## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----example profile checkout, message=FALSE---------------------------------- library(EvidenceSynthesis) data("ncLikelihoods") data("ooiLikelihoods") knitr::kable(ncLikelihoods[[1]][[1]]) ## ----message=FALSE, results='hide'-------------------------------------------- singleBiasDist <- fitBiasDistribution(ncLikelihoods[[1]], seed = 42 ) ## ----message=FALSE, results='hide'-------------------------------------------- singleBiasDistRobust <- fitBiasDistribution(ncLikelihoods[[1]], robust = TRUE, seed = 42 ) ## ----message=FALSE, warning=FALSE, results='hide', cache=TRUE----------------- BiasDistRobust <- sequentialFitBiasDistribution(ncLikelihoods, robust = TRUE, seed = 1 ) ## ----message=FALSE, warning=FALSE--------------------------------------------- plotBiasDistribution(BiasDistRobust, limits = c(-3, 3)) ## ----message=FALSE, warning=FALSE, results='hide', cache=TRUE----------------- # select profile likelihoods for the 5th analysis period ooiLik5 <- list(ooiLikelihoods[["5"]]) ncLik5 <- list(ncLikelihoods[["5"]]) # specify prior mean and prior standard deviation for the effect size (log RR) bbcResult5 <- biasCorrectionInference(ooiLik5, ncLikelihoodProfiles = ncLik5, priorMean = 0, priorSd = 4, doCorrection = TRUE, seed = 42 ) ## ----message=FALSE, warning=FALSE, results='hide', cache=TRUE----------------- # learn bias distribution for the 5th analysis period first biasDist5 <- fitBiasDistribution(ncLikelihoods[["5"]]) # then recycle the bias distribution bbcResult5 <- biasCorrectionInference(ooiLik5, biasDistributions = biasDist5, priorMean = 0, priorSd = 4, doCorrection = TRUE, seed = 42 ) ## ----message=FALSE, warning=FALSE--------------------------------------------- library(dplyr) knitr::kable(bind_rows( bbcResult5 |> mutate(biasCorrection = "yes"), attr(bbcResult5, "summaryRaw") |> mutate(biasCorrection = "no") ) |> select(-Id), digits = 4) ## ----message=FALSE, warning=FALSE, results='hide', cache=TRUE----------------- bbcSequential <- biasCorrectionInference(ooiLikelihoods, biasDistributions = BiasDistRobust, priorMean = 0, priorSd = 4, doCorrection = TRUE, seed = 42 ) ## ----message=FALSE, warning=FALSE--------------------------------------------- knitr::kable(bbcSequential |> select(period = Id, median:p1), digits = 4) ## ----message=FALSE, warning=FALSE, results='hide', fig.height=7--------------- plotBiasCorrectionInference(bbcSequential, type = "corrected", limits = c(-4, 4) ) ## ----message=FALSE, warning=FALSE, fig.height=4------------------------------- plotBiasCorrectionInference(bbcSequential, type = "compare", limits = c(-4, 4), ids = as.character(3:12) )