
Package ‘GWmodel’
September 7, 2024

Type Package

Version 2.4-1

Date 2024-09-07

Title Geographically-Weighted Models

Depends R (>= 3.0.0), robustbase,sp (> 1.4-0), Rcpp (>= 1.0.12)

Imports methods, sf, grDevices, spacetime,spdep,spatialreg,FNN

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Suggests mvoutlier, RColorBrewer, gstat,spData

Description Techniques from a particular branch of spatial statistics,termed geographically-
weighted (GW) models. GW models suit situations when data are not de-
scribed well by some global model, but where there are spatial regions where a suitably lo-
calised calibration provides a better description. 'GWmodel' includes functions to cali-
brate: GW summary statistics (Brunsdon et al., 2002)<doi:10.1016/s0198-9715(01)00009-
6>, GW principal components analysis (Har-
ris et al., 2011)<doi:10.1080/13658816.2011.554838>, GW discriminant analysis (Bruns-
don et al., 2007)<doi:10.1111/j.1538-4632.2007.00709.x> and various forms of GW regres-
sion (Brunsdon et al., 1996)<doi:10.1111/j.1538-4632.1996.tb00936.x>; some of which are pro-
vided in basic and robust (outlier resistant) forms.

Maintainer Binbin Lu <binbinlu@whu.edu.cn>

License GPL (>= 2)

Repository CRAN

URL http://gwr.nuim.ie/

NeedsCompilation yes

SystemRequirements GNU make

Author Binbin Lu [aut, cre],
Paul Harris [aut],
Martin Charlton [aut],
Chris Brunsdon [aut],
Tomoki Nakaya [aut],
Daisuke Murakami [ctb],
Yigong Hu [ctb],

1

https://doi.org/10.1016/s0198-9715(01)00009-6
https://doi.org/10.1016/s0198-9715(01)00009-6
https://doi.org/10.1080/13658816.2011.554838
https://doi.org/10.1111/j.1538-4632.2007.00709.x
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://gwr.nuim.ie/

2 Contents

Fiona H Evans [ctb],
Hjalmar H<c3><b6>glund [ctb]

Date/Publication 2024-09-07 11:00:02 UTC

Contents
GWmodel-package . 3
bw.ggwr . 4
bw.gtwr . 6
bw.gwda . 7
bw.gwpca . 9
bw.gwr . 10
bw.gwr.lcr . 11
bw.gwss.average . 13
DubVoter . 14
EWHP . 15
EWOutline . 16
Georgia . 16
GeorgiaCounties . 17
ggwr.basic . 18
ggwr.cv . 20
ggwr.cv.contrib . 21
gtwr . 22
gw.dist . 24
gw.pcplot . 26
gw.weight . 27
gwda . 28
gwpca . 30
gwpca.check.components . 33
gwpca.cv . 34
gwpca.cv.contrib . 35
gwpca.glyph.plot . 36
gwpca.montecarlo.1 . 36
gwpca.montecarlo.2 . 38
gwr.basic . 40
gwr.bootstrap . 44
gwr.collin.diagno . 48
gwr.cv . 49
gwr.cv.contrib . 50
gwr.hetero . 52
gwr.lcr . 53
gwr.lcr.cv . 56
gwr.lcr.cv.contrib . 57
gwr.mink.approach . 58
gwr.mink.matrixview . 60
gwr.mink.pval . 61
gwr.mixed . 62

GWmodel-package 3

gwr.model.selection . 64
gwr.model.sort . 66
gwr.model.view . 67
gwr.montecarlo . 68
gwr.multiscale . 69
gwr.predict . 73
gwr.robust . 75
gwr.scalable . 78
gwr.t.adjust . 79
gwr.write . 80
gwss . 81
gwss.montecarlo . 83
LondonBorough . 85
LondonHP . 85
st.dist . 86
USelect . 88

Index 89

GWmodel-package Geographically-Weighted Models

Description

In GWmodel, we introduce techniques from a particular branch of spatial statistics, termed geographically-
weighted (GW) models. GW models suit situations when data are not described well by some global
model, but where there are spatial regions where a suitably localised calibration provides a better
description. GWmodel includes functions to calibrate: GW summary statistics, GW principal com-
ponents analysis, GW discriminant analysis and various forms of GW regression; some of which
are provided in basic and robust (outlier resistant) forms. In particular, the high-performence com-
puting technologies, including multi-thread and CUDA techniques are started to be adopted for
efficient calibrations.

Details

Package: GWmodel
Type: Package
Version: 2.4-1
Date: 2024-09-06
License: GPL (>=2)
LazyLoad: yes

4 bw.ggwr

Note

Acknowledgements: We gratefully acknowledge support from National Natural Science Foundation
of China (42071368); Science Foundation Ireland under the National Development Plan through the
award of a Strategic Research Centre grant 07-SRC-I1168.

Beta versions can always be found at https://github.com/lbb220/GWmodel, which includes all
the newly developed functions for GW models.

For latest tutorials on using GWmodel please go to: https://rpubs.com/gwmodel

Author(s)

Binbin Lu, Paul Harris, Martin Charlton, Chris Brunsdon, Tomoki Nakaya, Daisuke Murakami,Isabella
Gollini[ctb], Yigong Hu[ctb], Fiona H Evans[ctb]

Maintainer: Binbin Lu <binbinlu@whu.edu.cn>

References

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for explor-
ing Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software,
63(17):1-50, doi: 10.18637/jss.v063.i17

Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R Package: further topics for
exploring Spatial Heterogeneity using Geographically Weighted Models. Geo-spatial Information
Science 17(2): 85-101, doi: 10.1080/10095020.2014.917453

Lu, B., Hu, Y., Yang, D., Liu, Y., Ou, G., Harris, P., Brunsdon, C., Comber, A., Dong, G., 2024. Gw-
models: A standalone software to train geographically weighted models. Geo-spatial Information
Science, 1-23.

Lu, B., Hu, Y., Murakami, D., Brunsdon, C., Comber, A., Charlton, M., Harris, P., 2022. High-
performance solutions of geographically weighted regression in r. Geo-spatial Information Science
25 (4), 536-549.

bw.ggwr Bandwidth selection for generalised geographically weighted regres-
sion (GWR)

Description

A function for automatic bandwidth selection to calibrate a generalised GWR model

Usage

bw.ggwr(formula, data, family ="poisson", approach="CV",
kernel="bisquare",adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

https://github.com/lbb220/GWmodel
https://rpubs.com/gwmodel
https://doi.org/10.18637/jss.v063.i17
https://doi.org/10.1080/10095020.2014.917453

bw.ggwr 5

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

family a description of the error distribution and link function to be used in the model,
which can be specified by “poisson” or “binomial”

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-
proach

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the
number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) dis-
tance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous
kernel function, a bandwidth can be specified either as a fixed distance or as a ’fixed quantity that
reflects local sample size’ (i.e. still an ’adaptive’ distance but the actual local sample size will be the
sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive
bandwidths ensure sufficient (and constant) local information for each local calibration. This note
is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

6 bw.gtwr

bw.gtwr Bandwidth selection for GTWR

Description

A function for automatic bandwidth selection to calibrate a GTWR model

Usage

bw.gtwr(formula, data, obs.tv, approach="CV",kernel="bisquare",adaptive=FALSE,
p=2, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0, st.dMat,
verbose=T)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

obs.tv a vector of time tags for each observation, which could be numeric or of POSIXlt
class

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-
proach

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

lamda an parameter between 0 and 1 for calculating spatio-temporal distance

t.units character string to define time unit

ksi an parameter between 0 and PI for calculating spatio-temporal distance, see de-
tails in Wu et al. (2014)

st.dMat a pre-specified spatio-temporal distance matrix

verbose logical variable to define whether show the selection procedure

bw.gwda 7

Value

Returns the adaptive or fixed distance bandwidth

Note

The function is developed according to the articles by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for
modeling spatio-temporal variation in house prices. International Journal of Geographical Informa-
tion Science, 24, 383-401.

Wu, B., Li, R., & Huang, B. (2014). A geographically and temporally weighted autoregressive
model with application to housing prices. International Journal of Geographical Information Sci-
ence, 28, 1186-1204.

Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regres-
sion (GTWR). Geographical Analysis, 47, 431-452.

bw.gwda Bandwidth selection for GW Discriminant Analysis

Description

A function for automatic bandwidth selection for GW Discriminant Analysis using a cross-validation
approach only

Usage

bw.gwda(formula, data, COV.gw = T, prior.gw = T, mean.gw = T,
prior = NULL, wqda = F, kernel = "bisquare", adaptive
= FALSE, p = 2, theta = 0, longlat = F,dMat)

Arguments

formula Model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

COV.gw if true, localised variance-covariance matrix is used for GW discriminant analy-
sis; otherwise, global variance-covariance matrix is used

mean.gw if true, localised mean is used for GW discriminant analysis; otherwise, global
mean is used

8 bw.gwda

prior.gw if true, localised prior probability is used for GW discriminant analysis; other-
wise, fixed prior probability is used

prior a vector of given prior probability

wqda if TRUE, a weighted quadratic discriminant analysis will be applied; otherwise
a weighted linear discriminant analysis will be applied

kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);

exponential: wgt = exp(-vdist/bw);

bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;

tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;

boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth.

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) dis-
tance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous
kernel function, a bandwidth can be specified either as a fixed distance or as a ’fixed quantity that
reflects local sample size’ (i.e. still an ’adaptive’ distance but the actual local sample size will be the
sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive
bandwidths ensure sufficient (and constant) local information for each local calibration. This note
is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

bw.gwpca 9

bw.gwpca Bandwidth selection for Geographically Weighted Principal Compo-
nents Analysis (GWPCA)

Description

A function for automatic bandwidth selection to calibrate a basic or robust GWPCA via a cross-
validation approach only

Usage

bw.gwpca(data,vars,k=2, robust=FALSE, scaling=T, kernel="bisquare",adaptive=FALSE,p=2,
theta=0, longlat=F,dMat)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

vars a vector of variable names to be evaluated

k the number of retained components, and it must be less than the number of
variables

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-
plied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized);
otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the
number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth

10 bw.gwr

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) dis-
tance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous
kernel function, a bandwidth can be specified either as a fixed distance or as a ’fixed quantity that
reflects local sample size’ (i.e. still an ’adaptive’ distance but the actual local sample size will be the
sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive
bandwidths ensure sufficient (and constant) local information for each local calibration. This note
is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically
weighted principal components analysis in the context of an application to an environmental data
set. Geographical Analysis 47: 146-172

bw.gwr Bandwidth selection for basic GWR

Description

A function for automatic bandwidth selection to calibrate a basic GWR model

Usage

bw.gwr(formula, data, approach="CV", kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F, dMat,
parallel.method=F,parallel.arg=NULL)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-
proach

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

bw.gwr.lcr 11

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

parallel.method

FALSE as default, and the calibration will be conducted traditionally via the se-
rial technique, "omp": multi-thread technique with the OpenMP API, "cluster":
multi-process technique with the parallel package, "cuda": parallel computing
technique with CUDA

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-
lel.method is "omp", parallel.arg refers to the number of threads used, and its
default value is the number of cores - 1; if parallel.method is "cluster", par-
allel.arg refers to the number of R sessions used, and its default value is the
number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the num-
ber of calibrations included in each group, but note a too large value may cause
the overflow of GPU memory.

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) dis-
tance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous
kernel function, a bandwidth can be specified either as a fixed distance or as a ’fixed quantity that
reflects local sample size’ (i.e. still an ’adaptive’ distance but the actual local sample size will be the
sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive
bandwidths ensure sufficient (and constant) local information for each local calibration. This note
is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

bw.gwr.lcr Bandwidth selection for locally compensated ridge GWR (GWR-LCR)

Description

A function for automatic bandwidth selection for gwr.lcr via a cross-validation approach only

12 bw.gwr.lcr

Usage

bw.gwr.lcr(formula, data, kernel="bisquare",
lambda=0,lambda.adjust=FALSE,cn.thresh=NA,
adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame

as defined in package sp, or a sf object defined in package sf
kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0,

which gives a basic GWR fit
lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR

without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised
GWR with a global ridge adjustment (i.e. lambda is user-specified as some
constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum
condition number. For locations with a condition number (for its local design
matrix), above this user-specified threshold, a local ridge parameter is found

cn.thresh maximum value for condition number, commonly set between 20 and 30
adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the

number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) dis-
tance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous
kernel function, a bandwidth can be specified either as a fixed distance or as a ’fixed quantity that
reflects local sample size’ (i.e. still an ’adaptive’ distance but the actual local sample size will be the
sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample
configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive
bandwidths ensure sufficient (and constant) local information for each local calibration. This note
is applicable to all GW models

bw.gwss.average 13

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for explor-
ing Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software
63(17): 1-50

bw.gwss.average Bandwidth selection for GW summary averages

Description

A function for automatic bandwidth selections to calculate GW summary averages, including means
and medians, via a cross-validation approach.

Usage

bw.gwss.average(data, summary.locat, vars, kernel = "bisquare", adaptive = FALSE,
p = 2, theta = 0, longlat = F, dMat)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

summary.locat a Spatial*DataFrame object for providing summary locations, i.e. SpatialPoints-
DataFrame or SpatialPolygonsDataFrame as defined in package sp

vars a vector of variable names to be summarized

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

14 DubVoter

Value

Returns the adaptive or fixed distance bandwidths (in a two-column matrix) for calculating the
averages of each variable.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

DubVoter Voter turnout data in Greater Dublin(SpatialPolygonsDataFrame)

Description

Voter turnout and social characters data in Greater Dublin for the 2002 General election and the
2002 census. Note that this data set was originally thought to relate to 2004, so for continuity we
have retained the associated variable names.

Usage

data(DubVoter)

Format

A SpatialPolygonsDataFrame with 322 electoral divisions on the following 11 variables.

DED_ID a vector of ID

X a numeric vector of x coordinates

Y a numeric vector of y coordinates

DiffAdd percentage of the population in each ED who are one-year migrants (i.e. moved to a
different address 1 year ago)

LARent percentage of the population in each ED who are local authority renters

SC1 percentage of the population in each ED who are social class one (high social class)

Unempl percentage of the population in each ED who are unemployed

LowEduc percentage of the population in each ED who are with little formal education

Age18_24 percentage of the population in each ED who are age group 18-24

Age25_44 percentage of the population in each ED who are age group 25-44

Age45_64 percentage of the population in each ED who are age group 45-64

GenEl2004 percentage of population in each ED who voted in 2004 election

Details

Variables are from DubVoter.shp.

