--- title: "BayLum: An Introduction" author: "Claire Christophe, Anne Philippe, Sebastian Kreutzer, Guillaume Guérin, Frederik Baumgarten" date: 'Updated for BayLum package version 0.3.2 (2024-09-18)' output: rmarkdown::html_vignette: toc: yes toc_depth: 4 number_sections: yes vignette: > %\VignetteIndexEntry{BayLum: An Introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction `'BayLum'` provides a collection of various **R** functions for Bayesian analysis of luminescence data. Amongst others, this includes data import, export, application of age models and palaeodose modelling. Data can be processed simultaneously for various samples, including the input of multiple BIN/BINX-files per sample for single grain (SG) or multi-grain (MG) OSL measurements. Stratigraphic constraints and systematic errors can be added to constrain the analysis further. For those who already know how to use **R**, `'BayLum'` won't be difficult to use, for all others, this brief introduction may be of help to make the first steps with **R** and the package `'BayLum'` as convenient as possible. ## Installing `BayLum' package If you read this document before having installed **R** itself, you should first visit the [R project](https://www.r-project.org) website and download and install **R**. You may also consider installing [Rstudio](https://posit.co), which provides an excellent desktop working environment for **R**; however it is not a prerequisite. You will also need the external software *JAGS* (Just Another Gibs Sampler). Please visit the [JAGS](https://mcmc-jags.sourceforge.io) webpage and follow the installation instructions. Now you are nearly ready to work with 'BayLum'. If you have not yet installed 'BayLum', please run the following two **R** code lines to install 'BayLum' on your computer. ``` r install.packages("BayLum", dependencies = TRUE) ``` Alternatively, you can load an already installed **R** package (here 'BayLum') into your session by using the following **R** call. ``` r library(BayLum) ``` # First steps: age analysis of one sample Measurement data can be imported using two different options as detailed in the following: * Option 1: Using the conventional 'BayLum' folder structure (old) * Option 2: Using a single-setting config file (new) ## Option 1: Import information from a BIN/BINX-file. Let us consider the sample named *samp1*, which is the example dataset coming with the package. All information related to this sample is stored in a subfolder called also *samp1*. To test the package example, first, we add the path of the example dataset to the object `path`. ``` r path <- paste0(system.file("extdata/", package = "BayLum"), "/") ``` Please note that for your own dataset (i.e. not included in the package) you have to replace this call by something like: ``` r path <- "Users/Master_of_luminescence/Documents/MyFamousOSLData" ``` In our example the folder contains the following subfolders and files: | | | |:--|:-------------------------| |1 |example.yml | |2 |FER1/bin.bin | |3 |FER1/Disc.csv | |4 |FER1/DoseEnv.csv | |5 |FER1/DoseSource.csv | |6 |FER1/rule.csv | |7 |samp1/bin.bin | |8 |samp1/DiscPos.csv | |9 |samp1/DoseEnv.csv | |10 |samp1/DoseSource.csv | |11 |samp1/rule.csv | |12 |samp2/bin.bin | |13 |samp2/DiscPos.csv | |14 |samp2/DoseEnv.csv | |15 |samp2/DoseSource.csv | |16 |samp2/rule.csv | |17 |yaml_config_reference.yml | See *"What are the required files in each subfolder?"* in the manual of `Generate_DataFile()` function for the meaning of these files. To import your data, simply call the function `Generate_DataFile()`: ``` r DATA1 <- Generate_DataFile( Path = path, FolderNames = "samp1", Nb_sample = 1, verbose = FALSE) ``` ``` Warning in Generate_DataFile(Path = path, FolderNames = "samp1", Nb_sample = 1, : 'Generate_DataFile' est obsolète. Utilisez plutôt ‘create_DataFile()’. Voir help("Deprecated") ``` ### Remarks #### Data import/export The import may take a while, in particular for large BIN/BINX-files. This can become annoying if you want to play with the data. In such situations, it makes sense to save your imported data somewhere else before continuing. To save the obove imported data on your hardrive use ``` r save(DATA1, file = "YourPath/DATA1.RData") ``` To load the data use ``` r load(DATA1, file = "YourPath/DATA1.RData") ``` #### Data structure To see the overall structure of the data generated from the BIN/BINX-file and the associated CSV-files, the following call can be used: ``` r str(DATA1) ``` ``` List of 9 $ LT :List of 1 ..