## ----include = FALSE---------------------------------------------------------- NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, comment = "#>", eval = NOT_CRAN ) library(CDMConnector) if (Sys.getenv("EUNOMIA_DATA_FOLDER") == ""){ Sys.setenv("EUNOMIA_DATA_FOLDER" = file.path(tempdir(), "eunomia"))} if (!dir.exists(Sys.getenv("EUNOMIA_DATA_FOLDER"))){ dir.create(Sys.getenv("EUNOMIA_DATA_FOLDER")) downloadEunomiaData() } ## ----------------------------------------------------------------------------- # library(duckdb) # library(CDMConnector) # library(PatientProfiles) # library(CohortConstructor) # library(dplyr, warn.conflicts = FALSE) # library(clock) ## ----------------------------------------------------------------------------- # requireEunomia(datasetName = "GiBleed") # con <- dbConnect(drv = duckdb(), dbdir = eunomiaDir()) # cdm <- cdmFromCon( # con = con, cdmSchema = "main", writeSchema = "main", writePrefix = "my_study_" # ) ## ----------------------------------------------------------------------------- # cdm$medications <- conceptCohort(cdm = cdm, # conceptSet = list("diclofenac" = 1124300L, # "acetaminophen" = 1127433L), # name = "medications") # cohortCount(cdm$medications) # settings(cdm$medications) ## ----------------------------------------------------------------------------- # cdm$medications_female <- cdm$medications |> # requireSex(sex = "Female", name = "medications_female") |> # renameCohort( # cohortId = c("acetaminophen", "diclofenac"), # newCohortName = c("acetaminophen_female", "diclofenac_female") # ) # cdm$medications_male <- cdm$medications |> # requireSex(sex = "Male", name = "medications_male") |> # renameCohort( # cohortId = c("acetaminophen", "diclofenac"), # newCohortName = c("acetaminophen_male", "diclofenac_male") # ) # cdm <- bind(cdm$medications_female, cdm$medications_male, name = "medications_sex") # cohortCount(cdm$medications_sex) # settings(cdm$medications_sex) ## ----------------------------------------------------------------------------- # cdm$medications <- cdm$medications |> # addSex() # cdm$medications ## ----------------------------------------------------------------------------- # cdm$medications_sex_2 <- cdm$medications |> # stratifyCohorts(strata = "sex", name = "medications_sex_2") # cohortCount(cdm$medications_sex_2) # settings(cdm$medications_sex_2) ## ----warning=FALSE------------------------------------------------------------ # cdm$stratified <- cdm$medications |> # addAge(ageGroup = list("child" = c(0,17), "18_to_65" = c(18,64), "65_and_over" = c(65, Inf))) |> # addSex() |> # mutate(year = get_year(cohort_start_date)) |> # stratifyCohorts(strata = list(c("sex", "age_group"), "year"), name = "stratified") # # cohortCount(cdm$stratified) # settings(cdm$stratified) ## ----echo=FALSE--------------------------------------------------------------- # library(ggplot2) # x <- tibble( # time = as.Date(c("2010-05-01", "2012-06-12", "2010-05-01", "2010-12-31", "2011-01-01", "2011-12-31", "2012-01-01", "2012-06-12")), # y = c(rep(1, 2), rep(0.8, 2), rep(0.78, 2), rep(0.76, 2)), # colour = c(rep("1", 2), rep("2", 6)), # group = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L) # ) # ggplot(data = x, mapping = aes(x = time, y = y, colour = colour, group = group)) + # geom_line() + # geom_point() + # scale_y_continuous(limits = c(0.56, 1.2), breaks = NULL, labels = NULL) + # theme_bw() + # theme( # axis.title.y = element_blank(), # axis.text.y = element_blank(), # axis.ticks.y = element_blank(), # legend.position = "none" # ) ## ----------------------------------------------------------------------------- # cdm$medications_year <- cdm$medications |> # yearCohorts(years = c(1990:1993), name = "medications_year") # settings(cdm$medications_year) # cohortCount(cdm$medications_year) ## ----------------------------------------------------------------------------- # cdm$medications |> # filter(subject_id == 4383) ## ----------------------------------------------------------------------------- # cdm$medications_year |> # dplyr::filter(subject_id == 4383) ## ----------------------------------------------------------------------------- # cdmDisconnect(cdm)