EWHP 15

References

Kavanagh A (2006) Turnout or turned off? Electoral participation in Dublin in the early 21st Cen-
tury. Journal of Irish Urban Studies 3(2):1-24

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis.
International Journal of Geographical Information Science 25 (10):1717-1736

Examples

data(DubVoter)
ls()
Not run:
spplot(Dub.voter,names(Dub.voter)[4:12])

End(Not run)

EWHP House price data set (DataFrame) in England and Wales

Description

A house price data set for England and Wales from 2001 with 9 hedonic (explanatory) variables.

Usage

data(EWHP)

Format

A data frame with 519 observations on the following 12 variables.

Easting a numeric vector, X coordinate

Northing a numeric vector, Y coordinate

PurPrice a numeric vector, the purchase price of the property

BldIntWr a numeric vector, 1 if the property was built during the world war, 0 otherwise

BldPostW a numeric vector, 1 if the property was built after the world war, 0 otherwise

Bld60s a numeric vector, 1 if the property was built between 1960 and 1969, 0 otherwise

Bld70s a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise

Bld80s a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise

TypDetch a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise

TypSemiD a numeric vector, 1 if the property is semi detached, 0 otherwise

TypFlat a numeric vector, if the property is a flat (or ’apartment’ in the USA), 0 otherwise

FlrArea a numeric vector, floor area of the property in square metres

16 Georgia

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E. (2002), Geographically Weighted Regres-
sion: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

###
data(EWHP)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
####Get the border of England and Wales

data(EWOutline)
plot(ewoutline)
plot(houses.spdf, add = TRUE, pch = 16)

EWOutline Outline of England and Wales for data EWHP

Description

Outline (SpatialPolygonsDataFrame) of the England and Wales house price data EWHP.

Usage

data(EWOutline)

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

Georgia Georgia census data set (csv file)

Description

Census data from the county of Georgia, USA

Usage

data(Georgia)

GeorgiaCounties 17

Format

A data frame with 159 observations on the following 13 variables.

AreaKey An identification number for each county

Latitude The latitude of the county centroid

Longitud The longitude of the county centroid

TotPop90 Population of the county in 1990

PctRural Percentage of the county population defined as rural

PctBach Percentage of the county population with a bachelors degree

PctEld Percentage of the county population aged 65 or over

PctFB Percentage of the county population born outside the US

PctPov Percentage of the county population living below the poverty line

PctBlack Percentage of the county population who are black

ID a numeric vector of IDs

X a numeric vector of x coordinates

Y a numeric vector of y coordinates

Details

This data set can also be found in GWR 3 and in spgwr.

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

data(Georgia)
ls()
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
spplot(educ.spdf, names(educ.spdf)[4:10])

GeorgiaCounties Georgia counties data (SpatialPolygonsDataFrame)

Description

The Georgia census data with boundaries for mapping

Usage

data(GeorgiaCounties)

18 ggwr.basic

Details

This data set can also be found in GWR 3 and in spgwr.

Examples

data(GeorgiaCounties)
plot(Gedu.counties)
data(Georgia)
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
plot(educ.spdf, add=TRUE)

ggwr.basic Generalised GWR models with Poisson and Binomial options

Description

This function implements generalised GWR

Usage

ggwr.basic(formula, data, regression.points, bw, family =
"poisson", kernel = "bisquare", adaptive = FALSE, cv =
T, tol = 1e-05, maxiter = 20, p = 2, theta = 0,
longlat = F, dMat, dMat1)

S3 method for class 'ggwrm'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp

bw bandwidth used in the weighting function, possibly calculated by bw.ggwr();fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

family a description of the error distribution and link function to be used in the model,
which can be specified by “poisson” or “binomial”

ggwr.basic 19

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the
number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

cv if TRUE, cross-validation data will be calculated

tol the threshold that determines the convergence of the IRLS procedure

maxiter the maximum number of times to try the IRLS procedure

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix between regression points and observations, it
can be calculated by the function gw.dist

dMat1 a square distance matrix between each pair of observations, it can be calculated
by the function gw.dist

x an object of class “ggwrm”, returned by the function gwr.generalised

... arguments passed through (unused)

Value

A list of class “ggwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

GW.diagnostic a list class object including the diagnostic information of the model fitting

glm.res an object of class inheriting from “glm” which inherits from the class “lm”, see
glm.

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with regres-
sion.points, GWR coefficient estimates, y value,predicted values, coefficient
standard errors and t-values in its "data" slot.

CV a data vector consisting of the cross-validation data

Note

Note that this function calibrates a Generalised GWR model via an approximating algorithm, which
is different from the back-fitting algorithm used in the GWR4 software by Tomoki Nakaya.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

20 ggwr.cv

References

Nakaya, T., A. S. Fotheringham, C. Brunsdon & M. Charlton (2005) Geographically weighted
Poisson regression for disease association mapping. Statistics in Medicine, 24, 2695-2717.

Nakaya, T., M. Charlton, S. Fotheringham & C. Brunsdon. 2009. How to use SGWRWIN (GWR4.0).
Maynooth, Ireland: National Centre for Geocomputation.

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Examples

data(LondonHP)
Not run:
DM<-gw.dist(dp.locat=coordinates(londonhp))
bw.f1 <- bw.ggwr(BATH2~FLOORSZ,data=londonhp, dMat=DM)
res.poisson<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f1,data=londonhp, dMat=DM)
bw.f2 <- bw.ggwr(BATH2~FLOORSZ,data=londonhp, dMat=DM,family ="binomial")
res.binomial<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f2,data=londonhp, dMat=DM,

family ="binomial")

End(Not run)

ggwr.cv Cross-validation score for a specified bandwidth for generalised GWR

Description

This function finds the cross-validation score for a specified bandwidth for generalised GWR. It can
be used to construct the bandwidth function across all possible bandwidths and compared to that
found automatically.

Usage

ggwr.cv(bw, X, Y,family="poisson", kernel="bisquare",adaptive=F, dp.locat,
p=2, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

family a description of the error distribution and link function to be used in the model,
which can be specified by “poisson” or “binomial”

ggwr.cv.contrib 21

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

ggwr.cv.contrib Cross-validation data at each observation location for a generalised
GWR model

Description

This function finds the individual cross-validation score at each observation location, for a gener-
alised GWR model, for a specified bandwidth. These data can be mapped to detect unusually high
or low cross-validations scores.

Usage

ggwr.cv.contrib(bw, X, Y,family="poisson", kernel="bisquare",adaptive=F,
dp.locat, p=2, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

22 gtwr

family a description of the error distribution and link function to be used in the model,
which can be specified by “poisson” or “binomial”

kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);

exponential: wgt = exp(-vdist/bw);

bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;

tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;

boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation
score for the specified bandwidth

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gtwr Geographically and Temporally Weighted Regression

Description

A function for calibrating a Geographically and Temporally Weighted Regression (GTWR) model.

Usage

gtwr(formula, data, regression.points, obs.tv, reg.tv, st.bw, kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0,
st.dMat)

gtwr 23

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp; Note that no diagnostic information will
returned if it is assigned

obs.tv a vector of time tags for each observation, which could be numeric or of POSIXlt
class

reg.tv a vector of time tags for each regression location, which could be numeric or of
POSIXlt class

st.bw spatio-temporal bandwidth used in the weighting function, possibly calculated
by bw.gwr;fixed (distance) or adaptive bandwidth(number of nearest neighbours)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

lamda an parameter between 0 and 1 for calculating spatio-temporal distance

t.units character string to define time unit

ksi an parameter between 0 and PI for calculating spatio-temporal distance, see de-
tails in Wu et al. (2014)

st.dMat a pre-specified spatio-temporal distance matrix, and can be calculated via the
function st.dist

Value

A list of class “gtwrm”:

GTW.arguments a list class object including the model fitting parameters for generating the report
file

GTW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

24 gw.dist

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with regres-
sion.points, GTWR coefficient estimates, y value,predicted values, coefficient
standard errors and t-values in its "data" slot.

timings starting and ending time.

this.call the function call used.

Note

The function implements GTWR model proposed by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for
modeling spatio-temporal variation in house prices. International Journal of Geographical Informa-
tion Science, 24, 383-401.

Wu, B., Li, R., & Huang, B. (2014). A geographically and temporally weighted autoregressive
model with application to housing prices. International Journal of Geographical Information Sci-
ence, 28, 1186-1204.

Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regres-
sion (GTWR). Geographical Analysis, 47, 431-452.

gw.dist Distance matrix calculation

Description

Calculate a distance vector(matrix) between any GW model calibration point(s) and the data points.

Usage

gw.dist(dp.locat, rp.locat, focus=0, p=2, theta=0, longlat=F)

Arguments

dp.locat a numeric matrix of two columns giving the coordinates of the data points

rp.locat a numeric matrix of two columns giving the coordinates of the GW model cali-
bration points

focus an integer, indexing to the current GW model point, if focus=0, all the distances
between all the GW model calibration points and data points will be calculated
and a distance matrix will be returned; if 0<focus<length(rp.locat), then the dis-
tances between the ’focus’th GW model points and data points will be calculated
and a distance vector will be returned

gw.dist 25

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

Value

Returns a numeric distance matrix or vector; matrix with its rows corresponding to the observations
and its columns corresponds to the GW model calibration points.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

dist in stats

Examples

dp<-cbind(sample(100),sample(100))
rp<-cbind(sample(10),sample(10))
#Euclidean distance metric is used.
dist.v1<-gw.dist(dp.locat=dp, focus=5, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
#The coordinate system is rotated by an angle 0.5 in radian.
dist.v2<-gw.dist(dp.locat=dp, focus=5, p=1, theta=0.5)
#Great Circle distance metric is used.
dist.v3<-gw.dist(dp.locat=dp, focus=5, longlat=TRUE)
#A generalized Minkowski distance metric is used with p= 0.75 .
#The coordinate system is rotated by an angle 0.8 in radian.
dist.v4<-gw.dist(dp.locat=dp,rp.locat=rp, focus=5, p=0.75,theta=0.8)
################################
#matrix is calculated
#Euclidean distance metric is used.
dist.m1<-gw.dist(dp.locat=dp, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
#The coordinate system is rotated by an angle 0.5 in radian.
dist.m2<-gw.dist(dp.locat=dp, p=1, theta=0.5)
#Great Circle distance metric is used.
#dist.m3<-gw.dist(dp.locat=dp, longlat=TRUE)
#A generalized Minkowski distance metric is used with p= 0.75 .
#The coordinate system is rotated by an angle 0.8 in radian.
dist.m4<-gw.dist(dp.locat=dp,rp.locat=rp, p=0.75,theta=0.8)

26 gw.pcplot

gw.pcplot Geographically weighted parallel coordinate plot for investigating
multivariate data sets

Description

This function provides a geographically weighted parallel coordinate plot for locally investigating
a multivariate data set. It has an option that weights the lines of the plot with increasing levels of
transparency, according to their observation’s distance from a specified focal/observation point.

Usage

gw.pcplot(data,vars,focus,bw,adaptive = FALSE, ylim=NULL,ylab="",fixtrans=FALSE,
p=2, theta=0, longlat=F,dMat,...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

vars a vector of variable names to be evaluated

focus an integer, indexing to the observation point

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

ylim the y limits of the plot

ylab a label for the y axis

fixtrans if TRUE, the transparency of the neighbouring observation plot lines increases
with distance; If FALSE a standard (non-spatial) parallel coordinate plot is re-
turned.

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

... other graphical parameters, (see par)

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gw.weight 27

References

Harris P, Brunsdon C, Charlton M, Juggins S, Clarke A (2014) Multivariate spatial outlier detection
using robust geographically weighted methods. Mathematical Geosciences 46(1) 1-31

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically
weighted principal components analysis in the context of an application to an environmental data
set. Geographical Analysis 47: 146-172

gw.weight Weight matrix calculation

Description

Calculate a weight vector(matrix) from a distance vector(matrix).

Usage

gw.weight(vdist,bw,kernel,adaptive=FALSE)

Arguments

vdist a distance matrix or vector
bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed

(distance) or adaptive bandwidth(number of nearest neighbours)
kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

Value

Returns a numeric weight matrix or vector; matrix with its rows corresponding to the observations
and its columns corresponds to the GW model calibration points.

Note

The gaussian and exponential kernel functions are continuous and valued in the interval (0,1]; while
bisquare, tricube and boxcar kernel functions are discontinuous and valued in the interval [0,1].
Notably, the upper limit of the bandwidth is exactly the number of observations when the adaptive
kernel is used. In this function, the adaptive bandwidth will be specified as the number of observa-
tions even though a larger number is assigned. The function will be the same as a global application
function (i.e. all weights are 1) when the adaptive bandwidth is equal to or larger than the number
of observations when using the boxcar kernel function.

28 gwda

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwda GW Discriminant Analysis

Description

This function implements GW discriminant analysis, where location-wise probabilities and their
associated entropy are also calculated.

Usage

gwda(formula, data, predict.data,validation = T, COV.gw=T,
mean.gw=T, prior.gw=T, prior=NULL, wqda =F,
kernel = "bisquare", adaptive = FALSE, bw,
p = 2, theta = 0, longlat = F,dMat)

S3 method for class 'gwda'
print(x, ...)

Arguments

formula Model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame

as defined in package sp, or a sf object defined in package sf
predict.data a Spatial*DataFrame object for prediction, i.e. SpatialPointsDataFrame or Spa-

tialPolygonsDataFrame as defined in package sp; if it is not given, the traing
data will be predicted using leave-one-out cross-validation.

validation If TRUE, the results from the prediction will be validated and the correct pro-
portion will be calculated.