$ : num [1, 1:7] 2.042 0.842 1.678 3.826 4.258 ... $ sLT :List of 1 ..$ : num [1, 1:7] 0.344 0.162 0.328 0.803 0.941 ... $ ITimes :List of 1 ..$ : num [1, 1:6] 15 30 60 100 0 15 $ dLab : num [1:2, 1] 1.53e-01 5.89e-05 $ ddot_env : num [1:2, 1] 2.512 0.0563 $ regDose :List of 1 ..$ : num [1, 1:6] 2.3 4.6 9.21 15.35 0 ... $ J : num 1 $ K : num 6 $ Nb_measurement: num 16 ``` It reveals that `DATA1` is basically a list with 9 elements: Element | Content | ---------------------- |--------------- `DATA1$LT` | $L_x$/$T_x$ values from each sample | `DATA1$sLT` | $L_x$/$T_x$ error values from each sample | `DATA1$ITimes` | Irradiation times | `DATA1$dLab` | The lab dose rate | `DATA1$ddot_env` | The environmental dose rate and its variance | `DATA1$regDose` | The regenerated dose points | `DATA1$J` | The number of aliquots selected for each BIN-file | `DATA1$K` | The number of regenerated dose points | `DATA1$Nb_measurement` | The number of measurements per BIN-file | #### Visualise Lx/Tx values and dose points To get an impression on how your data look like, you can visualise them by using the function `LT_RegenDose()`: ``` r LT_RegenDose( DATA = DATA1, Path = path, FolderNames = "samp1", SampleNames = "samp1", Nb_sample = 1, nrow = NULL ) ``` ``` Warning in LT_RegenDose(DATA = DATA1, Path = path, FolderNames = "samp1", : 'LT_RegenDose' est obsolète. Utilisez plutôt ‘plot_RegDosePoints()’. Voir help("Deprecated") ```
plot of chunk unnamed-chunk-10

plot of chunk unnamed-chunk-10

Note that here we consider only one sample, and the name of the folder is the name of the sample. For that reason the argumetns were set to `FolderNames = samp1` and `SampleNames = samp1`. ### Generate data file from BIN/BINX-files of multi-grain OSL measurements For a multi-grain OSL measurements, instead of `Generate_DataFile()`, the function `Generate_DataFile_MG()` should be used with similar parameters. The functions differ by their expectations: *Disc.csv* instead of *DiscPos.csv* file for Single-grain OSL Measurements. Please check type `?Generate_DataFile_MG` for further information. ## Option 2: Import data using `create_DataFile()` With `'BayLum'` >= v0.3.2 we introduced a new function called `create_DataFile()`, which will at some point in time replace the function `Generate_DataFile()` and `Generate_DataFile_MG()`. `create_DataFile()` works conceptionally very different from the approach detailed above. Key differences are: * The function uses a single configuration file for all samples and all measurement files * The very error prone subfolder structure is no longer needed * Measurement data can be imported with `create_DataFile()`, but also outside of the function and then passed on the functions. This enables the possibility of extensive pre-processing and selection of measurement data. The configuration follows the so-called [YAML format](https://yaml.org) specification. For single sample the file looks as follows: ``` - sample: "samp1" files: null settings: dose_source: { value: 0.1535, error: 0.00005891 } dose_env: { value: 2.512, error: 0.05626 } rules: beginSignal: 6 endSignal: 8 beginBackground: 50 endBackground: 55 beginTest: 6 endTest: 8 beginTestBackground: 50 endTestBackground: 55 inflatePercent: 0.027 nbOfLastCycleToRemove: 1 ``` In the case above, the configuration file assumes that data for `samp1` are already imported and treated and a R object called `samp1` is available in the global environment. The following example code reproduces this case: ``` r ## get example file path from package yaml_file <- system.file("extdata/example.yml", package = "BayLum") samp1_file <- system.file("extdata/samp1/bin.bin", package = "BayLum") ## read YAML manually and select only the first record config_file <- yaml::read_yaml(yaml_file)[[1]] ## import BIN/BINX files and select position 2 and grain 32 only samp1 <- Luminescence::read_BIN2R(samp1_file, verbose = FALSE) |> subset(POSITION == 2 & GRAIN == 32) ## create the data file DATA1 <- create_DataFile(config_file, verbose = FALSE) ``` ## Age computation To compute the age of the sample *samp1*, you can run the following code: ``` r Age <- Age_Computation( DATA = DATA1, SampleName = "samp1", PriorAge = c(10, 100), distribution = "cauchy", LIN_fit = TRUE, Origin_fit = FALSE, Iter = 10000 ) ``` ``` Compiling model graph Resolving undeclared variables Allocating nodes Graph information: Observed stochastic nodes: 6 Unobserved stochastic nodes: 9 Total graph size: 139 Initializing model ```
plot of chunk unnamed-chunk-12

plot of chunk unnamed-chunk-12

``` >> Sample name << ---------------------------------------------- samp1 >> Results of the Gelman and Rubin criterion of convergence << ---------------------------------------------- Point estimate Uppers confidence interval A 1.043 1.102 D 1.042 1.098 sD 1.036 1.058 --------------------------------------------------------------------------------------------------- *** WARNING: The following information are only valid if the MCMC chains have converged *** --------------------------------------------------------------------------------------------------- parameter Bayes estimate Credible interval ---------------------------------------------- A 25.061 lower bound upper bound at level 95% 10 50.294 at level 68% 10 21.841 ---------------------------------------------- D 62.212 lower bound upper bound at level 95% 19.675 125.768 at level 68% 22.385 55.487 ---------------------------------------------- sD 44.674 lower bound upper bound at level 95% 0.15 126.445 at level 68% 0.263 28.94 ``` This also works if `DATA1` is the output of `Generate_DataFile_MG()`. ##### Remark 1: MCMC trajectories - If MCMC trajectories did not converge, you can add more iteration with the parameter `Iter` in the function `Age_Computation()`, for example `Iter = 20000` or `Iter = 50000`. If it is not desirable to re-run the model from scratch, read the - To increase the precision of prior distribution, if not specified before you can use the argument `PriorAge`. For example: `PriorAge= c(0.01,10)` for a young sample and `PriorAge = c(10,100)` for an old sample. - If the trajectories are still not convergering, you should whether the choice you made with the argument `distribution` and dose-response curves are meaningful. ##### Remark 2: `LIN_fit` and `Origin_fit`, dose-response curves option - By default, a saturating exponential plus linear dose response curve is expected. However, you choose other formula by changing arguments `LIN_fit` and `Origin_fit` in the function. ##### Remark 3: `distribution`, equivalent dose dispersion option By default, a *cauchy* distribution is assumed, but you can choose another distribution by replacing the word `cauchy` by `gaussian`, `lognormal_A` or `lognormal_M` for the argument `distribution`. The difference between the models: *lognormal_A* and *lognormal_M* is that the equivalent dose dispersion are distributed according to: - a log-normal distribution with mean or average equal to the palaeodose for the first model - a log-normal distribution with median equal to the palaeodose for the second model. ##### Remark 4: `SavePdf` and `SaveEstimates` option These two arguments allow to save the results to files. - `SavePdf = TRUE` create a PDF-file with MCMC trajectories of parameters `A` (age), `D` (palaeodose), `sD` (equivalent doses dispersion). You have to specify `OutputFileName` and `OutputFilePath` to define name and path of the PDF-file. - `SaveEstimates = TRUE` saves a CSV-file containing the Bayes estimates, the credible interval at 68\% and 95\% and the Gelman and Rudin test of convergence of the parameters `A`, `D`, `sD`. For the export the arguments `OutputTableName` and `OutputTablePath` have to be specified. ##### Remark 4: `PriorAge` option By default, an age between 0.01 ka and 100 ka is expected. If the user has more informations on the sample, `PriorAge` should be modified accordingly. For example, if you know that the sample is an older, you can set `PriorAge=c(10,120)`. In contrast, if you know that the sample is younger, you may want to set `PriorAge=c(0.001,10)`. Ages of $<=0$ are not possible. The minimum bound is 0.001. **Please note that the setting of `PriorAge` is not trivial, wrongly set boundaries are likely biasing your results.