CRAN Package Check Results for Package cobs

Last updated on 2024-11-18 10:53:03 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3-8 10.26 115.07 125.33 ERROR
r-devel-linux-x86_64-debian-gcc 1.3-8 7.76 86.31 94.07 OK
r-devel-linux-x86_64-fedora-clang 1.3-8 198.59 ERROR
r-devel-linux-x86_64-fedora-gcc 1.3-8 203.68 OK
r-devel-windows-x86_64 1.3-8 14.00 132.00 146.00 OK
r-patched-linux-x86_64 1.3-8 10.52 114.41 124.93 OK
r-release-linux-x86_64 1.3-8 10.40 114.40 124.80 OK
r-release-macos-arm64 1.3-8 69.00 OK
r-release-macos-x86_64 1.3-8 96.00 OK
r-release-windows-x86_64 1.3-8 15.00 134.00 149.00 OK
r-oldrel-macos-arm64 1.3-8 74.00 OK
r-oldrel-macos-x86_64 1.3-8 160.00 OK
r-oldrel-windows-x86_64 1.3-8 17.00 167.00 184.00 OK

Check Details

Version: 1.3-8
Check: examples
Result: ERROR Running examples in ‘cobs-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: cobs-methods > ### Title: Methods for COBS Objects > ### Aliases: coef.cobs fitted.cobs knots.cobs print.cobs residuals.cobs > ### summary.cobs > ### Keywords: print > > ### ** Examples > > example(cobs) cobs> x <- seq(-1,3,,150) cobs> y <- (f.true <- pnorm(2*x)) + rnorm(150)/10 cobs> ## specify pointwise constraints (boundary conditions) cobs> con <- rbind(c( 1,min(x),0), # f(min(x)) >= 0 cobs+ c(-1,max(x),1), # f(max(x)) <= 1 cobs+ c(0, 0, 0.5))# f(0) = 0.5 cobs> ## obtain the median REGRESSION B-spline using automatically selected knots cobs> Rbs <- cobs(x,y, constraint= "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> Rbs COBS regression spline (degree = 2) from call: cobs(x = x, y = y, constraint = "increase", pointwise = con) **** ERROR in algorithm: ifl = 21 {tau=0.5}-quantile; dimensionality of fit: 5 from {5} x$knots[1:4]: -1.0000040, -0.2214765, 1.3892617, 3.0000040 cobs> plot(Rbs, lwd = 2.5) cobs> lines(spline(x, f.true), col = "gray40") cobs> lines(predict(cobs(x,y)), col = "blue") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> mtext("cobs(x,y) # completely unconstrained", 3, col= "blue") cobs> ## compute the median SMOOTHING B-spline using automatically chosen lambda cobs> Sbs <- cobs(x,y, constraint="increase", pointwise= con, lambda= -1) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Warning in min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: example ... source -> withVisible -> eval -> eval -> cobs -> drqssbc2 Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [2s/3s] Running ‘ex1.R’ [4s/4s] Running ‘ex2-long.R’ [10s/12s] Running ‘ex3.R’ [2s/3s] Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [4s/5s] Comparing ‘multi-constr.Rout’ to ‘multi-constr.Rout.save’ ... OK Running ‘roof.R’ [4s/5s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ... OK Running ‘small-ex.R’ [3s/3s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ [2s/3s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [3s/4s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ... OK Running ‘wind.R’ [8s/10s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.1976 0.063 0.0491 -0.0626 -0.0868 ... $ fitted : num [1:50] 0.0278 0.0287 0.0312 0.0354 0.0414 ... $ coef : num [1:4] 0.0278 0.0278 0.8154 1 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 7 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -6.77514e-02 -0.029701622 0.0278152 0.0853320 0.123382 2 -6.41787e-02 -0.027468888 0.0280224 0.0835138 0.120224 3 -6.04433e-02 -0.024973163 0.0286442 0.0822615 0.117732 4 -5.65412e-02 -0.022212175 0.0296803 0.0815728 0.115902 5 -5.24674e-02 -0.019182756 0.0311310 0.0814447 0.114729 6 -4.82149e-02 -0.015880775 0.0329961 0.0818729 0.114207 7 -4.37751e-02 -0.012301110 0.0352757 0.0828524 0.114326 8 -3.91381e-02 -0.008437641 0.0379697 0.0843771 0.115077 9 -3.42918e-02 -0.004283290 0.0410782 0.0864397 0.116448 10 -2.92233e-02 0.000169901 0.0446012 0.0890325 0.118426 11 -2.39179e-02 0.004930665 0.0485387 0.0921467 0.120995 12 -1.83600e-02 0.010008360 0.0528906 0.0957728 0.124141 13 -1.25335e-02 0.015412811 0.0576570 0.0999012 0.127847 14 -6.42140e-03 0.021154129 0.0628378 0.1045216 0.132097 15 -6.81378e-06 0.027242531 0.0684332 0.1096238 0.136873 16 6.72715e-03 0.033688168 0.0744430 0.1151978 0.142159 17 1.37970e-02 0.040500961 0.0808672 0.1212335 0.147938 18 2.12185e-02 0.047690461 0.0877060 0.1277215 0.154193 19 2.90068e-02 0.055265726 0.0949592 0.1346527 0.160912 20 3.71760e-02 0.063235225 0.1026269 0.1420185 0.168078 21 4.57390e-02 0.071606758 0.1107090 0.1498113 0.175679 22 5.47075e-02 0.080387396 0.1192056 0.1580238 0.183704 23 6.40921e-02 0.089583438 0.1281167 0.1666500 0.192141 24 7.39018e-02 0.099200377 0.1374422 0.1756841 0.200983 25 8.41444e-02 0.109242876 0.1471823 0.1851216 0.210220 26 9.48262e-02 0.119714746 0.1573367 0.1949588 0.219847 27 1.05952e-01 0.130618921 0.1679057 0.2051925 0.229859 28 1.17526e-01 0.141957438 0.1788891 0.2158208 0.240253 29 1.29548e-01 0.153731401 0.1902870 0.2268426 0.251026 30 1.42021e-01 0.165940947 0.2020994 0.2382578 0.262178 31 1.54941e-01 0.178585191 0.2143262 0.2500672 0.273711 32 1.68306e-01 0.191662165 0.2269675 0.2622729 0.285629 33 1.82111e-01 0.205168744 0.2400233 0.2748778 0.297936 34 1.96348e-01 0.219100556 0.2534935 0.2878865 0.310639 35 2.11008e-01 0.233451886 0.2673782 0.3013046 0.323748 36 2.26079e-01 0.248215565 0.2816774 0.3151392 0.337276 37 2.41547e-01 0.263382876 0.2963910 0.3293992 0.351235 38 2.57393e-01 0.278943451 0.3115191 0.3440948 0.365645 39 2.73599e-01 0.294885220 0.3270617 0.3592382 0.380524 40 2.90023e-01 0.311080514 