COV.gw if true, localised variance-covariance matrix is used for GW discriminant analy-
sis; otherwise, global variance-covariance matrix is used

mean.gw if true, localised mean is used for GW discriminant analysis; otherwise, global
mean is used

prior.gw if true, localised prior probability is used for GW discriminant analysis; other-
wise, fixed prior probability is used

prior a vector of given prior probability
wqda if TRUE, weighted quadratic discriminant analysis will be applied; otherwise

weighted linear discriminant analysis will be applied
kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

gwda 29

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the
number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

bw bandwidth used in the weighting function, possibly calculated by bw.gwpca;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “gwda”

... arguments passed through (unused)

Value

An object of class “gwda”. This includes a SpatialPointsDataFrame (may be gridded) or Spa-
tialPolygonsDataFrame object, SDF, (see package “sp”) or sf object (see package “sf”) with, fol-
lowing the use of new version of gwda, the probabilities for each level, the highest probabiliity and
the entropy of the probabilities in its “data” slot.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Brunsdon, C, Fotheringham S, and Charlton, M (2007), Geographically Weighted Discriminant
Analysis, Geographical Analysis 39:376-396

Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R Package: further topics for
exploring Spatial Heterogeneity using Geographically Weighted Models. Geo-spatial Information
Science 17(2): 85-101

Examples

Not run:
data(USelect)
dMat <- gw.dist(coordinates(USelect2004))
bw <- bw.gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,data=USelect2004,
adaptive=TRUE,dMat=dMat)
ge.gwda <- gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,data=USelect2004,
bw=bw,adaptive=TRUE,dMat=dMat)
table(USelect2004$winner,ge.gwda$SDF$group.predicted)
spplot(ge.gwda$SDF, "entropy")

End(Not run)

30 gwpca

gwpca GWPCA

Description

This function implements basic or robust GWPCA.

Usage

gwpca(data, elocat, vars, k = 2, robust = FALSE, scaling=T, kernel = "bisquare",
adaptive = FALSE, bw, p = 2, theta = 0, longlat = F, cv = T, scores=F,

dMat)
S3 method for class 'gwpca'
print(x, ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

elocat a two-column numeric array or Spatial*DataFrame object for providing evalu-
ation locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as
defined in package sp

vars a vector of variable names to be evaluated

k the number of retained components; k must be less than the number of variables

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-
plied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized);
otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the
number of nearest neighbours (i.e. adaptive distance); default is FALSE, where
a fixed kernel is found (bandwidth is a fixed distance)

bw bandwidth used in the weighting function, possibly calculated by bw.gwpca;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

gwpca 31

cv If TRUE, cross-validation data will be found that are used to calculate the cross-
validation score for the specified bandwidth.

scores if scores = TRUE, the scores of the supplied data on the principal components
will be calculated.

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “gwpca”, returned by the function gwpca

... arguments passed through (unused)

Value

A list of class “gwpca”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

pca an object of class inheriting from “princomp”, see princomp.

loadings the localised loadings

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob-
ject (see package “sp”) or sf object (see package “sf”) integrated with local
proportions of variance for each principle components, cumulative proportion
and winning variable for the 1st principle component in its "data" slot.

gwpca.scores the localised scores of the supplied data on the principal components

var The local amount of variance accounted for by each component

CV Vector of cross-validation data

timings starting and ending time.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis.
International Journal of Geographical Information Science 25:1717-1736

Harris P, Brunsdon C, Charlton M, Juggins S, Clarke A (2014) Multivariate spatial outlier detection
using robust geographically weighted methods. Mathematical Geosciences 46(1) 1-31

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2014) Geographically weighted meth-
ods and their use in network re-designs for environmental monitoring. Stochastic Environmental
Research and Risk Assessment 28: 1869-1887

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2015) Enhancements to a geographically
weighted principal components analysis in the context of an application to an environmental data
set. Geographical Analysis 47: 146-172

32 gwpca

Examples

Not run:
if(require("mvoutlier") && require("RColorBrewer"))
{

data(bsstop)
Data.1 <- bsstop[, 1:14]
colnames(Data.1)
Data.1.scaled <- scale(as.matrix(Data.1[5:14])) # standardised data...
rownames(Data.1.scaled) <- Data.1[, 1]
#compute principal components:
pca <- princomp(Data.1.scaled, cor = FALSE, scores = TRUE)
use covariance matrix to match the following...
pca$loadings
data(bss.background)
backdrop <- function()
plot(bss.background, asp = 1, type = "l", xaxt = "n", yaxt = "n",
xlab = "", ylab = "", bty = "n", col = "grey")
pc1 <- pca$scores[, 1]
backdrop()
points(Data.1$XCOO[pc1 > 0], Data.1$YCOO[pc1 > 0], pch = 16, col = "blue")
points(Data.1$XCOO[pc1 < 0], Data.1$YCOO[pc1 < 0], pch = 16, col = "red")

#Geographically Weighted PCA and mapping the local loadings
Coordinates of the sites
Coords1 <- as.matrix(cbind(Data.1$XCOO,Data.1$YCOO))
d1s <- SpatialPointsDataFrame(Coords1,as.data.frame(Data.1.scaled))
pca.gw <- gwpca(d1s,vars=colnames(d1s@data),bw=1000000,k=10)
local.loadings <- pca.gw$loadings[, , 1]

Mapping the winning variable with the highest absolute loading
note first component only - would need to explore all components..

lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
backdrop()
colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
plot(df1p, pch = 18, col = colour, add = TRUE)
legend("topleft", as.character(unique(df1p$lead)), pch = 18, col =

brewer.pal(8, "Dark2"))
backdrop()

#Glyph plots give a view of all the local loadings together
glyph.plot(local.loadings, Coords1, add = TRUE)

#it is not immediately clear how to interpret the glyphs fully,
#so inter-actively identify the full loading information using:
check.components(local.loadings, Coords1)

GWPCA with an optimal bandwidth
bw.choice <- bw.gwpca(d1s,vars=colnames(d1s@data),k=2)
pca.gw.auto <- gwpca(d1s,vars=colnames(d1s@data),bw=bw.choice,k=2)
note first component only - would need to explore all components..

gwpca.check.components 33

local.loadings <- pca.gw.auto$loadings[, , 1]

lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
backdrop()
colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
plot(df1p, pch = 18, col = colour, add = TRUE)
legend("topleft", as.character(unique(df1p$lead)), pch = 18,
col = brewer.pal(8, "Dark2"))

GWPCPLOT for investigating the raw multivariate data
gw.pcplot(d1s, vars=colnames(d1s@data),focus=359, bw = bw.choice)

}

End(Not run)

gwpca.check.components

Interaction tool with the GWPCA glyph map

Description

The function interacts with the multivariate glyph plot of GWPCA loadings.

Usage

gwpca.check.components(ld,loc)

Arguments

ld GWPCA loadings returned by gwpca

loc a 2-column numeric array of GWPCA evaluation locations

Note

The function “check.components” (in the early versions of GWmodel) has been renamed as “gw-
pca.check.components”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

gwpca.glyph.plot

34 gwpca.cv

gwpca.cv Cross-validation score for a specified bandwidth for GWPCA

Description

This function finds the cross-validation score for a specified bandwidth for basic or robust GWPCA.
It can be used to construct the bandwidth function across all possible bandwidths and compared to
that found automatically.

Usage

gwpca.cv(bw,x,loc,k=2,robust=FALSE,kernel="bisquare",adaptive=FALSE,p=2,
theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

x the variable matrix

loc a two-column numeric array of observation coordinates

k the number of retained components; k must be less than the number of variables

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-
plied

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwpca.cv.contrib 35

gwpca.cv.contrib Cross-validation data at each observation location for a GWPCA

Description

This function finds the individual cross-validation score at each observation location, for a GWPCA
model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-
validations scores.

Usage

gwpca.cv.contrib(x,loc,bw, k=2,robust=FALSE,kernel="bisquare",adaptive=FALSE,
p=2, theta=0, longlat=F,dMat)

Arguments

x the variable matrix
loc a two-column numeric array of observation coordinates
bw bandwidth used in the weighting function;fixed (distance) or adaptive band-

width(number of nearest neighbours)
k the number of retained components; k must be less than the number of variables
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-

plied
kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation
score for the specified bandwidth (bw) and component (k).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

36 gwpca.montecarlo.1

gwpca.glyph.plot Multivariate glyph plots of GWPCA loadings

Description

This function provides a multivariate glyph plot of GWPCA loadings at each output location.

Usage

gwpca.glyph.plot(ld,loc, r1=50, add=FALSE,alpha=1,sep.contrasts=FALSE)

Arguments

ld GWPCA loadings returned by gwpca

loc a two-column numeric array for providing evaluation locations of GWPCA cal-
ibration

r1 argument for the size of the glyphs, default is 50; glyphs get larger as r1 is
reduced

add if TRUE, add the plot to the existing window.

alpha the level of transparency of glyph from function rgb() and ranges from 0 to max
(fully transparent to opaque)

sep.contrasts allows different types of glyphs and relates to whether absolute loadings are
used (TRUE) or not

Note

The function “glyph.plot” (in the early versions of GWmodel) has been renamed as “gwpca.glyph.plot”,
while the old name is still kept valid.

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis.
International Journal of Geographical Information Science 25:1717-1736

gwpca.montecarlo.1 Monte Carlo (randomisation) test for significance of GWPCA eigen-
value variability for the first component only - option 1

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with
the bandwidth pre-specified and constant. The test evaluates whether the GW eigenvalues vary
significantly across space for the first component only.

gwpca.montecarlo.1 37

Usage

gwpca.montecarlo.1(data, bw, vars, k = 2, nsims=99,robust = FALSE, scaling=T,
kernel = "bisquare", adaptive = FALSE, p = 2, theta = 0,
longlat = F, dMat)

S3 method for class 'mcsims'
plot(x, sname="SD of local eigenvalues from randomisations", ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

bw bandwidth used in the weighting function, possibly calculated by bw.gwpca;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

vars a vector of variable names to be evaluated

k the number of retained components; k must be less than the number of variables

nsims the number of simulations for MontCarlo test

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-
plied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized);
otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “mcsims”, returned by the function gwpca.montecarlo.1 or
gwpca.montecarlo.2

sname the label for the observed value on the plot

... arguments passed through (unused)

Value

A list of components:

actual the observed standard deviations (SD) of eigenvalues

sims a vector of the simulated SDs of eigenvalues

38 gwpca.montecarlo.2

Note

The function “montecarlo.gwpca.1” (in the early versions of GWmodel) has been renamed as “gw-
pca.montecarlo.1”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis.
International Journal of Geographical Information Science 25:1717-1736

Examples

Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res<-gwpca.montecarlo.1(data=Dub.voter, vars=c("DiffAdd", "LARent",
"SC1", "Unempl", "LowEduc"), bw=20,dMat=DM,adaptive=TRUE)
gmc.res
plot(gmc.res)

End(Not run)

gwpca.montecarlo.2 Monte Carlo (randomisation) test for significance of GWPCA eigen-
value variability for the first component only - option 2

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with the
bandwidth automatically re-selected via the cross-validation approach. The test evaluates whether
the GW eigenvalues vary significantly across space for the first component only.

Usage

gwpca.montecarlo.2(data, vars, k = 2, nsims=99,robust = FALSE, scaling=T,
kernel = "bisquare", adaptive = FALSE, p = 2,
theta = 0, longlat = F, dMat)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

vars a vector of variable names to be evaluated

k the number of retained components; k must be less than the number of variables

gwpca.montecarlo.2 39

nsims the number of simulations for MontCarlo test

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be ap-
plied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized);
otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

A list of components:

actual the observed standard deviations (SD) of eigenvalues

sims a vector of the simulated SDs of eigenvalues

Note

The function “montecarlo.gwpca.2” (in the early versions of GWmodel) has been renamed as “gw-
pca.montecarlo.2”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Harris P, Brunsdon C, Charlton M (2011) Geographically weighted principal components analysis.
International Journal of Geographical Information Science 25:1717-1736

Examples

Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res.autow<-gwpca.montecarlo.2(data=Dub.voter, vars=c("DiffAdd", "LARent",
"SC1", "Unempl", "LowEduc"), dMat=DM,adaptive=TRUE)

40 gwr.basic

gmc.res.autow
plot.mcsims(gmc.res.autow)

End(Not run)

gwr.basic Basic GWR model

Description

This function implements basic GWR

Usage

gwr.basic(formula, data, regression.points, bw, kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F,dMat,F123.test=F,cv=F, W.vect=NULL,
parallel.method=FALSE,parallel.arg=NULL)
S3 method for class 'gwrm'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp; Note that no diagnostic information will
returned if it is assigned

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

gwr.basic 41

F123.test If TRUE, conduct three seperate F-tests according to Leung et al. (2000).

cv if TRUE, cross-validation data will be calculated and returned in the output Spa-
tial*DataFrame

W.vect default NULL, if given it will be used to weight the distance weighting matrix

x an object of class “gwrm”, returned by the function gwr.basic

parallel.method

FALSE as default, and the calibration will be conducted traditionally via the se-
rial technique, "omp": multi-thread technique with the OpenMP API, "cluster":
multi-process technique with the parallel package, "cuda": parallel computing
technique with CUDA

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-
lel.method is "omp", parallel.arg refers to the number of threads used, and its
default value is the number of cores - 1; if parallel.method is "cluster", par-
allel.arg refers to the number of R sessions used, and its default value is the
number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the num-
ber of calibrations included in each group, but note a too large value may cause
the overflow of GPU memory.

... arguments passed through (unused)

Value

A list of class “gwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with regres-
sion.points, GWR coefficient estimates, y value,predicted values, coefficient
standard errors and t-values in its "data" slot.

timings starting and ending time.

this.call the function call used.

Ftest.res results of Leung’s F tests when F123.test is TRUE.

Note

Requirements of using CUDA for high-performence computation in GWR functions:

To run GWR-CUDA (i.e. parallel.method is pecified as “cuda”) with gwr.basic , bw.gwr and
gwr.model.selection, the following conditions are required:

1. There is at least one NVIDIA GPU supporting CUDA equipped on user’s computer.

2. CUDA (>10.2) are installed with the environment variable ‘CUDA_HOME‘ set properly.

42 gwr.basic

3. The package should re-built from source. - For Linux user, ‘GWmodelCUDA‘ will be automat-
ically built if CUDA toolkit could be detected by the complier. - For Windows user, ‘GWmodel-
CUDA.dll‘ and ‘GWmodelCUDA.lib‘ will be automatically downloaded; however, we would rec-
ommend users to build the ‘GWmodelCUDA‘ library manually to avoid some potentially unknown
issues, and an ‘CMakeLists.txt‘ file is provided for this procedure.