** ## Multiple BIN/BINX-files for one sample In the previous example we considered only the simplest case: one sample, and one BIN/BINX-file. However, 'BayLum' allows to process multiple BIN/BINX-files for one sample. To work with multiple BIN/BINX-files, the names of the subfolders need to beset in argument `Names` and both files need to be located unter the same `Path`. For the case ``` r Names <- c("samp1", "samp2") ``` the call `Generate_DataFile()` (or `Generate_DataFile_MG()`) becomes as follows: ``` r ##argument setting nbsample <- 1 nbbinfile <- length(Names) Binpersample <- c(length(Names)) ##call data file generator DATA_BF <- Generate_DataFile( Path = path, FolderNames = Names, Nb_sample = nbsample, Nb_binfile = nbbinfile, BinPerSample = Binpersample, verbose = FALSE ) ``` ``` Warning in Generate_DataFile(Path = path, FolderNames = Names, Nb_sample = nbsample, : 'Generate_DataFile' est obsolète. Utilisez plutôt ‘create_DataFile()’. Voir help("Deprecated") ``` ``` r ##calculate the age Age <- Age_Computation( DATA = DATA_BF, SampleName = Names, BinPerSample = Binpersample ) ``` ``` Compiling model graph Resolving undeclared variables Allocating nodes Graph information: Observed stochastic nodes: 12 Unobserved stochastic nodes: 15 Total graph size: 221 Initializing model ```
plot of chunk unnamed-chunk-14

plot of chunk unnamed-chunk-14

``` >> Sample name << ---------------------------------------------- samp1 samp2 >> Results of the Gelman and Rubin criterion of convergence << ---------------------------------------------- Point estimate Uppers confidence interval A 1.018 1.023 D 1.022 1.027 sD 1.044 1.057 --------------------------------------------------------------------------------------------------- *** WARNING: The following information are only valid if the MCMC chains have converged *** --------------------------------------------------------------------------------------------------- parameter Bayes estimate Credible interval ---------------------------------------------- A 2.312 lower bound upper bound at level 95% 0.86 3.819 at level 68% 1.65 2.728 ---------------------------------------------- D 5.75 lower bound upper bound at level 95% 2.602 9.545 at level 68% 4.453 6.886 ---------------------------------------------- sD 0.881 lower bound upper bound at level 95% 0.003 3.318 at level 68% 0.003 0.846 ``` # Age analysis of various samples ## Generate data file from BIN/BINX-files The function `Generate_DataFile()` (or `Generate_DataFile_MF()`) can process multiple files simultaneously including multiple BIN/BINX-files per sample. We assume that we are interested in two samples named: *sample1* and *sample2*. In addition, we have two BIN/BINX-files for the first sample named: *sample1-1* and *sample1-2*, and one BIN-file for the 2nd sample named *sample2-1*. In such case, we need three subfolders named *sample1-1*, *sample1-2* and *sample2-1*; which each subfolder containing only one BIN-file named **bin.bin**, and its associated files **DiscPos.csv**, **DoseEnv.csv**, **DoseSourve.csv** and **rule.csv**. All of these 3 subfolders must be located in *path*. To fill the argument corectly `BinPerSample`: $binpersample=c(\underbrace{2}_{\text{sample 1: 2 bin files}},\underbrace{1}_{\text{sample 2: 1 bin file}})$ ``` r Names <- c("sample1-1", "sample1-2", "sample2-1") # give the name of the folder datat nbsample <- 2 # give the number of samples nbbinfile <- 3 # give the number of bin files