0.3429107 0.3747410 0.395798 41 3.06194e-01 0.327075735 0.3586411 0.3902065 0.411088 42 3.22074e-01 0.342831649 0.3742095 0.4055873 0.426345 43 3.37676e-01 0.358355597 0.3896158 0.4208761 0.441556 44 3.53012e-01 0.373655096 0.4048602 0.4360653 0.456709 45 3.68094e-01 0.388737688 0.4199426 0.4511475 0.471791 46 3.82936e-01 0.403610792 0.4348630 0.4661151 0.486790 47 3.97549e-01 0.418281590 0.4496214 0.4809611 0.501694 48 4.11944e-01 0.432756923 0.4642177 0.4956786 0.516491 49 4.26133e-01 0.447043216 0.4786521 0.5102611 0.531172 50 4.40124e-01 0.461146429 0.4929245 0.5247027 0.545725 51 4.53927e-01 0.475072016 0.5070350 0.5389979 0.560143 52 4.67551e-01 0.488824911 0.5209834 0.5531418 0.574416 53 4.81002e-01 0.502409521 0.5347698 0.5671300 0.588538 54 4.94287e-01 0.515829730 0.5483942 0.5809587 0.602501 55 5.07412e-01 0.529088909 0.5618566 0.5946243 0.616302 56 5.20381e-01 0.542189933 0.5751571 0.6081242 0.629933 57 5.33198e-01 0.555135196 0.5882955 0.6214558 0.643393 58 5.45867e-01 0.567926630 0.6012719 0.6346172 0.656677 59 5.58390e-01 0.580565721 0.6140864 0.6476070 0.669782 60 5.70769e-01 0.593053527 0.6267388 0.6604241 0.682708 61 5.83005e-01 0.605390690 0.6392293 0.6730679 0.695454 62 5.95098e-01 0.617577451 0.6515577 0.6855380 0.708017 63 6.07048e-01 0.629613656 0.6637242 0.6978347 0.720400 64 6.18854e-01 0.641498766 0.6757287 0.7099586 0.732603 65 6.30515e-01 0.653231865 0.6875711 0.7219104 0.744627 66 6.42028e-01 0.664811658 0.6992516 0.7336916 0.756475 67 6.53391e-01 0.676236478 0.7107701 0.7453037 0.768149 68 6.64600e-01 0.687504287 0.7221266 0.7567489 0.779653 69 6.75652e-01 0.698612675 0.7333211 0.7680295 0.790991 70 6.86541e-01 0.709558867 0.7443536 0.7791483 0.802166 71 6.97262e-01 0.720339721 0.7552241 0.7901084 0.813186 72 7.07810e-01 0.730951740 0.7659326 0.8009134 0.824055 73 7.18179e-01 0.741391078 0.7764791 0.8115671 0.834779 74 7.28361e-01 0.751653555 0.7868636 0.8220736 0.845367 75 7.38348e-01 0.761734678 0.7970861 0.8324375 0.855824 76 7.48134e-01 0.771629669 0.8071466 0.8426636 0.866160 77 7.57709e-01 0.781333498 0.8170452 0.8527568 0.876382 78 7.67065e-01 0.790840929 0.8267817 0.8627224 0.886499 79 7.76192e-01 0.800146569 0.8363562 0.8725659 0.896520 80 7.85083e-01 0.809244928 0.8457688 0.8822926 0.906455 81 7.93727e-01 0.818130488 0.8550193 0.8919081 0.916312 82 8.02116e-01 0.826797774 0.8641079 0.9014179 0.926100 83 8.10240e-01 0.835241429 0.8730344 0.9108274 0.935829 84 8.18091e-01 0.843456291 0.8817990 0.9201417 0.945507 85 8.25661e-01 0.851437463 0.8904015 0.9293656 0.955142 86 8.32942e-01 0.859180385 0.8988421 0.9385038 0.964742 87 8.39928e-01 0.866680887 0.9071207 0.9475605 0.974313 88 8.46612e-01 0.873935236 0.9152373 0.9565393 0.983862 89 8.52989e-01 0.880940170 0.9231918 0.9654435 0.993395 90 8.59054e-01 0.887692913 0.9309844 0.9742760 1.002915 91 8.64803e-01 0.894191180 0.9386150 0.9830389 1.012427 92 8.70233e-01 0.900433167 0.9460836 0.9917341 1.021934 93 8.75343e-01 0.906417527 0.9533902 1.0003629 1.031437 94 8.80130e-01 0.912143340 0.9605348 1.0089263 1.040939 95 8.84594e-01 0.917610075 0.9675174 1.0174248 1.050441 96 8.88735e-01 0.922817542 0.9743381 1.0258586 1.059942 97 8.92551e-01 0.927765853 0.9809967 1.0342275 1.069442 98 8.96045e-01 0.932455371 0.9874933 1.0425312 1.078941 99 8.99218e-01 0.936886669 0.9938279 1.0507692 1.088438 100 9.02069e-01 0.941060487 1.0000006 1.0589406 1.097932 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0278152 0.0278152 0.8153868 1.0000006 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) {tau=0.5}-quantile; dimensionality of fit: 4 from {4} x$knots[1:4]: -1.000002, -0.632653, 0.183673, 1.000002 with 3 pointwise constraints coef[1:4]: 0.0504467, 0.0504467, 0.6305155, 1.0000009 R^2 = 93.83% ; empirical tau (over all): 21/50 = 0.42 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > with(coS, cbind(pp.lambda, pp.sic, k0, ifl, icyc)) pp.lambda pp.sic k0 ifl icyc [1,] 3.54019e-05 -2.64644 22 1 21 [2,] 6.92936e-05 -2.64644 22 1 21 [3,] 1.35631e-04 -2.64644 22 1 20 [4,] 2.65477e-04 -2.64644 22 1 22 [5,] 5.19629e-04 -2.64644 22 1 22 [6,] 1.01709e-03 -2.64644 22 1 23 [7,] 1.99080e-03 -2.68274 21 1 20 [8,] 3.89667e-03 -2.75212 19 1 18 [9,] 7.62711e-03 -2.73932 19 1 14 [10,] 1.49289e-02 -2.85261 16 1 13 [11,] 2.92209e-02 -2.97873 12 1 12 [12,] 5.71953e-02 -3.01058 11 1 12 [13,] 1.11951e-01 -3.04364 10 1 11 [14,] 2.19126e-01 -3.11242 8 1 12 [15,] 4.28904e-01 -3.17913 6 1 12 [16,] 8.39512e-01 -3.18824 5 1 11 [17,] 1.64321e+00 -3.01467 5 1 12 [18,] 3.21633e+00 -3.01380 4 1 11 [19,] 6.29545e+00 -3.01380 4 1 10 [20,] 1.23223e+01 -3.01380 4 1 11 [21,] 2.41190e+01 -3.01380 4 1 11 [22,] 4.72092e+01 -3.01380 4 1 10 [23,] 9.24046e+01 -3.01380 4 1 10 [24,] 1.80867e+02 -3.01380 4 1 10 [25,] 3.54019e+02 -3.01380 4 1 10 > with(coS, plot(pp.sic ~ pp.lambda, type = "b", log = "x", col=2, + main = deparse(call))) > ##-> very nice minimum close to 1 > > summaryCobs(coS) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", lambda = -1, pointwise = con, trace = 3) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : NULL $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi TRUE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.2254 0.0829 0.062 -0.0562 -0.0862 ... $ fitted : num [1:50] 0 0.00869 0.01837 0.02906 0.04075 ... $ coef : num [1:22] 0 0.00819 0.03365 0.06662 0.10458 ... $ knots : num [1:20] -1 -0.918 -0.796 -0.714 -0.592 ... $ k0 : int [1:25] 22 22 22 22 22 22 21 19 19 16 ... $ k : int 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : Named num 0.84 ..