If any condition above is not satisfied, the GWR-CUDA will not work even though the “paral-
lel.method” is specified as “cuda”.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Brunsdon, C, Fotheringham, S, Charlton, M (1996), Geographically Weighted Regression: A Method
for Exploring Spatial Nonstationarity. Geographical Analysis 28(4):281-298

Charlton, M, Fotheringham, S, and Brunsdon, C (2007), GWR3.0, http://gwr.nuim.ie/.

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Leung, Y, Mei, CL, and Zhang, WX (2000), Statistical tests for spatial nonstationarity based on the
geographically weighted regression model. Environment and Planning A, 32, 9-32.

Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with
a non-Euclidean distance metric: a case study using hedonic house price data. International Journal
of Geographical Information Science 28(4): 660-681

OpenMP: https://www.openmp.org/

CUDA: https://developer.nvidia.com/cuda-zone

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
##Compare the time consumed with and without a specified distance matrix
Not run:
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000,

kernel = "gaussian"))
system.time(DM<-gw.dist(dp.locat=coordinates(londonhp)))
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000,

kernel = "gaussian", dMat=DM))

specify an optimum bandwidth by cross-validation appraoch
bw1<-bw.gwr(PURCHASE~FLOORSZ, data=londonhp, kernel = "gaussian",dMat=DM)
gwr.res1<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw1,kernel = "gaussian",

dMat=DM)
gwr.res1
End(Not run)
data(LondonBorough)

http://gwr.nuim.ie/
https://www.openmp.org/
https://developer.nvidia.com/cuda-zone
https://www.R-project.org/

gwr.basic 43

nsa = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(561900,200900),
scale = 500, col=1)
Not run:
if(require("RColorBrewer"))
{

mypalette<-brewer.pal(6,"Spectral")
x11()
spplot(gwr.res1$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,
ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),
main="GWR estimated coefficients for FLOORSZ with a fixed bandwidth",
col.regions=mypalette, sp.layout=list(nsa, londonborough))}

End(Not run)
Not run:
bw2<-bw.gwr(PURCHASE~FLOORSZ,approach="aic",adaptive=TRUE, data=londonhp,

kernel = "gaussian", dMat=DM)
gwr.res2<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw2,adaptive=TRUE,

kernel = "gaussian", dMat=DM)
gwr.res2
if(require("RColorBrewer"))
{

x11()
spplot(gwr.res2$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,
ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),
main="GWR estimated coefficients for FLOORSZ with an adaptive bandwidth",
col.regions=mypalette, sp.layout=list(nsa,londonborough))}

End(Not run)
Not run:

############HP-GWR test code
simulate.data.generator <- function(data.length) {
x1 <- rnorm(data.length)
x2 <- rnorm(data.length)
x3 <- rnorm(data.length)
lon <- rnorm(data.length, mean = 533200, sd = 10000)
lat <- rnorm(data.length, mean = 159400, sd = 10000)
y <- x1 + 5 * x2 + 2.5 * x3 + rnorm(data.length)
simulate.data <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3, lon = lon, lat = lat)
coordinates(simulate.data) <- ~ lon + lat
names(simulate.data)
return(simulate.data)

}
simulate.data <- simulate.data.generator(10000)
adaptive = TRUE

GWR (not parallelized)
bw.CV.s <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",

kernel = "gaussian", adaptive = adaptive, parallel.method = FALSE)
model.s <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"), data = simulate.data,

bw = bw.CV.s, approach="AIC", kernel = "gaussian", adaptive = T,
parallel.method = FALSE)

system.time(

44 gwr.bootstrap

betas.s <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.s,
kernel = "gaussian", adaptive = TRUE)

)

GWR-Omp
bw.CV.omp <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",

kernel = "gaussian", adaptive = adaptive, parallel.method = "omp")
model.omp <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"), data = simulate.data,

bw = bw.CV.omp, approach="AIC", kernel = "gaussian", adaptive = T,
parallel.method = "omp")

system.time(
betas.omp <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.omp,

kernel = "gaussian", adaptive = T, parallel.method = "omp"))

GWR-CUDA
bw.CV.cuda <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",

kernel = "gaussian", adaptive = adaptive, parallel.method = "cuda",
parallel.arg = 6*16)

model.cuda <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"),
data = simulate.data, bw = bw.CV.cuda, approach="AIC",
kernel = "gaussian", adaptive = T,
parallel.method = "cuda", parallel.arg = 6*16)

system.time(
betas.cuda <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.cuda,

kernel = "gaussian", adaptive = T, parallel.method = "cuda",
parallel.arg = 6*8))

End(Not run)

gwr.bootstrap Bootstrap GWR

Description

This function implements bootstrap methods to test for coefficient variability found from GWR
under model assumptions for each of four null hypotheses: MLR, ERR, SMA and LAG models.
Global test statistic results are found, as well local observation-specific test results that can be
mapped.

Usage

gwr.bootstrap(formula, data, kernel = "bisquare", approach = "AIC",
R = 99, k.nearneigh = 4, adaptive = FALSE, p = 2,
theta = 0, longlat = FALSE, dMat, verbose = FALSE,
parallel.method = FALSE, parallel.arg = NULL)

S3 method for class 'gwrbsm'
print(x, ...)

gwr.bootstrap 45

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-
proach

R number of random samples reapted in the bootstrap procedure

k.nearneigh number of nearest neighbours concerned in calbrating ERR, SMA and LAG
models

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are
reported

x an object of class “gwrbsm”, returned by the function gwr.bootstrap
parallel.method

FALSE as default, and the calibration will be conducted traditionally via the se-
rial technique, "omp": multi-thread technique with the OpenMP API, "cluster":
multi-process technique with the parallel package, "cuda": parallel computing
technique with CUDA

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-
lel.method is "omp", parallel.arg refers to the number of threads used, and its
default value is the number of cores - 1; if parallel.method is "cluster", par-
allel.arg refers to the number of R sessions used, and its default value is the
number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the num-
ber of calibrations included in each group, but note a too large value may cause
the overflow of GPU memory.

... arguments passed through (unused)

Value

A list of class “gwrbsm”:

46 gwr.bootstrap

formula Regression model formula of a formula object

results modified statistics reported from comparisons between GWR and MLR, ERR,
SMA and LAG

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with regres-
sion.points, GWR coefficient estimates, y value,predicted values, coefficient
standard errors and bootstrap p-values in its “data” slot.

timings starting and ending time.

this.call the function call used.

Note

This function implements the bootstrap methods introduced in Harris et al. (2017). It provides a
global test statistic (the modified one given in Harris et al. 2017) and a complementary localised
version that can be mapped. The bootstrap methods test for coefficient variability found from GWR
under model assumptions for each of four null hypotheses: i) multiple linear regression model
(MLR); ii) simultaneous autoregressive error model (ERR); iii) moving average error model (SMA)
and iv) simultaneous autoregressive lag model (LAG).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Harris, P., Brunsdon, C., Lu, B., Nakaya, T., & Charlton, M. (2017). Introducing bootstrap methods
to investigate coefficient non-stationarity in spatial regression models. Spatial Statistics, 21, 241-
261.

Examples

Not run:
#Example with the Georgia educational attainment data
data(Georgia)
data(GeorgiaCounties)
coords <- cbind(Gedu.df$X, Gedu.df$Y)
Gedu.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
#Make a SpatialPolygonDataFrame
require(RColorBrewer)
gSRDF <- SpatialPolygonsDataFrame(polygons(Gedu.counties), over(Gedu.counties,

Gedu.spdf),match.ID=T)
mypalette.1 <- brewer.pal(11,"Spectral")
X11(width=9,height=8)
spplot(gSRDF, names(gSRDF)[c(5,7:9)], col.regions=mypalette.1,
cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Georgia educational attainment predictor data")))
bsm.res <- gwr.bootstrap(PctBach~PctRural+PctEld+PctFB+PctPov, gSRDF,

R=999, longlat=T)
bsm.res
#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.

gwr.bootstrap 47

mypalette.local.test <- brewer.pal(10,"Spectral")
X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[14:17], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model

null hypothesis")))

X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[19:22], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model

null hypothesis")))
X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[24:27], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model null

hypothesis")))

X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[29:32], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the LAG model null

hypothesis")))
##
#Example with Dublin voter data
data(DubVoter)
X11(width=9,height=8)
spplot(Dub.voter, names(Dub.voter)[c(5,7,9,10)], col.regions=mypalette.1,
cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Dublin voter turnout predictor data")))
bsm.res1 <- gwr.bootstrap(GenEl2004~LARent+Unempl+Age18_24+Age25_44, Dub.voter

, R=999)
bsm.res1

#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[14:17], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model null

hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[19:22], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model null

hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[24:27], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model

null hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[29:32], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),

48 gwr.collin.diagno

main=expression(paste("Local p-values for each coefficient of the LAG model
null hypothesis")))

End(Not run)

gwr.collin.diagno Local collinearity diagnostics for basic GWR

Description

This function provides a series of local collinearity diagnostics for the independent variables of a
basic GWR model.

Usage

gwr.collin.diagno(formula, data, bw, kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

bw bandwidth used in the weighting function, probably calculated by bw.gwr or
bw.gwr.lcr; fixed (distance) or adaptive bandwidth (number of nearest neigh-
bours)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

gwr.cv 49

Value

corr.mat Local correlation matrix

VIF Local Variance inflation factors (VIFs) matrix

local_CN Local condition numbers

VDP Local variance-decomposition proportions

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with VIF,
local_CN, VDP and corr.mat

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression coeffi-
cients in geographically weighted regression. Journal of Geographical Systems 7:161-187

Wheeler D (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted
regression. Environment and Planning A 39:2464-2481

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for explor-
ing Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software,
63(17):1-50

gwr.cv Cross-validation score for a specified bandwidth for basic GWR

Description

This function finds the cross-validation score for a specified bandwidth for basic GWR. It can be
used to construct the bandwidth function across all possible bandwidths and compared to that found
automatically.

Usage

gwr.cv(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2, theta=0,
longlat=F,dMat, verbose=T,
parallel.method=F, parallel.arg=NULL)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

50 gwr.cv.contrib

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

verbose if TRUE (default), reports the progress of search for bandwidth
parallel.method

Specified by ‘FALSE‘ for serial approach, by ‘"omp"‘ for multi-thread approach
implemented via OpenMP, by ‘"cluster"‘ for multi-process approach implemented
via ‘parallel‘ package, by ‘"cuda"‘ for parallel approach implemented via CUDA

parallel.arg Set the argument for parallel approach. If ‘parallel.method‘ is ‘FALSE‘, there is
no need to set its value. If ‘parallel.method‘ is ‘"omp"‘, its value is used to set
how many threads should be created (default by cores of *cores of CPU* - 1).
If ‘parallel.method‘ is ‘"cluster"‘, its value is used to set how many R session
should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method‘
is ‘"cuda"‘, its value is used to set how many samples is included in one group
during the calibration. This value should not be too big to avoid the overflow of
GPU memory.

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.cv.contrib Cross-validation data at each observation location for a basic GWR
model

Description

This function finds the individual cross-validation score at each observation location, for a basic
GWR model, for a specified bandwidth. These data can be mapped to detect unusually high or low
cross-validations scores.

gwr.cv.contrib 51

Usage

gwr.cv.contrib(bw, X, Y, kernel="bisquare",adaptive=FALSE, dp.locat, p=2,
theta=0, longlat=F,dMat,
parallel.method=F, parallel.arg=NULL)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

parallel.method

Specified by ‘FALSE‘ for serial approach, by ‘"omp"‘ for multi-thread approach
implemented via OpenMP, by ‘"cluster"‘ for multi-process approach implemented
via ‘parallel‘ package, by ‘"cuda"‘ for parallel approach implemented via CUDA

parallel.arg Set the argument for parallel approach. If ‘parallel.method‘ is ‘FALSE‘, there is
no need to set its value. If ‘parallel.method‘ is ‘"omp"‘, its value is used to set
how many threads should be created (default by cores of *cores of CPU* - 1).
If ‘parallel.method‘ is ‘"cluster"‘, its value is used to set how many R session
should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method‘
is ‘"cuda"‘, its value is used to set how many samples is included in one group
during the calibration. This value should not be too big to avoid the overflow of
GPU memory.

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation
score for the specified bandwidth.

52 gwr.hetero

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.hetero Heteroskedastic GWR

Description

This function implements a heteroskedastic GWR model

Usage

gwr.hetero(formula, data, regression.points, bw, kernel="bisquare",
adaptive=FALSE, tol=0.0001,maxiter=50,verbose=T,
p=2, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

tol the threshold that determines the convergence of the iterative procedure

maxiter the maximum number of times to try the iterative procedure

verbose logical, if TRUE verbose output will be made from the iterative procedure

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

gwr.lcr 53

Value

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with coeffi-
cient estimates in its "data" slot.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Harris P, Fotheringham AS, Juggins S (2010) Robust geographically weighed regression: a tech-
nique for quantifying spatial relationships between freshwater acidification critical loads and catch-
ment attributes. Annals of the Association of American Geographers 100(2): 286-306

Harris P, Brunsdon C, Fotheringham AS (2011) Links, comparisons and extensions of the geo-
graphically weighted regression model when used as a spatial predictor. Stochastic Environmental
Research and Risk Assessment 25:123-138

gwr.lcr GWR with a locally-compensated ridge term

Description

To address possible local collinearity problems in basic GWR, GWR-LCR finds local ridge parame-
ters at affected locations (set by a user-specified threshold for the design matrix condition number).