DATA <- Generate_DataFile( Path = path, FolderNames = Names, Nb_sample = nbsample, Nb_binfile = nbbinfile, BinPerSample = binpersample ) ``` ### Combine files using the function `combine_DataFiles()` If the user has already saved informations imported with `Generate_DataFile()` function (or `Generate_DataFile_MG()` function) these data can be concatenate with the function `combine_DataFiles()`. For example, if `DATA1` is the output of sample named "GDB3", and `DATA2` is the output of sample "GDB5", both data can be merged with the following call: ``` r data("DATA1", envir = environment()) data("DATA2", envir = environment()) DATA3 <- combine_DataFiles(L1 = DATA2, L2 = DATA1) str(DATA3) ``` ``` List of 11 $ LT :List of 2 ..$ : num [1:188, 1:6] 4.54 2.73 2.54 2.27 1.48 ... ..$ : num [1:101, 1:6] 5.66 6.9 4.05 3.43 4.97 ... $ sLT :List of 2 ..$ : num [1:188, 1:6] 0.333 0.386 0.128 0.171 0.145 ... ..$ : num [1:101, 1:6] 0.373 0.315 0.245 0.181 0.246 ... $ ITimes :List of 2 ..$ : num [1:188, 1:5] 40 40 40 40 40 40 40 40 40 40 ... ..$ : num [1:101, 1:5] 160 160 160 160 160 160 160 160 160 160 ... $ dLab : num [1:2, 1:2] 1.53e-01 5.89e-05 1.53e-01 5.89e-05 $ ddot_env : num [1:2, 1:2] 2.512 0.0563 2.26 0.0617 $ regDose :List of 2 ..$ : num [1:188, 1:5] 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 ... ..$ : num [1:101, 1:5] 24.6 24.6 24.6 24.6 24.6 ... $ J : num [1:2] 188 101 $ K : num [1:2] 5 5 $ Nb_measurement: num [1:2] 14 14 $ SampleNames : chr [1:2] "samp 1" "samp 1" $ Nb_sample : num 2 - attr(*, "originator")= chr "create_DataFile" ``` The data structure should become as follows - 2 `list`s (1 `list` per sample) for `DATA$LT`, `DATA$sLT`, `DATA1$ITimes` and `DATA1$regDose` - A `matrix` with 2 columns (1 line per sample) for `DATA1$dLab`, `DATA1$ddot_env` - 2 `integer`s (1 `integer` per BIN files here we have 1 BIN-file per sample) for `DATA1$J`, `DATA1$K`, `DATA1$Nb_measurement`. Single-grain and multiple-grain OSL measurements can be merged in the same way. To plot the $L/T$ as a function of the regenerative dose the function `LT_RegenDose()` can be used again: ``` r plot_RegDosePoints(DATA3) ``` *Note: In the example `DATA3` contains information from the samples 'GDB3' and 'GDB5', which are single-grain OSL measurements. For a correct treatment the argument `SG` has to be manually set by the user. Please see the function manual for further details.* ## Age analysis without stratigraphic constraints If no stratigraphic constraints were set, the following code can be used to analyse the age of the sample *GDB5* and *GDB3* simultaneously. ``` r priorage = c(1, 10, 10, 100) Age <- AgeS_Computation( DATA = DATA3, Nb_sample = 2, SampleNames = c("GDB5", "GDB3"), PriorAge = priorage, distribution = "cauchy", LIN_fit = TRUE, Origin_fit = FALSE, Iter = 1000, jags_method = "rjags" ) ``` ``` Warning: No initial values were provided - JAGS will use the same initial values for all chains ``` ``` Compiling rjags model... Calling the simulation using the rjags method... Adapting the model for 1000 iterations... Running the model for 5000 iterations... Simulation complete Calculating summary statistics... Calculating the Gelman-Rubin statistic for 6 variables.... Finished running the simulation ```
plot of chunk unnamed-chunk-18

plot of chunk unnamed-chunk-18

plot of chunk unnamed-chunk-18

plot of chunk unnamed-chunk-18

``` >> Results of the Gelman and Rubin criterion of convergence << ---------------------------------------------- Sample name: GDB5 --------------------- Point estimate Uppers confidence interval A_GDB5 1.002 1.005 D_GDB5 1.003 1.012 sD_GDB5 1.006 1.021 ---------------------------------------------- Sample name: GDB3 --------------------- Point estimate Uppers confidence interval A_GDB3 1 1 D_GDB3 1.001 1.002 sD_GDB3 1.001 1.005 --------------------------------------------------------------------------------------------------- *** WARNING: The following information are only valid if the MCMC chains have converged *** --------------------------------------------------------------------------------------------------- >> Bayes