- attr(*, "names")= chr "lambda" $ icyc : int [1:25] 21 21 20 22 22 23 20 18 14 13 ... $ ifl : int [1:25] 1 1 1 1 1 1 1 1 1 1 ... $ pp.lambda : num [1:25] 0 0 0 0 0.001 0.001 0.002 0.004 0.008 0.015 ... $ pp.sic : num [1:25] -2.65 -2.65 -2.65 -2.65 -2.65 ... $ i.mask : logi [1:25] TRUE TRUE TRUE TRUE TRUE TRUE ... cb.lo ci.lo fit ci.up cb.up 1 -0.07071332 -0.03907635 -3.77249e-07 0.0390756 0.0707126 2 -0.06555125 -0.03435600 4.17438e-03 0.0427048 0.0739000 3 -0.06016465 -0.02940203 8.59400e-03 0.0465900 0.0773526 4 -0.05455349 -0.02421442 1.32585e-02 0.0507314 0.0810704 5 -0.04871809 -0.01879334 1.81678e-02 0.0551289 0.0850537 6 -0.04265897 -0.01313909 2.33220e-02 0.0597831 0.0893029 7 -0.03637554 -0.00725134 2.87210e-02 0.0646934 0.0938176 8 -0.02986704 -0.00112966 3.43649e-02 0.0698595 0.0985969 9 -0.02313305 0.00522618 4.02537e-02 0.0752812 0.1036404 10 -0.01617351 0.01181620 4.63873e-02 0.0809584 0.1089481 11 -0.00898880 0.01864020 5.27658e-02 0.0868914 0.1145204 12 -0.00157983 0.02569768 5.93891e-02 0.0930806 0.1203581 13 0.00605308 0.03298846 6.62573e-02 0.0995262 0.1264615 14 0.01391000 0.04051257 7.33704e-02 0.1062282 0.1328307 15 0.02199057 0.04826981 8.07283e-02 0.1131867 0.1394660 16 0.03029461 0.05626010 8.83310e-02 0.1204020 0.1463675 17 0.03882336 0.06448412 9.61787e-02 0.1278732 0.1535339 18 0.04757769 0.07294234 1.04271e-01 0.1355999 0.1609646 19 0.05655804 0.08163500 1.12608e-01 0.1435819 0.1686589 20 0.06576441 0.09056212 1.21191e-01 0.1518192 0.1766169 21 0.07519637 0.09972344 1.30018e-01 0.1603120 0.1848391 22 0.08485262 0.10911826 1.39090e-01 0.1690610 0.1933266 23 0.09473211 0.11874598 1.48406e-01 0.1780668 0.2020807 24 0.10483493 0.12860668 1.57968e-01 0.1873294 0.2111011 25 0.11516076 0.13870015 1.67775e-01 0.1968489 0.2203882 26 0.12570956 0.14902638 1.77826e-01 0.2066253 0.2299421 27 0.13648327 0.15958645 1.88122e-01 0.2166576 0.2397608 28 0.14748286 0.17038090 1.98663e-01 0.2269453 0.2498433 29 0.15870881 0.18140998 2.09449e-01 0.2374880 0.2601892 30 0.17016110 0.19267368 2.20480e-01 0.2482859 0.2707984 31 0.18183922 0.20417172 2.31755e-01 0.2593391 0.2816716 32 0.19374227 0.21590361 2.43276e-01 0.2706482 0.2928095 33 0.20587062 0.22786955 2.55041e-01 0.2822129 0.3042118 34 0.21822524 0.24007008 2.67051e-01 0.2940328 0.3158776 35 0.23080666 0.25250549 2.79306e-01 0.3061075 0.3278063 36 0.24361488 0.26517577 2.91806e-01 0.3184370 0.3399979 37 0.25664938 0.27808064 3.04551e-01 0.3310217 0.3524530 38 0.26990862 0.29121926 3.17541e-01 0.3438624 0.3651730 39 0.28339034 0.30459037 3.30775e-01 0.3569602 0.3781603 40 0.29709467 0.31819405 3.44255e-01 0.3703152 0.3914146 41 0.31102144 0.33203019 3.57979e-01 0.3839275 0.4049363 42 0.32517059 0.34609876 3.71948e-01 0.3977971 0.4187252 43 0.33954481 0.36040126 3.86162e-01 0.4119224 0.4327789 44 0.35414537 0.37493839 4.00621e-01 0.4263028 0.4470958 45 0.36897279 0.38971043 4.15324e-01 0.4409381 0.4616757 46 0.38402708 0.40471738 4.30273e-01 0.4558281 0.4765184 47 0.39930767 0.41995895 4.45466e-01 0.4709732 0.4916245 48 0.41479557 0.43541678 4.60887e-01 0.4863568 0.5069780 49 0.43039487 0.45099622 4.76442e-01 0.5018872 0.5224885 50 0.44609197 0.46668362 4.92117e-01 0.5175506 0.5381422 51 0.46188684 0.48247895 5.07913e-01 0.5333471 0.5539392 52 0.47773555 0.49833835 5.23786e-01 0.5492329 0.5698357 53 0.49336687 0.51398935 5.39461e-01 0.5649325 0.5855550 54 0.50873469 0.52938518 5.54891e-01 0.5803975 0.6010480 55 0.52383955 0.54452615 5.70077e-01 0.5956277 0.6163143 56 0.53868141 0.55941225 5.85018e-01 0.6106231 0.6313539 57 0.55325974 0.57404316 5.99714e-01 0.6253839 0.6461673 58 0.56757320 0.58841816 6.14165e-01 0.6399109 0.6607558 59 0.58161907 0.60253574 6.28371e-01 0.6542056 0.6751223 60 0.59539741 0.61639593 6.42332e-01 0.6682680 0.6892665 61 0.60890835 0.62999881 6.56048e-01 0.6820980 0.7031884 62 0.62215175 0.64334429 6.69520e-01 0.6956957 0.7168882 63 0.63512996 0.65643368 6.82747e-01 0.7090597 0.7303634 64 0.64784450 0.66926783 6.95729e-01 0.7221893 0.7436126 65 0.66029589 0.68184700 7.08466e-01 0.7350841 0.7566352 66 0.67248408 0.69417118 7.20958e-01 0.7477442 0.7694313 67 0.68440855 0.70624008 7.33205e-01 0.7601699 0.7820014 68 0.69606829 0.71805313 7.45207e-01 0.7723617 0.7943465 69 0.70746295 0.72961016 7.56965e-01 0.7843198 0.8064670 70 0.71859343 0.74091165 7.68478e-01 0.7960438 0.8183620 71 0.72946023 0.75195789 7.79746e-01 0.8075332 0.8300309 72 0.74006337 0.76274887 7.90769e-01 0.8187883 0.8414738 73 0.75040233 0.77328433 8.01547e-01 0.8298091 0.8526911 74 0.76047612 0.78356369 8.12080e-01 0.8405963 0.8636839 75 0.77028266 0.79358583 8.22368e-01 0.8511510 0.8744542 76 0.77982200 0.80335076 8.32412e-01 0.8614732 0.8850020 77 0.78909446 0.81285866 8.42211e-01 0.8715627 0.8953269 78 0.79809990 0.82210946 8.51765e-01 0.8814196 0.9054292 79 0.80683951 0.83110382 8.61074e-01 0.8910433 0.9153076 80 0.81531459 0.83984244 8.70138e-01 0.9004329 0.9249608 81 0.82352559 0.84832559 8.78957e-01 0.9095884 0.9343884 82 0.83147249 0.85655324 8.87531e-01 0.9185095 0.9435903 83 0.83915483 0.86452515 8.95861e-01 0.9271968 0.9525671 84 0.84657171 0.87224082 9.03946e-01 0.9356505 0.9613196 85 0.85372180 0.87969951 9.11786e-01 0.9438715 0.9698492 86 0.86060525 0.88690131 9.19381e-01 0.9518597 0.9781558 87 0.86722242 0.89384640 9.26731e-01 0.9596149 0.9862389 88 0.87357322 0.90053476 9.33836e-01 0.9671371 0.9940986 89 0.87965804 