Usage

gwr.lcr(formula, data, regression.points, bw, kernel="bisquare",
lambda=0,lambda.adjust=FALSE,cn.thresh=NA,
adaptive=FALSE, p=2, theta=0, longlat=F,cv=T,dMat)

S3 method for class 'gwrlcr'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp, or a two-column numeric array

bw bandwidth used in the weighting function, possibly calculated by bw.gwr.lcr;
fixed (distance) or adaptive bandwidth(number of nearest neighbours)

54 gwr.lcr

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0,
which gives a basic GWR fit

lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR
without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised
GWR with a global ridge adjustment (i.e. lambda is user-specified as some
constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum
condition number. Here for locations with a condition number (for its local
design matrix) above this user-specified threshold, a local ridge parameter is
found

cn.thresh maximum value for condition number, commonly set between 20 and 30

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

cv if TRUE, ’cross-validation data will be calculated and returned in the output
Spatial*DataFrame

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “gwrlcr”, returned by the function gwr.lcr

... arguments passed through (unused)

Value

A list of class “rgwr”:

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) with coordinates of re-
gression.points in its "data" slot.

GW.arguments parameters used for the LCR-GWR calibration

GW.diagnostic diagnostic information is given when data points are also used as regression
locations

timings timing information for running this function

this.call the function call used.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.lcr 55

References

Wheeler D (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted
regression. Environment and Planning A 39:2464-2481

Brunsdon C, Charlton M, Harris P (2012) Living with collinearity in Local Regression Models.
GISRUK 2012, Lancaster, UK

Brunsdon C, Charlton M, Harris P (2012) Living with collinearity in Local Regression Models.
Spatial Accuracy 2012, Brazil

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for explor-
ing Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software
63(17): 1-50

Examples

data(DubVoter)
require(RColorBrewer)

Function to find the global condition number (CN)
BKW_cn <- function (X) {

p <- dim(X)[2]
Xscale <- sweep(X, 2, sqrt(colSums(X^2)), "/")
Xsvd <- svd(Xscale)$d
cn <- Xsvd[1] / Xsvd[p]
cn

}
#
X <- cbind(1,Dub.voter@data[,3:10])
head(X)
CN.global <- BKW_cn(X)
CN.global
Not run:
gwr.lcr function with a global bandwidth to check that the global CN is found
gwr.lcr1 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=10000000000)
summary(gwr.lcr1SDFLocal_CN)

Find and map the local CNs from a basic GWR fit using the lcr-gwr function
#(note this is NOT the locally-compensated ridge GWR fit as would need to set
#lambda.adjust=TRUE and cn.thresh=30, say)

bw.lcr2 <- bw.gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, kernel="bisquare", adaptive=TRUE)
gwr.lcr2 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=bw.lcr2, kernel="bisquare", adaptive=TRUE)
if(require("RColorBrewer"))

spplot(gwr.lcr2$SDF,"Local_CN",col.regions=brewer.pal(9,"YlOrRd"),cuts=8,
main="Local CN")

End(Not run)

56 gwr.lcr.cv

gwr.lcr.cv Cross-validation score for a specified bandwidth for GWR-LCR model

Description

This function finds the cross-validation score for a specified bandwidth for GWR-LCR. It can be
used to construct the bandwidth function across all possible bandwidths and compared to that found
automatically.

Usage

gwr.lcr.cv(bw,X,Y,locs,kernel="bisquare",
lambda=0,lambda.adjust=FALSE,cn.thresh=NA,
adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

locs a two-column numeric array of observation coordinates

lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0,
which gives a basic GWR fit

lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR
without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised
GWR with a global ridge adjustment (i.e. lambda is user-specified as some
constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum
condition number. Here for locations with a condition number (for its local
design matrix) above this user-specified threshold, a local ridge parameter is
found

cn.thresh maximum value for condition number, commonly set between 20 and 30

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

gwr.lcr.cv.contrib 57

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.lcr.cv.contrib Cross-validation data at each observation location for the GWR-LCR
model

Description

This function finds the individual cross-validation score at each observation location, for a GWR-
LCR model, for a specified bandwidth. These data can be mapped to detect unusually high or low
cross-validations scores.

Usage

gwr.lcr.cv.contrib(bw,X,Y,locs,kernel="bisquare",
lambda=0,lambda.adjust=FALSE,cn.thresh=NA,
adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

Arguments

bw bandwidth used in the weighting function;fixed (distance) or adaptive band-
width(number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the
1st column

Y a column vector of the dependent data

locs a two-column numeric array of observation coordinates

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0,
which gives a basic GWR fit

58 gwr.mink.approach

lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR
without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised
GWR with a global ridge adjustment (i.e. lambda is user-specified as some
constant, other than 0 everywhere); if TRUE, use cn.tresh to set the maximum
condition number. Here for locations with a condition number (for its local
design matrix) above this user-specified threshold, a local ridge parameter is
found

cn.thresh maximum value for condition number, commonly set between 20 and 30

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation
score for the specified bandwidth.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.mink.approach Minkovski approach for GWR

Description

This function implements the Minkovski approach to select an ’optimum’ distance metric for cali-
brating a GWR model.

Usage

gwr.mink.approach(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC",adaptive=F,
kernel="bisquare", p.vals=seq(from=0.25, to=8, length.out=32), p.inf = T,

theta.vals = seq(from=0, to=0.5*pi, length.out=10), verbose=F,
nlower = 10)

gwr.mink.approach 59

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

criterion the criterion used for distance metric selection, AICc ("AICc") or cross-validation
("CV") score; default is "AICc"

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

bw.sel.approach

approach used to seclect an optimum bandwidth for each calibration if no band-
width (bw) is given; specified by CV for cross-validation approach or by AIC
corrected (AICc) approach

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

p.vals a collection of positive numbers used as the power of the Minkowski distance

p.inf if TRUE, Chebyshev distance is tried for model calibration, i.e. p is infinity

theta.vals a collection of values used as angles in radians to rotate the coordinate system

verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are
reported

nlower the minmum number of nearest neighbours if an adaptive kernel is used

Value

A list of:

diag.df a data frame with four columns (p, theta, bandwidth, AICc/CV), each row cor-
responds to a calibration

coefs.all a list class object including all the estimated coefficients

Note

The function “mink.approach” (in the early versions of GWmodel) has been renamed as “gwr.mink.approach”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

60 gwr.mink.matrixview

References

Lu, B, Charlton, M, Brunsdon, C & Harris, P(2016). The Minkowski approach for choosing the
distance metric in Geographically Weighted Regression. International Journal of Geographical In-
formation Science, 30(2): 351-368.

gwr.mink.matrixview Visualisation of the results from gwr.mink.approach

Description

This function visualises the AICc/CV results from the gwr.mink.approach.

Usage

gwr.mink.matrixview(diag.df, znm=colnames(diag.df)[4], criterion="AIC")

Arguments

diag.df the first part of a list object returned by gwr.mink.approach

znm the name of the forth column in diag.df

criterion the criterion used for distance metric selection in gwr.mink.approach

Note

The function “mink.matrixview” (in the early versions of GWmodel) has been renamed as “gwr.mink.matrixview”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Lu, B, Charlton, M, Brunsdon, C & Harris, P(2016). The Minkowski approach for choosing the
distance metric in Geographically Weighted Regression. International Journal of Geographical In-
formation Science, 30(2): 351-368.

gwr.mink.pval 61

gwr.mink.pval Select the values of p for the Minkowski approach for GWR

Description

These functions implement heuristics to select the values of p from two intervals: (0, 2] in a ’back-
ward’ direction and (2, Inf) in a ’forward’ direction.

Usage

gwr.mink.pval(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC",
adaptive=F, kernel="bisquare", left.interval=0.25,

right.interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)
gwr.mink.pval.forward(formula, data, bw, bw.sel.approach = "AIC",

adaptive=F, kernel="bisquare", p.max=Inf,p.min=2,
interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)

gwr.mink.pval.backward(formula, data, bw, bw.sel.approach = "AIC",
adaptive=F, kernel="bisquare", p.max=2,p.min=0.1,
interval=0.5,drop.tol=3, theta0=0,verbose=F,nlower = 10)

S3 method for class 'pvlas'
plot(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

criterion the criterion used for distance metric selection, AICc ("AICc") or cross-validation
("CV") score; default is "AICc"

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

bw.sel.approach

approach used to seclect an optimum bandwidth for each calibration if no band-
width (bw) is given; specified by CV for cross-validation approach or by AIC
corrected (AICc) approach

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

62 gwr.mixed

left.interval the step-size for searching the left interval (0, 2] in a ’backward’ direction
right.interval the step-size for searching the right interval (2, Inf) in a ’forward’ direction
p.max the maximum value of p
p.min the minimum value of p
interval the step-size for searching the given interval in a ’backward’ or ’forward’ direc-

tion
drop.tol an AICc difference threshold to define whether the values of p to be dropped or

not
theta0 a fixed rotation angle in radians
verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are

reported
nlower the minmum number of nearest neighbours if an adaptive kernel is used
x an object of class “pvlas”, returned by these functions
... arguments passed through (unused)

Value

A list of:

p.vals a vector of tried values of p
cretion.vals a vector of criterion values (AICc or CV) for tried values of p
p.dropped a vector of boolean to label whether a value of p to be dropped or not: TRUE

means to be dropped and FALSE means to be used for the Minkowski approach

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Lu, B, Charlton, M, Brunsdon, C & Harris, P(2016). The Minkowski approach for choosing the
distance metric in Geographically Weighted Regression. International Journal of Geographical In-
formation Science, 30(2): 351-368.

gwr.mixed Mixed GWR

Description

This function implements mixed (semiparametric) GWR

Usage

gwr.mixed(formula, data, regression.points, fixed.vars,
intercept.fixed=FALSE, bw, diagnostic=T, kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F,dMat, dMat.rp)

gwr.mixed 63

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

regression.points

a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygons-
DataFrame as defined in package sp

fixed.vars independent variables that appeared in the formula that are to be treated as global
intercept.fixed

logical, if TRUE the intercept will be treated as global

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

diagnostic logical, if TRUE the diagnostics will be calculated

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

dMat.rp a distance matrix when an individual set of regression points are adopted

Value

A list of class “mgwr”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

aic AICc value from this calibration

df.used effective degree of freedom

rss residual sum of squares

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with coeffi-
cient estimates in its "data" slot.

timings starting and ending time.

this.call the function call used.

64 gwr.model.selection

Note

For an alternative formulation of mixed GWR, please refer to GWR 4, which provides useful
tools for automatic bandwidth selection. This windows-based software also implements generalised
mixed GWR.

The mixed GWR in the latest release of GWmodel (2.0-0) has been revised by Dr. Fiona H Evans
from Centre for Digital Agriculture, Murdoch and Curtin Universities in terms of its computational
efficiency.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Brunsdon C, Fotheringham AS, Charlton ME (1999) Some notes on parametric signficance tests
for geographically weighted regression. Journal of Regional Science 39(3):497-524

Mei L-M, He S-Y, Fang K-T (2004) A note on the mixed geographically weighted regression model.
Journal of regional science 44(1):143-157

Mei L-M, Wang N, Zhang W-X (2006) Testing the importance of the explanatory variables in a
mixed geographically weighted regression model. Environment and Planning A 38:587-598

Nakaya T, Fotheringham AS, Brunsdon C, Charlton M (2005) Geographically Weighted Poisson
Regression for Disease Association Mapping, Statistics in Medicine 24: 2695-2717

Nakaya T et al. (2011) GWR4.0, http://gwr.nuim.ie/.

gwr.model.selection Model selection for GWR with a given set of independent variables

Description

This function selects one GWR model from many alternatives based on the AICc values.

Usage

gwr.model.selection(DeVar=NULL,InDeVars=NULL, data=list(),bw=NULL,approach="CV",
adaptive=F,kernel="bisquare",dMat=NULL,p=2, theta=0, longlat=F,
parallel.method=F,parallel.arg=NULL)

http://gwr.nuim.ie/

gwr.model.selection 65

Arguments

DeVar dependent variable

InDeVars a vector of independent variables for model selection

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

bw bandwidth used in the weighting function, possibly calculated by bw.gwr

approach specified by CV (cv) for cross validation approach or AIC (aic) for selecting
bandwidth by AICc values

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

parallel.method

Specified by ‘FALSE‘ for serial approach, by ‘"omp"‘ for multi-thread approach
implemented via OpenMP, by ‘"cluster"‘ for multi-process approach implemented
via ‘parallel‘ package, by ‘"cuda"‘ for parallel approach implemented via CUDA

parallel.arg Set the argument for parallel approach. If ‘parallel.method‘ is ‘FALSE‘, there is
no need to set its value. If ‘parallel.method‘ is ‘"omp"‘, its value is used to set
how many threads should be created (default by cores of *cores of CPU* - 1).
If ‘parallel.method‘ is ‘"cluster"‘, its value is used to set how many R session
should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method‘
is ‘"cuda"‘, its value is used to set how many samples is included in one group
during the calibration. This value should not be too big to avoid the overflow of
GPU memory.

Value

A list of:

model.list a list of all the tried GWR models consisted of formulas and variables.

GWR.df a data frame consited of four columns: bandwidth, AIC, AICc, RSS

66 gwr.model.sort

Note

The algorithm for selecting GWR models consists of the following four steps:

Step 1. Start by calibrating all the possible bivariate GWR models by sequentially regressing a
single independent variable against the dependent variable;

Step 2. Find the best performing model which produces the minimum AICc value, and permanently
include the corresponding independent variable in subsequent models;

Step 3. Sequentially introduce a variable from the remaining group of independent variables to
construct new models with the permanently included independent variables, and determine the next
permanently included variable from the best fitting model that has the minimum AICc value;

Step 4. Repeat step 3 until all the independent variables are permanently included in the model.

In this procedure, the independent variables are iteratively included into the model in a "forward"
direction. Note that there is a clear distinction between the different number of involved variables
in a selection step, which can be called model levels.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with
a non-Euclidean distance metric: a case study using hedonic house price data. International Journal
of Geographical Information Science 28(4): 660-681

See Also

gwr.model.view, gwr.model.sort

gwr.model.sort Sort the results of the GWR model selection function
gwr.model.selection.

Description

Sort the results from the GWR model selection function gwr.model.selection

Usage

gwr.model.sort(Sorting.list , numVars, ruler.vector)

Arguments

Sorting.list a list returned by function gwr.model.selection

numVars the number of independent variables involved in model selection

ruler.vector a numeric vector as the sorting basis

gwr.model.view 67

Note

The function sorts the results of model selection within individual levels.