estimates of Age, Palaeodose and its dispersion for each sample and credible interval << ---------------------------------------------- Sample name: GDB5 --------------------- Parameter Bayes estimate Credible interval A_GDB5 7.132 lower bound upper bound at level 95% 5.783 8.596 at level 68% 6.298 7.677 Parameter Bayes estimate Credible interval D_GDB5 17.798 lower bound upper bound at level 95% 16.725 19.004 at level 68% 17.145 18.332 Parameter Bayes estimate Credible interval sD_GDB5 4.53 lower bound upper bound at level 95% 3.544 5.782 at level 68% 4.028 5.142 ---------------------------------------------- Sample name: GDB3 --------------------- Parameter Bayes estimate Credible interval A_GDB3 46.979 lower bound upper bound at level 95% 36.343 57.758 at level 68% 40.774 51.082 Parameter Bayes estimate Credible interval D_GDB3 104.689 lower bound upper bound at level 95% 96.694 112.104 at level 68% 101.184 108.653 Parameter Bayes estimate Credible interval sD_GDB3 16.236 lower bound upper bound at level 95% 9.985 21.678 at level 68% 12.11 18.146 ---------------------------------------------- ```
plot of chunk unnamed-chunk-18

plot of chunk unnamed-chunk-18

**Note:** For an automated parallel processing you can set the argument `jags_method = "rjags"` to `jags_method = "rjparallel"`. ### Remarks As for the function `Age_computation()`, the age for each sample is set by default between 0.01 ka and 100 ka. If you have more informations on your samples it is possible to change `PriorAge` parameters. `PriorAge` is a vector of `size = 2*$Nb_sample`, the two first values of `PriorAge` concern the 1st sample, the next two values the 2nd sample and so on. For example, if you know that sample named *GDB5* is a young sample whose its age is between 0.01 ka and 10 ka, and *GDB3* is an old sample whose age is between 10 ka and 100 ka, $$PriorAge=c(\underbrace{0.01,10}_{GDB5\ prior\ age},\underbrace{10,100}_{GDB3\ prior\ age})$$ ## Age analysis with stratigraphic constraints With the function `AgeS_Computation()` it is possible to take the stratigraphic relations between samples into account and define constraints. For example, we know that *GDB5* is in a higher stratigraphical position, hence it likely has a younger age than sample *GDB3*. ### Ordering samples To take into account stratigraphic constraints, the information on the samples need to be ordered. Either you enter a sample name (corresponding to subfolder names) in `Names` parameter of the function `Generate_DataFile()`, ordered by order of increasing ages or you enter saved .RData informations of each sample in `combine_DataFiles()`, ordered by increasing ages. ``` r # using Generate_DataFile function Names <- c("samp1", "samp2") nbsample <- 2 DATA3 <- Generate_DataFile( Path = path, FolderNames = Names, Nb_sample = nbsample, verbose = FALSE ) ``` ``` Warning in Generate_DataFile(Path = path, FolderNames = Names, Nb_sample = nbsample, : 'Generate_DataFile' est obsolète. Utilisez plutôt ‘create_DataFile()’. Voir help("Deprecated") ``` ``` r # using the function combine_DataFiles() data(DATA1, envir = environment()) # .RData on sample GDB3 data(DATA2, envir = environment()) # .RData on sample GDB5 DATA3 <- combine_DataFiles(L1 = DATA1, L2 = DATA2) ``` ### Define matrix to set stratigraphic constraints Let `SC` be the matrix containing all information on stratigraphic relations for this two samples. This matrix is defined as follows: - matrix dimensions: the row number of `StratiConstraints` matrix is equal to `Nb_sample+1`, and column number is equal to $Nb\_sample$. - first matrix row: for all $i$ in $\{1,...,Nb\_Sample\}$, `StratiConstraints[1,i] <- 1`, means that the lower bound of the sample age given in `PriorAge[2i-1]` for the sample whose number ID is equal to $i$ is taken into account - sample relations: for all $j$ in $\{2,...,Nb\_Sample+1}\$ and all $i$ in $\{j,...,Nb\_Sample\}$, `StratiConstraints[j,i] <- 1` if the sample age whose ID is equal to $j-1$ is lower than the sample age whose ID is equal to $i$. Otherwise, `StratiConstraints[j,i] <- 0`. To the define such matrix the function *SCMatrix()* can be used: ``` r SC <- SCMatrix(Nb_sample = 2, SampleNames = c("samp1", "samp2")) ``` In our case: 2 samples, `SC` is a matrix with 3 rows and 2 columns. The first row contains `c(1,1)` (because we take into account the prior ages), the second line contains `c(0,1)` (sample 2, named *samp2* is supposed to be older than sample 1, named *samp1*) and the third line contains `c(0,0)` (sample 2, named *samp2* is not younger than the sample 1, here named *samp1*). We can also fill the matrix with the stratigraphic relations as follow: ``` r SC <- matrix( data = c(1, 1, 0, 1, 0, 0), ncol = 2, nrow = (2 + 1), byrow = T ) ``` ### Age computation ``` r Age <- AgeS_Computation( DATA = DATA3, Nb_sample = 2, SampleNames = c("samp1", "samp2"), PriorAge = priorage, distribution = "cauchy", LIN_fit = TRUE, Origin_fit = FALSE, StratiConstraints = SC, Iter = 1000, jags_method = 'rjags') ``` ``` Warning: No initial values were provided - JAGS will use the same initial values for all chains ``` ``` Compiling rjags model... Calling the simulation using the rjags method... Adapting the model for 1000 iterations... Running the model for 5000 iterations... Simulation complete Calculating summary statistics... Calculating the Gelman-Rubin statistic for 6 variables.... Finished running the simulation ```
plot of chunk unnamed-chunk-23

plot of chunk unnamed-chunk-23

plot of chunk unnamed-chunk-23

plot of chunk unnamed-chunk-23

``` >> Results of the Gelman and Rubin criterion of convergence << ---------------------------------------------- Sample name: samp1 --------------------- Point estimate Uppers confidence interval A_samp1 1.003 1.005 D_samp1 1 1.002 sD_samp1 1.003 1.009 ---------------------------------------------- Sample name: samp2 --------------------- Point estimate Uppers confidence interval A_samp2 1.004 1.008 D_samp2 1.005 1.017 sD_samp2 1.002 1.01 --------------------------------------------------------------------------------------------------- *** WARNING: The following information are only valid if the MCMC chains have converged *** --------------------------------------------------------------------------------------------------- >> Bayes estimates of Age, Palaeodose and its dispersion for each sample and credible interval << ---------------------------------------------- Sample name: samp1 --------------------- Parameter Bayes estimate Credible interval A_samp1 9.711 lower bound upper bound at level 95% 9.126 10 at level 68% 9.677 10 Parameter Bayes estimate Credible interval D_samp1 29.26 lower bound upper bound at level 95% 23.914 34.493 at level 68% 26.756 32.052 Parameter Bayes estimate Credible interval sD_samp1 67.869 lower bound upper bound at level 95% 51.164 84.839 at level 68% 57.714 74.182 ---------------------------------------------- Sample name: samp2 --------------------- Parameter Bayes estimate Credible interval A_samp2 10.413 lower bound upper bound at level 95% 10 11.236 at level 68% 10 10.469 Parameter Bayes estimate Credible interval D_samp2 18.343 lower bound upper bound at level 95% 17.089 19.48 at level 68% 17.62 18.846 Parameter Bayes estimate Credible interval sD_samp2 4.619 lower bound upper bound at level 95% 3.588 5.669 at level 68% 4.003 5.09 ---------------------------------------------- ```
plot of chunk unnamed-chunk-23

plot of chunk unnamed-chunk-23

Thee results can be also be used for an alternative graphical representation: ``` r plot_Ages(Age, plot_mode = "density") ```
plot of chunk unnamed-chunk-24

plot of chunk unnamed-chunk-24