0.90696658 9.40696e-01 0.9744261 1.0017347 90 0.88547781 0.91314239 9.47312e-01 0.9814814 1.0091460 91 0.89103290 0.91906239 9.53683e-01 0.9883028 1.0163323 92 0.89632328 0.92472655 9.59808e-01 0.9948904 1.0232937 93 0.90134850 0.93013464 9.65689e-01 1.0012443 1.0300304 94 0.90610776 0.93528622 9.71326e-01 1.0073650 1.0365434 95 0.91060065 0.94018104 9.76717e-01 1.0132527 1.0428331 96 0.91482784 0.94481950 9.81863e-01 1.0189071 1.0488987 97 0.91878971 0.94920179 9.86765e-01 1.0243279 1.0547400 98 0.92248624 0.95332789 9.91422e-01 1.0295152 1.0603569 99 0.92591703 0.95719761 9.95833e-01 1.0344692 1.0657498 100 0.92908136 0.96081053 1.00000e+00 1.0391902 1.0709194 knots : [1] -1.0000020 -0.9183673 -0.7959184 -0.7142857 -0.5918367 -0.5102041 [7] -0.3877551 -0.2653061 -0.1836735 -0.0612245 0.0204082 0.1428571 [13] 0.2244898 0.3469388 0.4693878 0.5510204 0.6734694 0.7551020 [19] 0.8775510 1.0000020 coef : [1] -4.01161e-07 8.18714e-03 3.36534e-02 6.66159e-02 1.04576e-01 [6] 1.50032e-01 2.00486e-01 2.70027e-01 3.35473e-01 4.05918e-01 [11] 4.83858e-01 5.64259e-01 6.37163e-01 7.05069e-01 7.77561e-01 [16] 8.30474e-01 8.78390e-01 9.18810e-01 9.54232e-01 9.87743e-01 [21] 1.00000e+00 5.99960e-01 > > plot(x, y, main = "cobs(x,y, constraint=\"increase\", pointwise = *)") > matlines(x, cbind(fitted(coR), fitted(coR1), fitted(coS)), + col = 2:4, lty=1) > > ##-- real data example (still n = 50) > data(cars) > attach(cars) > co1 <- cobs(speed, dist, "increase") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > co1.1 <- cobs(speed, dist, "increase", knots.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > co1.2 <- cobs(speed, dist, "increase", knots.add = TRUE, repeat.delete.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > ## These three all give the same -- only remaining knots (outermost data): > ic <- which("call" == names(co1)) > stopifnot(all.equal(co1[-ic], co1.1[-ic]), + all.equal(co1[-ic], co1.2[-ic])) > 1 - sum(co1 $ resid ^2) / sum((dist - mean(dist))^2) # R^2 = 64.2% [1] 0.642288 > > co2 <- cobs(speed, dist, "increase", lambda = -1)# 6 warnings Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: examples
Result: ERROR Running examples in ‘cobs-Ex.R’ failed The error most likely occurred in: > ### Name: cobs-methods > ### Title: Methods for COBS Objects > ### Aliases: coef.cobs fitted.cobs knots.cobs print.cobs residuals.cobs > ### summary.cobs > ### Keywords: print > > ### ** Examples > > example(cobs) cobs> x <- seq(-1,3,,150) cobs> y <- (f.true <- pnorm(2*x)) + rnorm(150)/10 cobs> ## specify pointwise constraints (boundary conditions) cobs> con <- rbind(c( 1,min(x),0), # f(min(x)) >= 0 cobs+ c(-1,max(x),1), # f(max(x)) <= 1 cobs+ c(0, 0, 0.5))# f(0) = 0.5 cobs> ## obtain the median REGRESSION B-spline using automatically selected knots cobs> Rbs <- cobs(x,y, constraint= "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> Rbs COBS regression spline (degree = 2) from call: cobs(x = x, y = y, constraint = "increase", pointwise = con) **** ERROR in algorithm: ifl = 21 {tau=0.5}-quantile; dimensionality of fit: 5 from {5} x$knots[1:4]: -1.0000040, -0.2214765, 1.3892617, 3.0000040 cobs> plot(Rbs, lwd = 2.5) cobs> lines(spline(x, f.true), col = "gray40") cobs> lines(predict(cobs(x,y)), col = "blue") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> mtext("cobs(x,y) # completely unconstrained", 3, col= "blue") cobs> ## compute the median SMOOTHING B-spline using automatically chosen lambda cobs> Sbs <- cobs(x,y, constraint="increase", pointwise= con, lambda= -1) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Warning in min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: example ... source -> withVisible -> eval -> eval -> cobs -> drqssbc2 Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ Running ‘ex1.R’ Running ‘ex2-long.R’ [12s/16s] Running ‘ex3.R’ Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [7s/11s] Comparing ‘multi-constr.Rout’ to ‘multi-constr.Rout.save’ ... OK Running ‘roof.R’ [6s/12s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ... OK Running ‘small-ex.R’ Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 20 35,42c32,35 < < **** ERROR in algorithm: ifl = 20 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.40707639, -0.31455702, 0.05463725, -0.05314932, 0.29190009 < R^2 = 72.54% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 72,75c58,61 < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.5515010, -0.4255000, -0.1700000, -0.1700000, 0.1300024 < empirical tau (over all): 11/113 = 0.09734513 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 78,80d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 84,91c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 94,96c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 98c75 < [1] 5 8 25 38 39 77 85 86 92 95 97 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 103,215c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 218,330c195,307 < [1,] 1880 -0.551500000 -0.8692435 -0.233756532 -0.74079307 -0.362206927 < [2,] 1881 -0.547000000 -0.8504667 -0.243533314 -0.72778780 -0.366212204 < [3,] 1882 -0.542500000 -0.8319198 -0.253080242 -0.71491945 -0.370080546 < [4,] 1883 -0.538000000 -0.8136378 -0.262362171 -0.70220898 -0.373791017 < [5,] 1884 -0.533500000 -0.7956627 -0.271337305 -0.68968128 -0.377318719 < [6,] 1885 -0.529000000 -0.7780442 -0.279955841 -0.67736602 -0.380633979 < [7,] 1886 -0.524500000 -0.7608416 -0.288158389 -0.66529858 -0.383701418 < [8,] 1887 -0.520000000 -0.7441258 -0.295874209 -0.65352111 -0.386478893 < [9,] 1888 -0.515500000 -0.7279807 -0.303019336 -0.64208362 -0.388916382 < [10,] 1889 -0.511000000 -0.7125052 -0.309494803 -0.63104507 -0.390954927 < [11,] 1890 -0.506500000 -0.6978147 -0.315185325 -0.62047415 -0.392525847 < [12,] 1891 -0.502000000 -0.6840410 -0.319959029 -0.61044942 -0.393550580 < [13,] 1892 -0.497500000 -0.6713309 -0.323669122 -0.60105832 -0.393941676 < [14,] 1893 -0.493000000 -0.6598415 -0.326158511 -0.59239445 -0.393605547 < [15,] 1894 -0.488500000 -0.6497316 -0.327268365 -0.58455243 -0.392447572 < [16,] 1895 -0.484000000 -0.6411491 -0.326850877 -0.57762031 -0.390379695 < [17,] 1896 -0.479500000 -0.6342149 -0.324785091 -0.57167014 -0.387329858 < [18,] 1897 -0.475000000 -0.6290072 -0.320992831 -0.56674851 -0.383251488 < [19,] 1898 -0.470500000 -0.6255495 -0.315450451 -0.56286950 -0.378130499 < [20,] 1899 -0.466000000 -0.6238074 -0.308192629 -0.56001245 -0.371987550 < [21,] 1900 -0.461500000 -0.6236932 -0.299306846 -0.55812524 -0.364874755 < [22,] 1901 -0.457000000 -0.6250795 -0.288920492 -0.55713199 -0.356868008 < [23,] 1902 -0.452500000 -0.6278154 -0.277184649 -0.55694269 -0.348057313 < [24,] 1903 -0.448000000 -0.6317413 -0.264258680 -0.55746239 -0.338537611 < [25,] 1904 -0.443500000 -0.6367018 -0.250298234 -0.55859837 -0.328401628 < [26,] 1905 -0.439000000 -0.6425525 -0.235447498 -0.56026474 -0.317735261 < [27,] 1906 -0.434500000 -0.6491648 -0.219835216 -0.56238479 -0.306615211 < [28,] 1907 -0.430000000 -0.6564265 -0.203573485 -0.56489174 -0.295108256 < [29,] 1908 -0.425500000 -0.6642417 -0.186758271 -0.56772843 -0.283271568 < [30,] 1909 -0.416375000 -0.6444420 -0.188308043 -0.55224402 -0.280505976 < [31,] 1910 -0.407250000 -0.6249490 -0.189550984 -0.53694241 -0.277557591 < [32,] 1911 -0.398125000 -0.6058089 -0.190441134 -0.52185096 -0.274399035 < [33,] 1912 -0.389000000 -0.5870750 -0.190924973 -0.50700158 -0.270998423 < [34,] 1913 -0.379875000 -0.5688095 -0.190940499 -0.49243118 -0.267318816 < [35,] 1914 -0.370750000 -0.5510835 -0.190416485 -0.47818222 -0.263317783 < [36,] 1915 -0.361625000 -0.5339779 -0.189272139 -0.46430281 -0.258947192 < [37,] 1916 -0.352500000 -0.5175825 -0.187417468 -0.45084657 -0.254153431 < [38,] 1917 -0.343375000 -0.5019952 -0.184754769 -0.43787171 -0.248878295 < [39,] 1918 -0.334250000 -0.4873183 -0.181181668 -0.42543921 -0.243060793 < [40,] 1919 -0.325125000 -0.4736540 -0.176596039 -0.41360991 -0.236640086 < [41,] 1920 -0.316000000 -0.4610972 -0.170902819 -0.40244046 -0.229559541 < [42,] 1921 -0.306875000 -0.4497278 -0.164022164 -0.39197841 -0.221771591 < [43,] 1922 -0.297750000 -0.4396023 -0.155897699 -0.38225735 -0.213242652 < [44,] 1923 -0.288625000 -0.4307468 -0.146503154 -0.37329293 -0.203957073 < [45,] 1924 -0.279500000 -0.4231543 -0.135845678 -0.36508089 -0.193919112 < [46,] 1925 -0.270375000 -0.4167851 -0.123964922 -0.35759761 -0.183152393 < [47,] 1926 -0.261250000 -0.4115719 -0.110928148 -0.35080301 -0.171696986 < [48,] 1927 -0.252125000 -0.4074273 -0.096822686 -0.34464508 -0.159604916 < [49,] 1928 -0.243000000 -0.4042525 -0.081747527 -0.33906484 -0.146935158 < [50,] 1929 -0.233875000 -0.4019444 -0.065805632 -0.33400095 -0.133749048 < [51,] 1930 -0.224750000 -0.4004021 -0.049097883 -0.32939331 -0.120106687 < [52,] 1931 -0.215625000 -0.3995310 -0.031718987 -0.32518550 -0.106064496 < [53,] 1932 -0.206500000 -0.3992449 -0.013755146 -0.32132617 -0.091673830 < [54,] 1933 -0.197374999 -0.3994669 0.004716902 -0.31776960 -0.076980402 < [55,] 1934 -0.188249999 -0.4001299 0.023629911 -0.31447572 -0.062024276 < [56,] 1935 -0.179124999 -0.4011756 0.042925575 -0.31140981 -0.046840186 < [57,] 1936 -0.169999999 -0.4025537 0.062553694 -0.30854196 -0.031458039 < [58,] 1937 -0.169999999 -0.3920506 0.052050575 -0.30228481 -0.037715186 < [59,] 1938 -0.169999999 -0.3818799 0.041879911 -0.29622572 -0.043774276 < [60,] 1939 -0.169999999 -0.3720919 0.032091902 -0.29039460 -0.049605402 < [61,] 1940 -0.169999999 -0.3627449 0.022744854 -0.28482617 -0.055173829 < [62,] 1941 -0.169999999 -0.3539060 0.013906014 -0.27956050 -0.060439496 < [63,] 1942 -0.169999999 -0.3456521 0.005652118 -0.27464331 -0.065356687 < [64,] 1943 -0.169999999 -0.3380694 -0.001930632 -0.27012595 -0.069874048 < [65,] 1944 -0.169999999 -0.3312525 -0.008747527 -0.26606484 -0.073935158 < [66,] 1945 -0.169999999 -0.3253023 -0.014697685 -0.26252008 -0.077479916 < [67,] 1946 -0.169999999 -0.3203219 -0.019678148 -0.25955301 -0.080446986 < [68,] 1947 -0.169999999 -0.3164101 -0.023589921 -0.25722261 -0.082777393 < [69,] 1948 -0.169999999 -0.3136543 -0.026345677 -0.25558089 -0.084419112 < [70,] 1949 -0.169999999 -0.3121218 -0.027878154 -0.25466793 -0.085332072 < [71,] 1950 -0.169999999 -0.3118523 -0.028147699 -0.25450735 -0.085492652 < [72,] 1951 -0.169999999 -0.3128528 -0.027147163 -0.25510341 -0.084896591 < [73,] 1952 -0.169999999 -0.3150972 -0.024902819 -0.25644046 -0.083559541 < [74,] 1953 -0.169999999 -0.3185290 -0.021471038 -0.25848491 -0.081515086 < [75,] 1954 -0.169999999 -0.3230683 -0.016931668 -0.26118921 -0.078810793 < [76,] 1955 -0.169999999 -0.3286202 -0.011379769 -0.26449670 -0.075503294 < [77,] 1956 -0.169999999 -0.3350825 -0.004917467 -0.26834657 -0.071653431 < [78,] 1957 -0.169999999 -0.3423529 0.002352862 -0.27267781 -0.067322192 < [79,] 1958 -0.169999999 -0.3503335 0.010333515 -0.27743222 -0.062567783 < [80,] 1959 -0.169999999 -0.3589345 0.018934501 -0.28255618 -0.057443816 < [81,] 1960 -0.169999999 -0.3680750 0.028075027 -0.28800158 -0.051998422 < [82,] 1961 -0.169999999 -0.3776839 0.037683867 -0.29372596 -0.046274035 < [83,] 1962 -0.169999999 -0.3876990 0.047699017 -0.29969241 -0.040307591 < [84,] 1963 -0.169999999 -0.3980670 0.058066957 -0.30586902 -0.034130975 < [85,] 1964 -0.169999999 -0.4087417 0.068741729 -0.31222843 -0.027771567 < [86,] 1965 -0.159285714 -0.3857122 0.067140801 -0.29417746 -0.024393969 < [87,] 1966 -0.148571428 -0.3632362 0.066093356 -0.27645622 -0.020686639 < [88,] 1967 -0.137857142 -0.3414096 0.065695360 -0.25912188 -0.016592404 < [89,] 1968 -0.127142857 -0.3203446 0.066058909 -0.24224123 -0.012044485 < [90,] 1969 -0.116428571 -0.3001699 0.067312749 -0.22589096 -0.006966182 < [91,] 1970 -0.105714285 -0.2810296 0.069601066 -0.21015697 -0.001271599 < [92,] 1971 -0.095000000 -0.2630795 0.073079509 -0.19513199 0.005131993 < [93,] 1972 -0.084285714 -0.2464789 0.077907440 -0.18091096 0.012339531 < [94,] 1973 -0.073571428 -0.2313788 0.084235942 -0.16758388 0.020441022 < [95,] 1974 -0.062857142 -0.2179067 0.092192406 -0.15522664 0.029512358 < [96,] 1975 -0.052142857 -0.2061500 0.101864313 -0.14389137 0.039605655 < [97,] 1976 -0.041428571 -0.1961435 0.113286338 -0.13359871 0.050741570 < [98,] 1977 -0.030714285 -0.1878634 0.126434838 -0.12433459 0.062906020 < [99,] 1978 -0.020000000 -0.1812316 0.141231635 -0.11605243 0.076052428 < [100,] 1979 -0.009285714 -0.1761272 0.157555775 -0.10868017 0.090108739 < [101,] 1980 0.001428572 -0.1724023 0.175259450 -0.10212975 0.104986896 < [102,] 1981 0.012142857 -0.1698981 0.194183828 -0.09630656 0.120592277 < [103,] 1982 0.022857143 -0.1684575 0.214171819 -0.09111701 0.136831296 < [104,] 1983 0.033571429 -0.1679338 0.235076625 -0.08647364 0.153616502 < [105,] 1984 0.044285714 -0.1681949 0.256766379 -0.08229790 0.170869332 < [106,] 1985 0.055000000 -0.1691258 0.279125791 -0.07852111 0.188521107 < [107,] 1986 0.065714286 -0.1706273 0.302055897 -0.07508430 0.206512868 < [108,] 1987 0.076428572 -0.1726156 0.325472731 -0.07193745 0.224794593 < [109,] 1988 0.087142857 -0.1750198 0.349305552 -0.06903842 0.243324139 < [110,] 1989 0.097857143 -0.1777807 0.373494972 -0.06635184 0.262066125 < [111,] 1990 0.108571429 -0.1808483 0.397991187 -0.06384803 0.280990883 < [112,] 1991 0.119285714 -0.1841810 0.422752400 -0.06150208 0.300073511 < [113,] 1992 0.130000000 -0.1877435 0.447743468 -0.05929307 0.319293073 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 333,445c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 468,470d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 19 480,482d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 486,489d456 < < **** ERROR in algorithm: ifl = 22 < < 492,493c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 499,502d465 < < **** ERROR in algorithm: ifl = 22 < < 505,507d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 512,515d471 < < **** ERROR in algorithm: ifl = 22 < < 518,520d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,524c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 526,529c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [10s/12s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.1976 0.063 0.0491 -0.0626 -0.0868 ... $ fitted : num [1:50] 0.0278 0.0287 0.0312 0.0354 0.0414 ... $ coef : num [1:4] 0.0278 0.0278 0.8154 1 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 7 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -6.77514e-02 -0.029701622 0.0278152 0.0853320 0.123382 2 -6.41787e-02 -0.027468888 0.0280224 0.0835138 0.120224 3 -6.04433e-02 -0.024973163 0.0286442 0.0822615 0.117732 4 -5.65412e-02 -0.022212175 0.0296803 0.0815728 0.115902 5 -5.24674e-02 -0.019182756 0.0311310 0.0814447 0.114729 6 -4.82149e-02 -0.015880775 0.0329961 0.0818729 0.114207 7 -4.37751e-02 -0.012301110 0.0352757 0.0828524 0.114326 8 -3.91381e-02 -0.008437641 0.0379697 0.0843771 0.115077 9 -3.42918e-02 -0.004283290 0.0410782 0.0864397 0.116448 10 -2.92233e-02 0.000169901 0.0446012 0.0890325 0.118426 11 -2.39179e-02 0.004930665 0.0485387 0.0921467 0.120995 12 -1.83600e-02 0.010008360 0.0528906 0.0957728 0.124141 13 -1.25335e-02 0.015412811 0.0576570 0.0999012 0.127847 14 -6.42140e-03 0.021154129 0.0628378 0.1045216 0.132097 15 -6.81378e-06 0.027242531 0.0684332 0.1096238 0.136873 16 6.72715e-03 0.033688168 0.0744430 0.1151978 0.142159 17 1.37970e-02 0.040500961 0.0808672 0.1212335 0.147938 18 2.12185e-02 0.047690461 0.0877060 0.1277215 0.154193 19 2.90068e-02 0.055265726 0.0949592 0.1346527 0.160912 20 3.71760e-02 0.063235225 0.1026269 0.1420185 0.168078 21 4.57390e-02 0.071606758 0.1107090 0.1498113 0.175679 22 5.47075e-02 0.080387396 0.1192056 0.1580238 0.183704 23 6.40921e-02 0.089583438 0.1281167 0.1666500 0.192141 24 7.39018e-02 0.099200377 0.1374422 0.1756841 0.200983 25 8.41444e-02 0.109242876 0.1471823 0.1851216 0.210220 26 9.48262e-02 0.119714746 0.1573367 0.1949588 0.219847 27 1.05952e-01 0.130618921 0.1679057 0.2051925 0.229859 28 1.17526e-01 0.141957438 0.1788891 0.2158208 0.240253 29 1.29548e-01 0.153731401 0.1902870 0.2268426 0.251026 30 1.42021e-01 0.165940947 0.2020994 0.2382578 0.262178 31 1.54941e-01 0.178585191 0.2143262 0.2500672 0.273711 32 1.68306e-01 0.191662165 0.2269675 0.2622729 0.285629 33 1.82111e-01 0.205168744 0.2400233 0.2748778 0.297936 34 1.96348e-01 0.219100556 0.2534935 0.2878865 0.310639 35 2.11008e-01 0.233451886 0.2673782 0.3013046 0.323748 36 2.26079e-01 0.248215565 0.2816774 0.3151392 