The function “model.sort.gwr” (in the early versions of GWmodel) has been renamed as “gwr.model.sort”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

gwr.model.selection, gwr.model.view

gwr.model.view Visualise the GWR models from gwr.model.selection

Description

This function visualises the GWR models from gwr.model.selection.

Usage

gwr.model.view(DeVar, InDeVars, model.list)

Arguments

DeVar dependent variable

InDeVars a vector of independent variables for model selection

model.list a list of all GWR model tried in gwr.model.selection

Note

The function “model.view.gwr” (in the early versions of GWmodel) has been renamed as “gwr.model.view”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

gwr.model.selection, gwr.model.sort

68 gwr.montecarlo

Examples

Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
DeVar<-"PURCHASE"
InDeVars<-c("FLOORSZ","GARAGE1","BLDPWW1","BLDPOSTW")
model.sel<-gwr.model.selection(DeVar,InDeVars, data=londonhp,
kernel = "gaussian", dMat=DM,bw=5000)
model.list<-model.sel[[1]]
gwr.model.view(DeVar, InDeVars, model.list=model.list)

End(Not run)

gwr.montecarlo Monte Carlo (randomisation) test for significance of GWR parameter
variability

Description

This function implements a Monte Carlo (randomisation) test to test for significant (spatial) vari-
ability of a GWR model’s parameters or coefficients.

Usage

gwr.montecarlo(formula, data = list(),nsims=99, kernel="bisquare",adaptive=F, bw,
p=2, theta=0, longlat=F,dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame

as defined in package sp, or a sf object defined in package sf
nsims the number of randomisations
kernel function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

bw bandwidth used in the weighting function, possibly calculated by bw.gwr

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

gwr.multiscale 69

Value

pmat A vector containing p-values for all the GWR parameters

Note

The function “montecarlo.gwr” (in the early versions of GWmodel) has been renamed as “gwr.montecarlo”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Brunsdon C, Fotheringham AS, Charlton ME (1998) Geographically weighted regression - mod-
elling spatial non-stationarity. Journal of the Royal Statistical Society, Series D-The Statistician
47(3):431-443

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Charlton, M, Fotheringham, S, and Brunsdon, C (2007), GWR3.0.

Examples

Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
bw<-bw.gwr(PURCHASE~FLOORSZ,data=londonhp,dMat=DM, kernel="gaussian")
#See any difference in the next two commands and why?
res.mont1<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp,dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=3000)
res.mont2<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp,dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=300000000000)

End(Not run)

gwr.multiscale Multiscale GWR

Description

This function implements multiscale GWR to detect variations in regression relationships across
different spatial scales. This function can not only find a different bandwidth for each relationship
but also (and simultaneously) find a different distance metric for each relationship (if required to do
so).

70 gwr.multiscale

Usage

gwr.multiscale(formula, data, kernel = "bisquare", adaptive = FALSE,
criterion = "dCVR", max.iterations = 2000, threshold =
1e-05, dMats, var.dMat.indx, p.vals, theta.vals,

longlat = FALSE, bws0, bw.seled, approach = "AIC", bws.thresholds,
bws.reOpts = 5, verbose = F,
hatmatrix = T, predictor.centered = rep(T,
length(bws0) - 1), nlower = 10, parallel.method = F,
parallel.arg = NULL, force.armadillo = F)

S3 method for class 'multiscalegwr'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

criterion criterion for determining the convergence of the back-fitting procedure, could be
"CVR" or "dCVR", which corespond to the changing value of RSS (CVR) and
the differential version (dCVR), respectively; and "dCVR" is used as default.

max.iterations maximum number of iterations in the back-fitting procedure

threshold threshold value to terminate the back-fitting iterations

dMats a list of distance matrices used for estimating each specific parameter

var.dMat.indx index corresponds to a specific distance matrix for each exploratory variable, if
dMats is provided

p.vals a collection of positive numbers used as the power of the Minkowski distance

theta.vals a collection of values used as angles in radians to rotate the coordinate system

longlat if TRUE, great circle distances will be calculated

bws0 a vector of initializing bandwidths for the back-fitting procedure, of which the
length should equal to the number of paramters if specified

bw.seled a vector of boolean variables to determine whether the corresponding bandwidth
should be re-selected or not: if TRUE, the corresponding bandwiths for the
specific parameters are supposed to be given in bws0; otherwise, the bandwidths
for the specific parameters will be selected within the back-fitting iterations.

gwr.multiscale 71

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-
proach

bws.thresholds threshold values to define whether the bandwidth for a specific parameter has
converged or not

bws.reOpts the number times of continually optimizing each parameter-specific bandwidth
even though it meets the criterion of convergence, for avoiding sub-optimal
choice due to illusion of convergence;

verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are
reported

predictor.centered

a logical vector of length equalling to the number of predictors, and note inter-
cept is not included; if the element is TRUE, the corresponding predictor will be
centered.

hatmatrix if TRUE the hatmatrix for the whole model will be calculated, and AICc, adjusted-
R2 values will be returned accordingly.

nlower the minmum number of nearest neighbours if an adaptive kernel is used
parallel.method

FALSE as default, and the calibration will be conducted traditionally via the se-
rial technique, "omp": multi-thread technique with the OpenMP API, "cluster":
multi-process technique with the parallel package, "cuda": parallel computing
technique with CUDA

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-
lel.method is "omp", parallel.arg refers to the number of threads used, and its
default value is the number of cores - 1; if parallel.method is "cluster", par-
allel.arg refers to the number of R sessions used, and its default value is the
number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the num-
ber of calibrations included in each group, but note a too large value may cause
the overflow of GPU memory.

force.armadillo

if TRUE, use the original RcppArmadillo implementation instead of the new
RcppEigen implementation. Only matters if parallel.method = F or parallel.method
= "omp".

x an object of class “multiscalegwr”, returned by the function gwr.multiscale

... arguments passed through (unused)

Value

A list of class “psdmgwr”:

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with data
locations,coefficient estimates from the PSDM GWR model,predicted y val-
ues,residuals, coefficient standard errors and t-values in its "data" slot.

GW.arguments a list class object including the model fitting parameters for generating the report
file

72 gwr.multiscale

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

bws.vars bandwidths used for all the parameters within the back-fitting procedure

timings starting and ending time.

this.call the function call used.

Note

This function implements multiscale GWR to detect variations in regression relationships across
different spatial scales. This function can not only find a different bandwidth for each relationship,
but also (and simultaneously), find a different distance metric for each relationship (i.e. Parameter-
Specific Distance Metric GWR, i.e. PSDM GWR). Note that multiscale GWR (MGWR) has also
been referred to as flexible bandwidth GWR (FBGWR) and conditional GWR (CGWR) in the lit-
erature. All are one and the same model, but where PSDM-GWR additionally provides a different
distance metric option for each relationship. An MGWR model is calibrated if no “dMats” and
“p.vals” are specified; a mixed GWR model will be calibrated if an infinite bandwidth and an-
other regular bandwidth are used for estimating the global and local parameters (again when no
“dMats” and “p.vals” are specified). In other words, the gwr.multiscale function is specified with
Euclidean distances in both cases. Note that the results from this function for a mixed GWR model
and gwr.mixed might be different, as a back-fitting algorithm is used in gwr.multiscale, while an
approximating algorithm is applied in gwr.mixed. The gwr.mixed function performs better in com-
putational efficiency, but poorer in prediction accuracy.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Yang, W. (2014). An Extension of Geographically Weighted Regression with Flexible Bandwidths.
St Andrews, St Andrews, UK.

Lu, B., Harris, P., Charlton, M., & Brunsdon, C. (2015). Calibrating a Geographically Weighted
Regression Model with Parameter-specific Distance Metrics. Procedia Environmental Sciences, 26,
109-114.

Lu, B., Brunsdon, C., Charlton, M., & Harris, P. (2017). Geographically weighted regression with
parameter-specific distance metrics. International Journal of Geographical Information Science, 31,
982-998.

Fotheringham, A. S., Yang, W. & Kang, W. (2017). Multiscale Geographically Weighted Regres-
sion (MGWR). Annals of the American Association of Geographers, 107, 1247-1265.

Yu, H., A. S. Fotheringham, Z. Li, T. Oshan, W. Kang & L. J. Wolf. 2019. Inference in multiscale
geographically weighted regression. Geographical Analysis(In press).

Leong, Y.Y., & Yue, J.C. (2017). A modification to geographically weighted regression. Interna-
tional Journal of Health Geographics, 16 (1), 11.

Lu, B., Yang, W. Ge, Y. & Harris, P. (2018). Improvements to the calibration of a geographically
weighted regression with parameter-specific distance metrics and bandwidths. Forthcoming Com-
puters, Environment and Urban Systems.

gwr.predict 73

Wolf, L.J, Oshan, T.M, Fotheringham, A.S. (2018). Single and multiscale models of process spatial
heterogeneity. Geographical Analysis, 50(3): 223-246.

Murakami, D., Lu, B., Harris, P., Brunsdon, C., Charlton, M., Nakaya, T., & Griffith, D. (2019)
The importance of scale in spatially varying coefficient modelling. Forthcoming Annals of the
Association of American Geographers.

Examples

data(LondonHP)
EUDM <- gw.dist(coordinates(londonhp))
#No bandwidth is selected, and bws0 values are used
Not run:
###Similar as the basic GWR
res1<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR",kernel="gaussian",
adaptive=T, bws0=c(100, 100, 100),bw.seled=rep(T, 3), dMats=list(EUDM,EUDM,EUDM))
#FBGWR
res2<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR",kernel="gaussian",
adaptive=T, bws0=c(100, 100, 100), dMats=list(EUDM,EUDM,EUDM))
#Mixed GWR
res3<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, bws0=c(Inf, 100, 100, Inf),

bw.seled=rep(T, 3),kernel="gaussian", dMats=list(EUDM,EUDM,EUDM))
#PSDM GWR
res4<- gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, kernel="gaussian", p.vals=c(1,2,3))

End(Not run)

gwr.predict GWR used as a spatial predictor

Description

This function implements basic GWR as a spatial predictor. The GWR prediction function is able
to do leave-out-one predictions (when the observation locations are used for prediction) and predic-
tions at a set-aside data set (when unobserved locations are used for prediction).

Usage

gwr.predict(formula, data, predictdata, bw, kernel="bisquare",adaptive=FALSE, p=2,
theta=0, longlat=F,dMat1, dMat2)

S3 method for class 'gwrm.pred'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

74 gwr.predict

predictdata a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat1 a pre-specified distance matrix between data points and prediction locations; if
not given, it will be calculated by the given parameters

dMat2 a pre-specified sysmetric distance matrix between data points; if not given, it
will be calculated by the given parameters

x an object of class “gwrm.pred”, returned by the function gwr.predict

... arguments passed through (unused)

Value

A list of class “gwrm.pred”:

GW.arguments a list of geographically weighted arguments

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) with GWR coefficients,
predictions and prediction variances in its "data" slot.

this.call the function call used.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Harris P, Fotheringham AS, Crespo R, Charlton M (2010) The use of geographically weighted
regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical
Geosciences 42:657-680

Harris P, Juggins S (2011) Estimating freshwater critical load exceedance data for Great Britain
using space-varying relationship models. Mathematical Geosciences 43: 265-292

gwr.robust 75

Harris P, Brunsdon C, Fotheringham AS (2011) Links, comparisons and extensions of the geo-
graphically weighted regression model when used as a spatial predictor. Stochastic Environmental
Research and Risk Assessment 25:123-138

Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for explor-
ing Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software,
63(17):1-50

Examples

Not run:
data(LondonHP)
gwr.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=2000,kernel = "gaussian")
gwr.pred
#########Global OLS regression results and comparison with gstat functions
if(require("gstat"))
{

mlr.g <- gstat(id = "xx1", formula = PURCHASE~FLOORSZ,data=londonhp)
mlr.g1 <- predict(mlr.g, newdata = londonhp, BLUE = TRUE)
mlr.g1

}
############
ols.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=100000000000000000000000)
ols.pred$SDF

End(Not run)

gwr.robust Robust GWR model

Description

This function implements two robust GWR models.

Usage

gwr.robust(formula, data, bw,filtered=FALSE, kernel = "bisquare", adaptive = FALSE, p = 2,
theta = 0, longlat = F, dMat, F123.test = F, maxiter=20,cut.filter= 3,cut1=2,

cut2=3,delta=1.0e-5, parallel.method = FALSE, parallel.arg = NULL)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

bw bandwidth used in the weighting function, possibly calculated by bw.gwr;fixed
(distance) or adaptive bandwidth(number of nearest neighbours)

filtered default FALSE, the automatic approach is used, if TRUE the filtered data ap-
proach is employed, as that described in Fotheringham et al. (2002 p.73-80)

76 gwr.robust

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

F123.test default FALSE, otherwise calculate F-test results (Leung et al. 2000)

maxiter default 20, maximum number of iterations for the automatic approach

cut.filter If filtered is TRUE, it will be used as the residual cutoff for filtering data; default
cutoff is 3

cut1 default 2, first cutoff for the residual weighting function. wr(e)=1 if |e|<=cut1*sigma

cut2 default 3, second cutoff for the residual weighting function. wr(e)=(1-(|e|-2)^2)^2
if cut1*sigma<|e|<cut2*sigma, and wr(e)=0 if |e|>=cut2*sigma; cut 1 and cut2
refer to the automatic approach

delta default 1.0e-5, tolerance of the iterative algorithm
parallel.method

FALSE as default, and the calibration will be conducted traditionally via the se-
rial technique, "omp": multi-thread technique with the OpenMP API, "cluster":
multi-process technique with the parallel package, "cuda": parallel computing
technique with CUDA

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-
lel.method is "omp", parallel.arg refers to the number of threads used, and its
default value is the number of cores - 1; if parallel.method is "cluster", par-
allel.arg refers to the number of R sessions used, and its default value is the
number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the num-
ber of calibrations included in each group, but note a too large value may cause
the overflow of GPU memory.

Value

A list of class “gwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

gwr.robust 77

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with fit.points,GWR
coefficient estimates, y value,predicted values, coefficient standard errors and t-
values in its "data" slot. Notably, E_weigts will be also included in the output
SDF which represents the residual weighting when automatic approach is used;
When the filtered approach is used, E_weight is a vector consisted of 0 and 1,
where 0 means outlier to be excluded from calibration.

timings starting and ending time.

this.call the function call used.