``` SAMPLE AGE HPD68.MIN HPD68.MAX HPD95.MIN HPD95.MAX ALT_SAMPLE_NAME AT 1 samp1 9.711 9.677 10.000 9.126 10.000 NA 2 2 samp2 10.413 10.000 10.469 10.000 11.236 NA 1 ``` ## When MCMC trajectories did not converge If MCMC trajectories did not converge, it means we should run additional MCMC iterations. For `AgeS_computation()` and `Age_OSLC14()` models we can run additional iterations by supplying the function output back into the parent function. In the following, notice we are using the output of the previous `AgeS_computation()` example, namely `Age`. The key argument to set/change is `DATA`. ``` r Age <- AgeS_Computation( DATA = Age, Nb_sample = 2, SampleNames = c("GDB5", "GDB3"), PriorAge = priorage, distribution = "cauchy", LIN_fit = TRUE, Origin_fit = FALSE, Iter = 1000, jags_method = "rjags" ) ``` ``` Calling the simulation using the rjags method... Note: the model did not require adaptation Burning in the model for 4000 iterations... Running the model for 5000 iterations... Simulation complete Calculating summary statistics... Calculating the Gelman-Rubin statistic for 6 variables.... Finished running the simulation ```
plot of chunk unnamed-chunk-25

plot of chunk unnamed-chunk-25

plot of chunk unnamed-chunk-25

plot of chunk unnamed-chunk-25

``` >> Results of the Gelman and Rubin criterion of convergence << ---------------------------------------------- Sample name: GDB5 --------------------- Point estimate Uppers confidence interval A_GDB5 1 1 D_GDB5 1.001 1.004 sD_GDB5 1.001 1.005 ---------------------------------------------- Sample name: GDB3 --------------------- Point estimate Uppers confidence interval A_GDB3 1.008 1.012 D_GDB3 1.009 1.031 sD_GDB3 1.007 1.026 --------------------------------------------------------------------------------------------------- *** WARNING: The following information are only valid if the MCMC chains have converged *** --------------------------------------------------------------------------------------------------- >> Bayes estimates of Age, Palaeodose and its dispersion for each sample and credible interval << ---------------------------------------------- Sample name: GDB5 --------------------- Parameter Bayes estimate Credible interval A_GDB5 9.724 lower bound upper bound at level 95% 9.154 10 at level 68% 9.687 10 Parameter Bayes estimate Credible interval D_GDB5 29.372 lower bound upper bound at level 95% 23.658 34.505 at level 68% 26.635 32.055 Parameter Bayes estimate Credible interval sD_GDB5 67.561 lower bound upper bound at level 95% 50.632 84.409 at level 68% 59.654 76.278 ---------------------------------------------- Sample name: GDB3 --------------------- Parameter Bayes estimate Credible interval A_GDB3 10.406 lower bound upper bound at level 95% 10 11.176 at level 68% 10 10.468 Parameter Bayes estimate Credible interval D_GDB3 18.29 lower bound upper bound at level 95% 17.184 19.532 at level 68% 17.675 18.837 Parameter Bayes estimate Credible interval sD_GDB3 4.557 lower bound upper bound at level 95% 3.526 5.591 at level 68% 3.975 5.059 ---------------------------------------------- ```
plot of chunk unnamed-chunk-25

plot of chunk unnamed-chunk-25

# References {-} Combès, B., Philippe, A., Lanos, P., Mercier, N., Tribolo, C., Guerin, G., Guibert, P., Lahaye, C., 2015. A Bayesian central equivalent dose model for optically stimulated luminescence dating. Quaternary Geochronology 28, 62-70. doi: [10.1016/j.quageo.2015.04.001](https://doi.org/10.1016/j.quageo.2015.04.001) Combès, B., Philippe, A., 2017. Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating. Quaternary Geochronology 39, 24–34. doi: [10.1016/j.quageo.2017.02.003](https://doi.org/10.1016/j.quageo.2017.02.003) Philippe, A., Guérin, G., Kreutzer, S., 2019. BayLum - An R package for Bayesian analysis of OSL ages: An introduction. Quaternary Geochronology 49, 16-24. doi: [10.1016/j.quageo.2018.05.009](https://doi.org/10.1016/j.quageo.2018.05.009) ## Further reading {-} ### For more details on the diagnostic of Markov chains {-} Robert and Casella, 2009. Introducing Monte Carlo Methods with R. Springer Science & Business Media. ### For details on the here used dataset {-} Tribolo, C., Asrat, A., Bahain, J. J., Chapon, C., Douville, E., Fragnol, C., Hernandez, M., Hovers, E., Leplongeon, A., Martin, L., Pleurdeau, D., Pearson, O., Puaud, S., Assefa, Z., 2017. Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia. PloS one, 12(1), e0169418. doi: [10.1371/journal.pone.0169418](https://doi.org/10.1371/journal.pone.0169418)