0.337276 37 2.41547e-01 0.263382876 0.2963910 0.3293992 0.351235 38 2.57393e-01 0.278943451 0.3115191 0.3440948 0.365645 39 2.73599e-01 0.294885220 0.3270617 0.3592382 0.380524 40 2.90023e-01 0.311080514 0.3429107 0.3747410 0.395798 41 3.06194e-01 0.327075735 0.3586411 0.3902065 0.411088 42 3.22074e-01 0.342831649 0.3742095 0.4055873 0.426345 43 3.37676e-01 0.358355597 0.3896158 0.4208761 0.441556 44 3.53012e-01 0.373655096 0.4048602 0.4360653 0.456709 45 3.68094e-01 0.388737688 0.4199426 0.4511475 0.471791 46 3.82936e-01 0.403610792 0.4348630 0.4661151 0.486790 47 3.97549e-01 0.418281590 0.4496214 0.4809611 0.501694 48 4.11944e-01 0.432756923 0.4642177 0.4956786 0.516491 49 4.26133e-01 0.447043216 0.4786521 0.5102611 0.531172 50 4.40124e-01 0.461146429 0.4929245 0.5247027 0.545725 51 4.53927e-01 0.475072016 0.5070350 0.5389979 0.560143 52 4.67551e-01 0.488824911 0.5209834 0.5531418 0.574416 53 4.81002e-01 0.502409521 0.5347698 0.5671300 0.588538 54 4.94287e-01 0.515829730 0.5483942 0.5809587 0.602501 55 5.07412e-01 0.529088909 0.5618566 0.5946243 0.616302 56 5.20381e-01 0.542189933 0.5751571 0.6081242 0.629933 57 5.33198e-01 0.555135196 0.5882955 0.6214558 0.643393 58 5.45867e-01 0.567926630 0.6012719 0.6346172 0.656677 59 5.58390e-01 0.580565721 0.6140864 0.6476070 0.669782 60 5.70769e-01 0.593053527 0.6267388 0.6604241 0.682708 61 5.83005e-01 0.605390690 0.6392293 0.6730679 0.695454 62 5.95098e-01 0.617577451 0.6515577 0.6855380 0.708017 63 6.07048e-01 0.629613656 0.6637242 0.6978347 0.720400 64 6.18854e-01 0.641498766 0.6757287 0.7099586 0.732603 65 6.30515e-01 0.653231865 0.6875711 0.7219104 0.744627 66 6.42028e-01 0.664811658 0.6992516 0.7336916 0.756475 67 6.53391e-01 0.676236478 0.7107701 0.7453037 0.768149 68 6.64600e-01 0.687504287 0.7221266 0.7567489 0.779653 69 6.75652e-01 0.698612675 0.7333211 0.7680295 0.790991 70 6.86541e-01 0.709558867 0.7443536 0.7791483 0.802166 71 6.97262e-01 0.720339721 0.7552241 0.7901084 0.813186 72 7.07810e-01 0.730951740 0.7659326 0.8009134 0.824055 73 7.18179e-01 0.741391078 0.7764791 0.8115671 0.834779 74 7.28361e-01 0.751653555 0.7868636 0.8220736 0.845367 75 7.38348e-01 0.761734678 0.7970861 0.8324375 0.855824 76 7.48134e-01 0.771629669 0.8071466 0.8426636 0.866160 77 7.57709e-01 0.781333498 0.8170452 0.8527568 0.876382 78 7.67065e-01 0.790840929 0.8267817 0.8627224 0.886499 79 7.76192e-01 0.800146569 0.8363562 0.8725659 0.896520 80 7.85083e-01 0.809244928 0.8457688 0.8822926 0.906455 81 7.93727e-01 0.818130488 0.8550193 0.8919081 0.916312 82 8.02116e-01 0.826797774 0.8641079 0.9014179 0.926100 83 8.10240e-01 0.835241429 0.8730344 0.9108274 0.935829 84 8.18091e-01 0.843456291 0.8817990 0.9201417 0.945507 85 8.25661e-01 0.851437463 0.8904015 0.9293656 0.955142 86 8.32942e-01 0.859180385 0.8988421 0.9385038 0.964742 87 8.39928e-01 0.866680887 0.9071207 0.9475605 0.974313 88 8.46612e-01 0.873935236 0.9152373 0.9565393 0.983862 89 8.52989e-01 0.880940170 0.9231918 0.9654435 0.993395 90 8.59054e-01 0.887692913 0.9309844 0.9742760 1.002915 91 8.64803e-01 0.894191180 0.9386150 0.9830389 1.012427 92 8.70233e-01 0.900433167 0.9460836 0.9917341 1.021934 93 8.75343e-01 0.906417527 0.9533902 1.0003629 1.031437 94 8.80130e-01 0.912143340 0.9605348 1.0089263 1.040939 95 8.84594e-01 0.917610075 0.9675174 1.0174248 1.050441 96 8.88735e-01 0.922817542 0.9743381 1.0258586 1.059942 97 8.92551e-01 0.927765853 0.9809967 1.0342275 1.069442 98 8.96045e-01 0.932455371 0.9874933 1.0425312 1.078941 99 8.99218e-01 0.936886669 0.9938279 1.0507692 1.088438 100 9.02069e-01 0.941060487 1.0000006 1.0589406 1.097932 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0278152 0.0278152 0.8153868 1.0000006 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) {tau=0.5}-quantile; dimensionality of fit: 4 from {4} x$knots[1:4]: -1.000002, -0.632653, 0.183673, 1.000002 with 3 pointwise constraints coef[1:4]: 0.0504467, 0.0504467, 0.6305155, 1.0000009 R^2 = 93.83% ; empirical tau (over all): 21/50 = 0.42 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > with(coS, cbind(pp.lambda, pp.sic, k0, ifl, icyc)) pp.lambda pp.sic k0 ifl icyc [1,] 3.54019e-05 -2.64644 22 1 21 [2,] 6.92936e-05 -2.64644 22 1 21 [3,] 1.35631e-04 -2.64644 22 1 20 [4,] 2.65477e-04 -2.64644 22 1 22 [5,] 5.19629e-04 -2.64644 22 1 22 [6,] 1.01709e-03 -2.64644 22 1 23 [7,] 1.99080e-03 -2.68274 21 1 20 [8,] 3.89667e-03 -2.75212 19 1 18 [9,] 7.62711e-03 -2.73932 19 1 14 [10,] 1.49289e-02 -2.85261 16 1 13 [11,] 2.92209e-02 -2.97873 12 1 12 [12,] 5.71953e-02 -3.01058 11 1 12 [13,] 1.11951e-01 -3.04364 10 1 11 [14,] 2.19126e-01 -3.11242 8 1 12 [15,] 4.28904e-01 -3.17913 6 1 12 [16,] 8.39512e-01 -3.18824 5 1 11 [17,] 1.64321e+00 -3.01467 5 1 12 [18,] 3.21633e+00 -3.01380 4 1 11 [19,] 6.29545e+00 -3.01380 4 1 10 [20,] 1.23223e+01 -3.01380 4 1 11 [21,] 2.41190e+01 -3.01380 4 1 11 [22,] 4.72092e+01 -3.01380 4 1 10 [23,] 9.24046e+01 -3.01380 4 1 10 [24,] 1.80867e+02 -3.01380 4 1 10 [25,] 3.54019e+02 -3.01380 4 1 10 > with(coS, plot(pp.sic ~ pp.lambda, type = "b", log = "x", col=2, + main = deparse(call))) > ##-> very nice minimum close to 1 > > summaryCobs(coS) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", lambda = -1, pointwise = con, trace = 3) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : NULL $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi TRUE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.2254 0.0829 0.062 -0.0562 -0.0862 ... $ fitted : num [1:50] 0 0.00869 0.01837 0.02906 0.04075 ... $ coef : num [1:22] 0 0.00819 0.03365 0.06662 0.10458 ... $ knots : num [1:20] -1 -0.918 -0.796 -0.714 -0.592 ... $ k0 : int [1:25] 22 22 22 22 22 22 21 19 19 16 ... $ k : int 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : Named num 0.84 ..