.

Survival Percent of offspring females alive until adulthood. By default, the value is set to

1, assuming that all offspring will survive to adulthood.

ColumnGroups Optional data vector containing information on the Groups. It is optional if the

database only contains information about one group.

data An optional data frame containing the variables. If not found in data, the vari-

ables are taken from environment.

adultStage Age at which females became adults. If the database contains records from

birth, entering this value is unnecessary. **ONLY ENTER THIS VALUE** if the database begins from the adult stage, and the values in ColumnAge do not reflect

the preceding stage (i.e. they contain the ages: 1, 2, 3, ...).

CI Logical. If TRUE, estimations will be conducted to obtain Confidence Intervals

for the Parameters and, if necessary, to compare between groups. Default is

FALSE.

technique A string that defines the technique to be used to calculate the confidence interval.

Can be "jackknife" or "bootstrap". Default is "jackknife".

reSamples Number of re-samples to calculate Bootstrap estimates. Only used when technique

= "bootstrap". Default is 1000.

TotalEggs Logical. If TRUE, the calculation of the number of eggs laid by each female

during the entire experiment will be conducted. Default is FALSE.

Object to be displayed.

. . . Additional arguments to be passed to or from methods.

title If TRUE (the default), displays the title of the object (this is for internal use only).

Details

ColumnFemale and ColumnGroups can be either a numeric vector or a character vector. This means they may contain either numerical values or labels corresponding to the female and to their respective group assignments.

The standard approach for storing the Sex Rate and Survival rate during the experiment is to input this information into the corresponding columns for each variable. If this information remains consistent within a group, you can input that value without repeating it each time. If your database encompasses a single experimental group, simply enter the corresponding value in the SexRate and Survival arguments. In the case of having more than one group, you can input the values of SexRate and Survival correspondingly into a vector containing as many elements as there are groups (one sex ratio and one survival rate for each group).

A similar situation applies to adultStage: you can enter either a single value or a vector of values corresponding to the involved groups.

Estimated Parameters:

Net Reproductive Rate (Ro) Mean net contribution per female to the next generation.

Intrinsic Rate of Increase (Rm) Rate of natural increase in a closed population that has been subject to a constant age-specific schedule of fertility and mortality for a long period, and has converged to be a stable population.

Mean Generation Time (GT) Mean time span between the birth of individuals of a generation and that of the next generation.

Doubling Time (DT) Time span necessary for doubling the initial population.

Finite Rate of Increase (Lambda) It is a multiplication factor of the original population at each time period.

Rm it was determined by analytical approximation using Lotka's (1907, 1913) equation:

$$\sum_{x=0}^{\infty} \exp^{-R_m x} l_x m_x = 1$$

Value

lifertable returns an object of class "lifertable".

been performed.

An object of class "lifertable" is a list containing the following components:

LIFERTABLE	An object of class lifertableLFT containing the Life and Fertility Table.
PARAMETERS	An object of class lifertableParmEst containing the Parameter Estimations
TOTAL.EGGS	If requested, an object of class lifertableTotEggs containing the total number of eggs laid by each female throughout the entire experiment.
CI	If requested, an object of class lifertableCIJackknife or lifertableCIBootstrap containing the Confidence Intervals for the Parameter Estimates.
T.TEST	An object of class lifertableTest containing the Student t-test for pairwise group comparison. This component only appears if the experiment in question contains more than one group and an estimate of the Confidence Interval has

PSEUDOS A list containing the pseudo values generated from the Jackknife or Bootstrap

estimation.

GROUPS A list of the groups involved in the experiment.

Methods (by generic)

• print(lifertable): Print a lifertable object

Functions

- print(lifertableCIBootstrap): Print a lifertableCIBootstrap object, this is the object showing the Confidence Interval obtained with Bootstrap.
- print(lifertableCIJackknife): Print a lifertableCIJackknife object, this is the object showing the Confidence Interval obtained with Jackknife.
- print(lifertableLFT): Print a lifertableLFT object, this is the object showing the Life and Fertility Table
- print(lifertableParmEst): Print a lifertableParmEst object, this is the object showing the Estimated Parameters
- print(lifertableTest): Print a lifertableTest object, this is the object showing the Student t test
- print(lifertableTotEggs): Print a lifertableTotEggs object, this is the object showing the Eggs laid per Female

References

Maia, A. H., Luis, A. J., & Campanhola, C. (2000). "Statistical Inference on Associated Fertility Life Table Parameters Using Jackknife Technique: Computational Aspects". *Journal of Economic Entomology*, 93(2), 511-518. doi:10.1603/0022049393.2.511

Portilla, M., Morales-Ramos, J. A., Guadalupe Rojas, M., & Blanco, C. A. (2014). "Chapter 8 - Life Tables as Tools of Evaluation and Quality Control for Arthropod Mass Production". *Mass Production of Beneficial Organisms* (241-275). doi:10.1016/B9780123914538.00008X