Ftest.res results of Leung’s F tests when F123.test is TRUE.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Harris P, Fotheringham AS, Juggins S (2010) Robust geographically weighed regression: a tech-
nique for quantifying spatial relationships between freshwater acidification critical loads and catch-
ment attributes. Annals of the Association of American Geographers 100(2): 286-306

Examples

Not run:
data(DubVoter)
bw.a <- bw.gwr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64,
data=Dub.voter,approach="AICc",kernel="bisquare",adaptive=TRUE)
bw.a
gwr.res <- gwr.basic(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64,
data=Dub.voter,bw=bw.a,kernel="bisquare",adaptive=TRUE,F123.test=TRUE)
print(gwr.res)

Map of the estimated coefficients for LowEduc
names(gwr.res$SDF)
if(require("RColorBrewer"))
{

mypalette<-brewer.pal(6,"Spectral")
X11(width=10,height=12)
spplot(gwr.res$SDF,"LowEduc",key.space = "right",
col.regions=mypalette,at=c(-8,-6,-4,-2,0,2,4),
main="Basic GW regression coefficient estimates for LowEduc")

}
Robust GW regression and map of the estimated coefficients for LowEduc
rgwr.res <- gwr.robust(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter,bw=bw.a,kernel="bisquare",
adaptive=TRUE,F123.test=TRUE)

78 gwr.scalable

print(rgwr.res)
if(require("RColorBrewer"))
{

X11(width=10,height=12)
spplot(rgwr.res$SDF, "LowEduc", key.space = "right",
col.regions=mypalette,at=c(-8,-6,-4,-2,0,2,4),
main="Robust GW regression coefficient estimates for LowEduc")

}

End(Not run)

gwr.scalable Scalable GWR

Description

This function implements Scalable GWR for large dataset

Usage

gwr.scalable(formula, data, bw.adapt=100, kernel = "gaussian", polynomial = 4,
p = 2, theta = 0, longlat = F, dMat)

S3 method for class 'scgwrm'
print(x, ...)

Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

bw.adapt adaptive bandwidth (i.e. number of nearest neighbours) used for geographically
weighting

kernel Kernel function to calculate the spatial weights, but note only two continuous
functions available:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);

polynomial Degree of the polyunomial to approximate the kernel function, and default is 4.

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “scgwrm”, returned by the function gwr.scalable

... arguments passed through (unused)

gwr.t.adjust 79

Value

A list of class “scgwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report
file

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

SDF a SpatialPointsDataFrame (may be gridded), or SpatialPolygonsDataFrame ob-
ject (see package “sp”), or sf object (see package “sf”) integrated with fit.points,GWR
coefficient estimates, y value,predicted values, coefficient standard errors and t-
values in its "data" slot.

timings starting and ending time.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Murakami, D., N. Tsutsumida, T. Yoshida, T. Nakaya & B. Lu (2019) Scalable GWR: A linear-time
algorithm for large-scale geographically weighted regression with polynomial kernels. arXiv:1905.00266.

Examples

Not run:
require(spData)
data(boston)
boston <- boston.c
coordinates(boston) <- ~ LON + LAT
res <- gwr.scalable(formula = MEDV ~ CRIM + ZN + INDUS + CHAS + AGE, data = boston, bw.adapt = 100)
res

End(Not run)

gwr.t.adjust Adjust p-values for multiple hypothesis tests in basic GWR

Description

Given a set of p-values from the pseudo t-tests of basic GWR outputs, this function returns ad-
justed p-values using: (a) Bonferroni, (b) Benjamini-Hochberg, (c) Benjamini-Yekutieli and (d)
Fotheringham-Byrne procedures.

Usage

gwr.t.adjust(gwm.Obj)

80 gwr.write

Arguments

gwm.Obj an object of class “gwrm”, returned by the function gwr.basic

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Byrne, G., Charlton, M. and Fotheringham, S., 2009. Multiple dependent hypothesis tests in geo-
graphically weighted regression. In: Lees, B. and Laffan, S. eds. 10th International conference on
geocomputation. Sydney.

gwr.write Write the GWR results into files

Description

This function writes the calibration result of function gwr.basic to a text file and shape files

Usage

gwr.write(x,fn="GWRresults")
gwr.write.shp(x,fn="GWRresults")

Arguments

x an object of class “gwrm”, returned by the function gwr.basic

fn file name for the written results, by default the output files can be found in the
working directory, “GWRresults.txt”, “GWRresults(.shp, .shx, .dbf)”

Note

The projection file is missing for the writen shapefiles.

The functions “writeGWR” and “writeGWR.shp” (in the early versions of GWmodel) have been
renamed respectively as “gwr.write” and “gwr.write.shp”, while the old names are still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwss 81

gwss Geographically weighted summary statistics (GWSS)

Description

This function calculates basic and robust GWSS. This includes geographically weighted means,
standard deviations and skew. Robust alternatives include geographically weighted medians, inter-
quartile ranges and quantile imbalances. This function also calculates basic geographically weighted
covariances together with basic and robust geographically weighted correlations.

Usage

gwss(data, summary.locat,vars,kernel="bisquare",adaptive=FALSE, bw,p=2,
theta=0, longlat=F,dMat,quantile=FALSE)

S3 method for class 'gwss'
print(x, ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp

summary.locat a Spatial*DataFrame object for providing summary locations, i.e. SpatialPoints-
DataFrame or SpatialPolygonsDataFrame as defined in package sp

vars a vector of variable names to be summarized

bw bandwidth used in the weighting function

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

quantile if TRUE, median, interquartile range, quantile imbalance will be calculated

x an object of class “gwss”, returned by the function gwss

... arguments passed through (unused)

82 gwss

Value

A list of class “lss”:

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame ob-
ject (see package “sp”) with local means,local standard deviations,local vari-
ance, local skew,local coefficients of variation, local covariances, local cor-
relations (Pearson’s), local correlations (Spearman’s), local medians, local in-
terquartile ranges, local quantile imbalances and coordinates.

... other information for reporting

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Brunsdon C, Fotheringham AS, Charlton ME (2002) Geographically weighted summary statistics -
a framework for localised exploratory data analysis. Computers, Environment and Urban Systems
26:501-524

Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2014) Geographically weighted meth-
ods and their use in network re-designs for environmental monitoring. Stochastic Environmental
Research and Risk Assessment 28: 1869-1887

Examples

Not run:
data(EWHP)
data(EWOutline)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
localstats1 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"), bw = 50000)
head(data.frame(localstats1$SDF))
localstats1
##A function for mapping data
if(require("RColorBrewer"))
{

quick.map <- function(spdf,var,legend.title,main.title)
{

x <- spdf@data[,var]
cut.vals <- pretty(x)
x.cut <- cut(x,cut.vals)
cut.levels <- levels(x.cut)
cut.band <- match(x.cut,cut.levels)
colors <- brewer.pal(length(cut.levels), "YlOrRd")
colors <- rev(colors)
par(mar=c(1,1,1,1))
plot(ewoutline,col="olivedrab",bg="lightblue1")
title(main.title)

gwss.montecarlo 83

plot(spdf,add=TRUE,col=colors[cut.band],pch=16)
legend("topleft",cut.levels,col=colors,pch=16,bty="n",title=legend.title)

}
quick.map(localstats1$SDF, "PurPrice_LM", "1000's Uk Pounds",
"Geographically Weighted Mean")
par(mfrow = c(1, 2))
quick.map(localstats1$SDF, "PurPrice_LSKe", "Skewness Level", "Local Skewness")
quick.map(localstats1$SDF, "PurPrice_LSD", "1000's Pounds", "Local Standard Deviation")
#Exploring Non-Stationarity of Relationships
quick.map(localstats1$SDF, "Corr_PurPrice.FlrArea", expression(rho),
"Geographically Weighted Pearson Correlation")
#Robust, Quantile Based Local Summary Statistics
localstats2 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"),
bw = 50000, quantile = TRUE)
quick.map(localstats2$SDF, "PurPrice_Median", "1000 UK Pounds",
"Geographically Weighted Median House Price")

}

End(Not run)

gwss.montecarlo Monte Carlo (randomisation) test for gwss

Description

This function implements Monte Carlo (randomisation) tests for the GW summary statistics found
in gwss.

Usage

gwss.montecarlo(data, vars, kernel = "bisquare",
adaptive = FALSE, bw, p = 2, theta = 0, longlat = F,
dMat, quantile=FALSE,nsim=99)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
as defined in package sp, or a sf object defined in package sf

vars a vector of variable names to be summarized

bw bandwidth used in the weighting function

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

84 gwss.montecarlo

adaptive if TRUE calulate the adaptive kernel, and bw correspond to the number of near-
est neighbours, default is FALSE.

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

quantile if TRUE, median, interquartile range, quantile imbalance will be calculated

nsim default 99, the number of randomisations

Value

test probability of the test statistics of the GW summary statistics; if p<0.025 or if
p>0.975 then the true local summary statistics can be said to be significantly
different (at the 0.95 level) to such a local summary statistics found by chance.

Note

The function “montecarlo.gwss” (in the early versions of GWmodel) has been renamed as “gwss.montecarlo”,
while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham S, Brunsdon, C, and Charlton, M (2002), Geographically Weighted Regression: The
Analysis of Spatially Varying Relationships, Chichester: Wiley.

Brunsdon C, Fotheringham AS, Charlton ME (2002) Geographically weighted summary statistics -
a framework for localised exploratory data analysis. Computers, Environment and Urban Systems
26:501-524

Harris P, Brunsdon C (2010) Exploring spatial variation and spatial relationships in a freshwater
acidification critical load data set for Great Britain using geographically weighted summary statis-
tics. Computers & Geosciences 36:54-70

Examples

Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
test.lss<-gwss.montecarlo(data=londonhp, vars=c("PURCHASE","FLOORSZ"), bw=5000,

kernel ="gaussian", dMat=DM,nsim=99)
test.lss

End(Not run)

LondonBorough 85

LondonBorough London boroughs data

Description

Outline (SpatialPolygonsDataFrame) of London boroughs for the LondonHP data.

Usage

data(LondonBorough)

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

LondonHP London house price data set (SpatialPointsDataFrame)

Description

A house price data set with 18 hedonic variables for London in 2001.

Usage

data(LondonHP)

Format

A SpatialPointsDataFrame object (proj4string set to "+init=epsg:27700 +datum=OSGB36").

The "data" slot is a data frame with 372 observations on the following 21 variables.

X a numeric vector, X coordinate

Y a numeric vector, Y coordinate

PURCHASE a numeric vector, the purchase price of the property

FLOORSZ a numeric vector, floor area of the property in square metres

TYPEDETCH a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0
otherwise

TPSEMIDTCH a numeric vector, 1 if the property is semi detached, 0 otherwise

TYPETRRD a numeric vector, 1 if the property is in a terrace of similar houses (commonly re-
ferred to as a ’row house’ in the USA), 0 otherwise

TYPEBNGLW a numeric vector, if the property is a bungalow (i.e. it has only one floor), 0
otherwise

TYPEFLAT a numeric vector, if the property is a flat (or ’apartment’ in the USA), 0 otherwise

86 st.dist

BLDPWW1 a numeric vector, 1 if the property was built prior to 1914, 0 otherwise

BLDPOSTW a numeric vector, 1 if the property was built between 1940 and 1959, 0 otherwise

BLD60S a numeric vector, 1 if the property was built between 1960 and 1969, 0 otherwise

BLD70S a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise

BLD80S a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise

BLD90S a numeric vector, 1 if the property was built between 1990 and 2000, 0 otherwise

BATH2 a numeric vector, 1 if the property has more than 2 bathrooms, 0 otherwise

GARAGE a numeric vector,1 if the house has a garage, 0 otherwise

CENTHEAT a numeric vector, 1 if the house has central heating, 0 otherwise

BEDS2 a numeric vector, 1 if the property has more than 2 bedrooms, 0 otherwise

UNEMPLOY a numeric vector, the rate of unemployment in the census ward in which the house
is located

PROF a numeric vector, the proportion of the workforce in professional or managerial occupations
in the census ward in which the house is located

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E. (2002), Geographically Weighted Regres-
sion: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Lu, B, Charlton, M, Harris, P, Fotheringham, AS (2014) Geographically weighted regression with
a non-Euclidean distance metric: a case study using hedonic house price data. International Journal
of Geographical Information Science 28(4): 660-681

Examples

data(LondonHP)
data(LondonBorough)
ls()
plot(londonborough)
plot(londonhp, add=TRUE)

st.dist Spatio-temporal distance matrix calculation

Description

Calculate a distance vector(matrix) between any GW model calibration point(s) and the data points.

st.dist 87

Usage

st.dist(dp.locat, rp.locat, obs.tv, reg.tv,focus=0, p=2,
theta=0, longlat=F,lamda=0.05,t.units = "auto",
ksi=0, s.dMat,t.dMat)

Arguments

dp.locat a numeric matrix of two columns giving the coordinates of the data points

rp.locat a numeric matrix of two columns giving the coordinates of the GW model cali-
bration points

obs.tv a vector of time tags for each observation, which could be numeric or of POSIXlt
class

reg.tv a vector of time tags for each regression location, which could be numeric or of
POSIXlt class

focus an integer, indexing to the current GW model point, if focus=0, all the distances
between all the GW model calibration points and data points will be calculated
and a distance matrix will be returned; if 0<focus<length(rp.locat), then the dis-
tances between the ’focus’th GW model points and data points will be calculated
and a distance vector will be returned

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

lamda an parameter between 0 and 1 for calculating spatio-temporal distance

t.units character string to define time unit

ksi an parameter between 0 and PI for calculating spatio-temporal distance, see de-
tails in Wu et al. (2014)

s.dMat a predifined spatial distance matrix for calculating spatio-temporal distances

t.dMat a predifined temporal distance matrix for calculating spatio-temporal distances

Value

Returns a numeric spatio-temporal distance matrix or vector; or a matrix with its rows correspond-
ing to the observations and its columns corresponds to the calibration points.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

88 USelect

USelect Results of the 2004 US presidential election at the county level (Spa-
tialPolygonsDataFrame)

Description

Results of the 2004 US presidential election at the county level, together with five socio-economic
(census) variables. This data can be used with GW Discriminant Analysis.

Usage

data(USelect)

Format

A SpatialPolygonsDataFrame with 3111 electoral divisions on the following 6 variables.

winner Categorical variable with three classes: i) Bush, ii) Kerry and iii) Borderline (supporting
ratio for a candidate ranges from 0.45 to 0.55)

unemploy percentage unemployed

pctcoled percentage of adults over 25 with 4 or more years of college education

PEROVER65 percentage of persons over the age of 65

pcturban percentage urban

WHITE percentage white

References

Robinson, A. C. (2013). Geovisualization of the 2004 Presidential Election. In: NATIONAL IN-
STITUTES OF HEALTH, P. S. U. (ed.). Penn State.

Foley, P. & Demsar, U. (2012). Using geovisual analytics to compare the performance of geograph-
ically weighted discriminant analysis versus its global counterpart, linear discriminant analysis.
International Journal of Geographical Information Science, 27, 633-661.

Examples

data(USelect)
ls()

Index

∗ Cross-validation score
ggwr.cv, 20

∗ Dublin Voter turnout
DubVoter, 14

∗ England-Wales outline
EWOutline, 16

∗ GTWR
bw.gtwr, 6
gtwr, 22

∗ GW tools
gw.dist, 24
gw.pcplot, 26
gw.weight, 27

∗ GWDA
bw.gwda, 7
gwda, 28

∗ GWPCA
bw.gwpca, 9
gwpca, 30
gwpca.check.components, 33
gwpca.cv, 34
gwpca.cv.contrib, 35
gwpca.glyph.plot, 36
gwpca.montecarlo.1, 36
gwpca.montecarlo.2, 38

∗ GWPCP
gw.pcplot, 26

∗ GWR-LCR
bw.gwr.lcr, 11
gwr.lcr, 53
gwr.lcr.cv, 56
gwr.lcr.cv.contrib, 57

∗ GWR
bw.gwr, 10
gwr.basic, 40
gwr.bootstrap, 44
gwr.collin.diagno, 48
gwr.cv, 49
gwr.cv.contrib, 50

gwr.mink.approach, 58
gwr.mink.matrixview, 60
gwr.mink.pval, 61
gwr.model.selection, 64
gwr.model.sort, 66
gwr.model.view, 67
gwr.montecarlo, 68
gwr.predict, 73
gwr.t.adjust, 79
gwr.write, 80

∗ GWSS
bw.gwss.average, 13
gwss, 81
gwss.montecarlo, 83

∗ Georgia census
Georgia, 16

∗ Georgia counties
GeorgiaCounties, 17

∗ Heteroskedastic GWR
gwr.hetero, 52

∗ London Boroughs
LondonBorough, 85

∗ Minkowski approach view
gwr.mink.matrixview, 60

∗ Minkowski approach
gwr.mink.approach, 58
gwr.mink.pval, 61

∗ Monte Carlo test
gwr.montecarlo, 68

∗ Monte Carlo
gwpca.montecarlo.1, 36
gwpca.montecarlo.2, 38
gwss.montecarlo, 83

∗ PSDM GWR
gwr.multiscale, 69

∗ Scalable GWR
gwr.scalable, 78

∗ US presidential election
USelect, 88

89

90 INDEX

∗ bandwidth selection
bw.ggwr, 4
bw.gtwr, 6
bw.gwda, 7
bw.gwpca, 9
bw.gwr, 10
bw.gwr.lcr, 11
bw.gwss.average, 13

∗ bootstrap method
gwr.bootstrap, 44

∗ collinearity diagnostics
gwr.collin.diagno, 48

∗ cross-validation score
gwpca.cv, 34
gwr.cv, 49
gwr.lcr.cv, 56

∗ data
DubVoter, 14
EWHP, 15
EWOutline, 16
Georgia, 16
GeorgiaCounties, 17
LondonBorough, 85
LondonHP, 85
USelect, 88

∗ distance
gw.dist, 24

∗ generalised GWR
bw.ggwr, 4
ggwr.basic, 18
ggwr.cv, 20
ggwr.cv.contrib, 21

∗ glyph plot interaction
gwpca.check.components, 33

∗ glyph plot
gwpca.glyph.plot, 36

∗ gtwr
st.dist, 86

∗ house price
EWHP, 15
LondonHP, 85

∗ mixed GWR
gwr.mixed, 62

∗ model selection
gwr.model.selection, 64
gwr.model.sort, 66
gwr.model.view, 67

∗ multiscale GWR

gwr.mixed, 62
gwr.multiscale, 69

∗ p-values adjustment
gwr.t.adjust, 79

∗ package
GWmodel-package, 3

∗ point-wise cross-validation scores
gwpca.cv.contrib, 35
gwr.cv.contrib, 50
gwr.lcr.cv.contrib, 57

∗ point-wise cross-validation score
ggwr.cv.contrib, 21

∗ predictor
gwr.predict, 73

∗ results writing
gwr.write, 80

∗ robust GWR
gwr.robust, 75

∗ weight
gw.weight, 27

AICc (gwr.model.selection), 64
AICc1 (gwr.scalable), 78
AICc_rss (gwr.model.selection), 64
AICc_rss1 (bw.gwr), 10

bias.bs (gwr.bootstrap), 44
bw.ggwr, 4
bw.gtwr, 6
bw.gwda, 7
bw.gwpca, 9, 29, 30, 37
bw.gwr, 10, 23, 27, 40, 52, 59, 61, 63, 65, 68,

74, 75
bw.gwr.lcr, 11
bw.gwr1 (gwr.mink.approach), 58
bw.gwr3 (gwr.bootstrap), 44
bw.gwss.average, 13

check.components
(gwpca.check.components), 33

ci.bs (gwr.bootstrap), 44
Ci_mat (gwr.basic), 40
confusion.matrix (gwda), 28

dist, 25
Dub.voter (DubVoter), 14
DubVoter, 14

e_vec (bw.gwr), 10

INDEX 91

ehat (gwr.model.selection), 64
EWHP, 15, 16
ewhp (EWHP), 15
EWOutline, 16
ewoutline (EWOutline), 16
extract.mat (gwr.model.selection), 64

F1234.test (gwr.basic), 40
fitted (bw.gwr), 10
formula, 5–7, 10, 12, 18, 23, 28, 40, 45, 46,

48, 52, 53, 59, 61, 63, 68, 70, 73, 75,
78

Gedu.counties (GeorgiaCounties), 17
Gedu.df (Georgia), 16
Generate.formula (gwr.model.selection),

64
generate.lm.data (gwr.bootstrap), 44
Georgia, 16
GeorgiaCounties, 17
ggwr.aic (bw.ggwr), 4
ggwr.basic, 18
ggwr.cv, 20
ggwr.cv.contrib, 21
glm, 19
glyph.plot (gwpca.glyph.plot), 36
gold (bw.gwr), 10
grouping.xy (gwda), 28
gtwr, 22
gtwr.aic (bw.gtwr), 6
gtwr.cv (bw.gtwr), 6
gw.average.cv (bw.gwss.average), 13
gw.dist, 5, 8, 9, 11–13, 19, 21, 22, 24, 26, 29,

31, 34, 35, 37, 39, 40, 45, 48, 50–52,
54, 57, 58, 63, 65, 68, 76, 78, 81, 84

gw.fitted (gwr.model.selection), 64
gw.mean.cv (bw.gwss.average), 13
gw.median.cv (bw.gwss.average), 13
gw.pcplot, 26
gw.reg1 (gwr.predict), 73
gw.weight, 27
gw_BIC (bw.gwr), 10
gw_cv_all (bw.gwr), 10
gw_cv_all_cuda (bw.gwr), 10
gw_cv_all_omp (gwr.basic), 40
gw_dist (gw.dist), 24
gw_fitted (gwr.multiscale), 69
gw_local_r2 (gwr.basic), 40
gw_reg (gwr.basic), 40

gw_reg_1 (gwr.basic), 40
gw_reg_2 (gwr.basic), 40
gw_reg_all (gwr.basic), 40
gw_reg_all_cuda (gwr.basic), 40
gw_reg_all_omp (gwr.basic), 40
gw_weight (gw.weight), 27
gw_weight_mat (gw.weight), 27
gw_weight_vec (gw.weight), 27
gwda, 28, 29
GWmodel (GWmodel-package), 3
GWmodel-package, 3
gwpca, 30, 31, 33, 36
gwpca.check.components, 33
gwpca.cv, 34
gwpca.cv.contrib, 35
gwpca.glyph.plot, 33, 36
gwpca.montecarlo.1, 36, 37
gwpca.montecarlo.2, 37, 38
gwr.aic (bw.gwr), 10
gwr.aic1 (gwr.mink.approach), 58
gwr.backfit (gwr.multiscale), 69
gwr.basic, 40, 41, 80
gwr.binomial (ggwr.basic), 18
gwr.bootstrap, 44, 45
gwr.collin.diagno, 48
gwr.cv, 49
gwr.cv.contrib, 50
gwr.cv1 (gwr.mink.approach), 58
gwr.fitted (ggwr.basic), 18
gwr.generalised, 19
gwr.generalised (ggwr.basic), 18
gwr.hetero, 52
gwr.lcr, 11, 53, 54
gwr.lcr.cv, 56
gwr.lcr.cv.contrib, 57
gwr.mink.approach, 58, 60
gwr.mink.matrixview, 60
gwr.mink.pval, 61
gwr.mixed, 62, 72
gwr.model.selection, 64, 66, 67
gwr.model.sort, 66, 66, 67
gwr.model.view, 66, 67, 67
gwr.montecarlo, 68
gwr.multiscale, 69, 71, 72
gwr.poisson (ggwr.basic), 18
gwr.predict, 73, 74
gwr.q (gwr.mixed), 62
gwr.q2 (gwr.multiscale), 69

92 INDEX

gwr.robust, 75
gwr.scalable, 78, 78
gwr.t.adjust, 79
gwr.write, 80
gwr_diag (gwr.basic), 40
gwr_diag1 (gwr.scalable), 78
gwr_mixed_2 (gwr.mixed), 62
gwr_mixed_trace (gwr.mixed), 62
gwr_q (gwr.mixed), 62
gwrt.err (gwr.bootstrap), 44
gwrt.lag (gwr.bootstrap), 44
gwrt.mlr (gwr.bootstrap), 44
gwrt.sma (gwr.bootstrap), 44
gwrtvar (gwr.bootstrap), 44
gwss, 81, 81, 83
gwss.montecarlo, 83

list, 19, 70, 76
lm, 23, 41, 72, 76, 79
local.corr (gwss), 81
LondonBorough, 85
londonborough (LondonBorough), 85
LondonHP, 85, 85
londonhp (LondonHP), 85

mink.approach (gwr.mink.approach), 58
mink.matrixview (gwr.mink.matrixview),

60
model.selection.gwr

(gwr.model.selection), 64
model.sort.gwr (gwr.model.sort), 66
model.view.gwr (gwr.model.view), 67
montecarlo.gwpca.1

(gwpca.montecarlo.1), 36
montecarlo.gwpca.2

(gwpca.montecarlo.2), 38
montecarlo.gwr (gwr.montecarlo), 68
montecarlo.gwss (gwss.montecarlo), 83

new_multiscale (gwr.multiscale), 69

par, 26
parametric.bs (gwr.bootstrap), 44
plot.mcsims (gwpca.montecarlo.1), 36
plot.pvlas (gwr.mink.pval), 61
POSIXlt, 6, 23, 87
princomp, 31
print.ggwrm (ggwr.basic), 18
print.gtwrm (gtwr), 22

print.gwda (gwda), 28
print.gwpca (gwpca), 30
print.gwrbsm (gwr.bootstrap), 44
print.gwrlcr (gwr.lcr), 53
print.gwrm (gwr.basic), 40
print.gwrm.pred (gwr.predict), 73
print.gwss (gwss), 81
print.mgwr (gwr.mixed), 62
print.multiscalegwr (gwr.multiscale), 69
print.scgwrm (gwr.scalable), 78
pval.bs (gwr.bootstrap), 44

ridge.lm (gwr.lcr), 53
robustSvd (gwpca), 30
rss (gwr.model.selection), 64
rwpca (gwpca), 30

scgwr_loocv (gwr.scalable), 78
scgwr_pre (gwr.scalable), 78
scgwr_reg (gwr.scalable), 78
se.bs (gwr.bootstrap), 44
splitx (gwda), 28
st.dist, 23, 86

ti.dist (gtwr), 22
ti.distm (gtwr), 22
ti.distv (gtwr), 22
trhat2 (gwr.basic), 40

USelect, 88
USelect2004 (USelect), 88

vector, 70

wlda (gwda), 28
wlda.cr (bw.gwda), 7
wmean (gwda), 28
wpca (gwpca), 30
wprior (gwda), 28
wqda (gwda), 28
wqda.cr (bw.gwda), 7
writeGWR (gwr.write), 80
wt.median (gwpca), 30
wvarcov (gwda), 28

	GWmodel-package
	bw.ggwr
	bw.gtwr
	bw.gwda
	bw.gwpca
	bw.gwr
	bw.gwr.lcr
	bw.gwss.average
	DubVoter
	EWHP
	EWOutline
	Georgia
	GeorgiaCounties
	ggwr.basic
	ggwr.cv
	ggwr.cv.contrib
	gtwr
	gw.dist
	gw.pcplot
	gw.weight
	gwda
	gwpca
	gwpca.check.components
	gwpca.cv
	gwpca.cv.contrib
	gwpca.glyph.plot
	gwpca.montecarlo.1
	gwpca.montecarlo.2
	gwr.basic
	gwr.bootstrap
	gwr.collin.diagno
	gwr.cv
	gwr.cv.contrib
	gwr.hetero
	gwr.lcr
	gwr.lcr.cv
	gwr.lcr.cv.contrib
	gwr.mink.approach
	gwr.mink.matrixview
	gwr.mink.pval
	gwr.mixed
	gwr.model.selection
	gwr.model.sort
	gwr.model.view
	gwr.montecarlo
	gwr.multiscale
	gwr.predict
	gwr.robust
	gwr.scalable
	gwr.t.adjust
	gwr.write
	gwss
	gwss.montecarlo
	LondonBorough
	LondonHP
	st.dist
	USelect
	Index