Examples

The following expressions will yield the same result as above:

plotDistrOvipos 11

```
## lifertable(ColumnFemale = Insects$Female,
##
              ColumnAge = Insects$Age,
##
              ColumnEggs = Insects$Eggs,
##
              SexRate = Insects$Sexrate,
##
              Survival = Insects$Survival,
              ColumnGroups = Insects$Group,
              CI = TRUE, technique = "jackknife",
##
##
              TotalEggs = TRUE)
## lifertable(ColumnFemale = Insects$Female,
              ColumnAge = Insects$Age,
##
##
              ColumnEggs = Insects$Eggs,
##
              SexRate = 0.7, Survival = 0.9,
              ColumnGroups = Insects$Group,
##
##
              CI = TRUE, technique = "jackknife",
##
              TotalEggs = TRUE)
## lifertable(ColumnFemale = Insects$Female,
##
              ColumnAge = Insects$Age,
##
              ColumnEggs = Insects$Eggs,
              SexRate = c(0.7, 0.7),
##
##
              Survival = c(0.9, 0.9),
              ColumnGroups = Insects$Group,
##
              CI = TRUE, technique = "jackknife",
##
              TotalEggs = TRUE)
##
```

plotDistrOvipos

Plot for Distribution of Age at Oviposition

Description

This function generates a plot illustrating the Distribution of Oviposition (y-axis) versus Age (x-axis), with separate representations for each group if multiple groups exist. The data is sourced from the original database.

Usage

```
plotDistrOvipos(
   ColumnFemale,
   ColumnAge,
   ColumnEggs,
   ColumnGroups,
   data,
   adultStage = 0,
   time = "days"
)
```

12 plotEggs

Arguments

ColumnFemale Data vector containing information on Females. ColumnAge Data vector containing information on Age. ColumnEggs Data vector containing information on the Number of Eggs Laid. ColumnGroups Optional data vector containing information on the Groups. It is optional if the database only contains information about one group. data An optional data frame containing the variables. If not found in data, the variables are taken from environment. Age at which females became adults. If the database contains records from adultStage

birth, entering this value is unnecessary. ONLY ENTER THIS VALUE if the database begins from the adult stage, and the values in ColumnAge do not reflect

the preceding stage (i.e. they contain the ages: 1, 2, 3, ...).

time A string that defines the time period over which "Age" is measured ("days",

"months", "years", etc). Default is "days".

Value

Returns an object of class c("gg", "ggplot").

Examples

```
## The Insects database will be used to generate the plot.
plotDistrOvipos(ColumnFemale = Female,
                ColumnAge = Age,
                ColumnEggs = Eggs,
                ColumnGroups = Group,
                data = Insects)
## The following expression will yield the same result as described above:
plotDistrOvipos(ColumnFemale = Insects$Female,
                ColumnAge = Insects$Age,
                ColumnEggs = Insects$Eggs,
                ColumnGroups = Insects$Group)
```

plotEggs

Plot for the Number of Eggs Laid per Female

Description

This function generates a Plot representing the number of Eggs Laid by each Female throughout the entire experiment.

PlotPseudoVals 13

Usage

```
plotEggs(object)
```

Arguments

object

object accepts 2 classes of objects:

- An object inheriting from lifertable(), representing the Life and Fertility Table.
- An object of class lifertableTotEggs inherited from lifertable(). This is the object that displays the total number of eggs laid per female.

Value

```
Returns an object of class c("gg", "ggplot").
```

Examples

```
## The main object will be created using the Insects database:
lft <- lifertable(ColumnFemale = Female,</pre>
                  ColumnAge = Age,
                  ColumnEggs = Eggs,
                  SexRate = Sexrate,
                  ColumnGroups = Group,
                  data = Insects,
                  TotalEggs = TRUE)
## Possible usage scenarios
## 1. Direct Usage of the "lft" Object:
plotEggs(lft)
## 2. Assigning the component "TOTAL.EGGS" to an object:
TEggs <- lft$TOTAL.EGGS
plotEggs(TEggs)
## 3. Direct usage of the component:
plotEggs(lft$TOTAL.EGGS)
```

PlotPseudoVals

Plot for the Pseudo-Values of Parameters

Description

Construction of Plots for the pseudo-values of associated Life Table parameters.

14 plotSurvivalCurve

Usage

```
PlotPseudoVals(object)
```

Arguments

object

An object inheriting from lifertable(), representing the Life and Fertility

Value

```
Returns an object of class c("gg", "ggplot").
```

Examples

plotSurvivalCurve

Survival curve for the Life and Fertility Table

Description

This function generates the graphical representation of the Life Table. Survival (y-axis) versus Age (x-axis)

Usage

```
plotSurvivalCurve(object, time = "days")
```

Arguments

object

object accepts 2 classes of objects:

- An object inheriting from lifertable(), representing the Life and Fertility Table.
- An object of class lifertableLFT inherited from lifertable(). This is the object that displays the Life and Fertility Table.

time

A string that defines the time period over which "Age" is measured ("days", "months", "years", etc). Default is "days".

plotSurvivalCurve 15

Value

Returns an object of class c("gg", "ggplot").

Index

```
* datasets
    Insects, 6
as.data.frame.lifertableCIBootstrap, 2
as.data.frame.lifertableCIJackknife, 3
as.data.frame.lifertableLFT,4
as.data.frame.lifertableParmEst, 5
as.data.frame.lifertableTotEggs, 5
class, 9, 12–15
Insects, 6
lifertable, 7
lifertable(), 13, 14
plotDistrOvipos, 11
plotEggs, 12
PlotPseudoVals, 13
plotSurvivalCurve, 14
print.lifertable(lifertable), 7
print.lifertableCIBootstrap
        (lifertable), 7
print.lifertableCIJackknife
        (lifertable), 7
print.lifertableLFT (lifertable), 7
print.lifertableParmEst (lifertable), 7
print.lifertableTest (lifertable), 7
print.lifertableTotEggs (lifertable), 7
```