- attr(*, "names")= chr "lambda" $ icyc : int [1:25] 21 21 20 22 22 23 20 18 14 13 ... $ ifl : int [1:25] 1 1 1 1 1 1 1 1 1 1 ... $ pp.lambda : num [1:25] 0 0 0 0 0.001 0.001 0.002 0.004 0.008 0.015 ... $ pp.sic : num [1:25] -2.65 -2.65 -2.65 -2.65 -2.65 ... $ i.mask : logi [1:25] TRUE TRUE TRUE TRUE TRUE TRUE ... cb.lo ci.lo fit ci.up cb.up 1 -0.07071332 -0.03907635 -3.77249e-07 0.0390756 0.0707126 2 -0.06555125 -0.03435600 4.17438e-03 0.0427048 0.0739000 3 -0.06016465 -0.02940203 8.59400e-03 0.0465900 0.0773526 4 -0.05455349 -0.02421442 1.32585e-02 0.0507314 0.0810704 5 -0.04871809 -0.01879334 1.81678e-02 0.0551289 0.0850537 6 -0.04265897 -0.01313909 2.33220e-02 0.0597831 0.0893029 7 -0.03637554 -0.00725134 2.87210e-02 0.0646934 0.0938176 8 -0.02986704 -0.00112966 3.43649e-02 0.0698595 0.0985969 9 -0.02313305 0.00522618 4.02537e-02 0.0752812 0.1036404 10 -0.01617351 0.01181620 4.63873e-02 0.0809584 0.1089481 11 -0.00898880 0.01864020 5.27658e-02 0.0868914 0.1145204 12 -0.00157983 0.02569768 5.93891e-02 0.0930806 0.1203581 13 0.00605308 0.03298846 6.62573e-02 0.0995262 0.1264615 14 0.01391000 0.04051257 7.33704e-02 0.1062282 0.1328307 15 0.02199057 0.04826981 8.07283e-02 0.1131867 0.1394660 16 0.03029461 0.05626010 8.83310e-02 0.1204020 0.1463675 17 0.03882336 0.06448412 9.61787e-02 0.1278732 0.1535339 18 0.04757769 0.07294234 1.04271e-01 0.1355999 0.1609646 19 0.05655804 0.08163500 1.12608e-01 0.1435819 0.1686589 20 0.06576441 0.09056212 1.21191e-01 0.1518192 0.1766169 21 0.07519637 0.09972344 1.30018e-01 0.1603120 0.1848391 22 0.08485262 0.10911826 1.39090e-01 0.1690610 0.1933266 23 0.09473211 0.11874598 1.48406e-01 0.1780668 0.2020807 24 0.10483493 0.12860668 1.57968e-01 0.1873294 0.2111011 25 0.11516076 0.13870015 1.67775e-01 0.1968489 0.2203882 26 0.12570956 0.14902638 1.77826e-01 0.2066253 0.2299421 27 0.13648327 0.15958645 1.88122e-01 0.2166576 0.2397608 28 0.14748286 0.17038090 1.98663e-01 0.2269453 0.2498433 29 0.15870881 0.18140998 2.09449e-01 0.2374880 0.2601892 30 0.17016110 0.19267368 2.20480e-01 0.2482859 0.2707984 31 0.18183922 0.20417172 2.31755e-01 0.2593391 0.2816716 32 0.19374227 0.21590361 2.43276e-01 0.2706482 0.2928095 33 0.20587062 0.22786955 2.55041e-01 0.2822129 0.3042118 34 0.21822524 0.24007008 2.67051e-01 0.2940328 0.3158776 35 0.23080666 0.25250549 2.79306e-01 0.3061075 0.3278063 36 0.24361488 0.26517577 2.91806e-01 0.3184370 0.3399979 37 0.25664938 0.27808064 3.04551e-01 0.3310217 0.3524530 38 0.26990862 0.29121926 3.17541e-01 0.3438624 0.3651730 39 0.28339034 0.30459037 3.30775e-01 0.3569602 0.3781603 40 0.29709467 0.31819405 3.44255e-01 0.3703152 0.3914146 41 0.31102144 0.33203019 3.57979e-01 0.3839275 0.4049363 42 0.32517059 0.34609876 3.71948e-01 0.3977971 0.4187252 43 0.33954481 0.36040126 3.86162e-01 0.4119224 0.4327789 44 0.35414537 0.37493839 4.00621e-01 0.4263028 0.4470958 45 0.36897279 0.38971043 4.15324e-01 0.4409381 0.4616757 46 0.38402708 0.40471738 4.30273e-01 0.4558281 0.4765184 47 0.39930767 0.41995895 4.45466e-01 0.4709732 0.4916245 48 0.41479557 0.43541678 4.60887e-01 0.4863568 0.5069780 49 0.43039487 0.45099622 4.76442e-01 0.5018872 0.5224885 50 0.44609197 0.46668362 4.92117e-01 0.5175506 0.5381422 51 0.46188684 0.48247895 5.07913e-01 0.5333471 0.5539392 52 0.47773555 0.49833835 5.23786e-01 0.5492329 0.5698357 53 0.49336687 0.51398935 5.39461e-01 0.5649325 0.5855550 54 0.50873469 0.52938518 5.54891e-01 0.5803975 0.6010480 55 0.52383955 0.54452615 5.70077e-01 0.5956277 0.6163143 56 0.53868141 0.55941225 5.85018e-01 0.6106231 0.6313539 57 0.55325974 0.57404316 5.99714e-01 0.6253839 0.6461673 58 0.56757320 0.58841816 6.14165e-01 0.6399109 0.6607558 59 0.58161907 0.60253574 6.28371e-01 0.6542056 0.6751223 60 0.59539741 0.61639593 6.42332e-01 0.6682680 0.6892665 61 0.60890835 0.62999881 6.56048e-01 0.6820980 0.7031884 62 0.62215175 0.64334429 6.69520e-01 0.6956957 0.7168882 63 0.63512996 0.65643368 6.82747e-01 0.7090597 0.7303634 64 0.64784450 0.66926783 6.95729e-01 0.7221893 0.7436126 65 0.66029589 0.68184700 7.08466e-01 0.7350841 0.7566352 66 0.67248408 0.69417118 7.20958e-01 0.7477442 0.7694313 67 0.68440855 0.70624008 7.33205e-01 0.7601699 0.7820014 68 0.69606829 0.71805313 7.45207e-01 0.7723617 0.7943465 69 0.70746295 0.72961016 7.56965e-01 0.7843198 0.8064670 70 0.71859343 0.74091165 7.68478e-01 0.7960438 0.8183620 71 0.72946023 0.75195789 7.79746e-01 0.8075332 0.8300309 72 0.74006337 0.76274887 7.90769e-01 0.8187883 0.8414738 73 0.75040233 0.77328433 8.01547e-01 0.8298091 0.8526911 74 0.76047612 0.78356369 8.12080e-01 0.8405963 0.8636839 75 0.77028266 0.79358583 8.22368e-01 0.8511510 0.8744542 76 0.77982200 0.80335076 8.32412e-01 0.8614732 0.8850020 77 0.78909446 0.81285866 8.42211e-01 0.8715627 0.8953269 78 0.79809990 0.82210946 8.51765e-01 0.8814196 0.9054292 79 0.80683951 0.83110382 8.61074e-01 0.8910433 0.9153076 80 0.81531459 0.83984244 8.70138e-01 0.9004329 0.9249608 81 0.82352559 0.84832559 8.78957e-01 0.9095884 0.9343884 82 0.83147249 0.85655324 8.87531e-01 0.9185095 0.9435903 83 0.83915483 0.86452515 8.95861e-01 0.9271968 0.9525671 84 0.84657171 0.87224082 9.03946e-01 0.9356505 0.9613196 85 0.85372180 0.87969951 9.11786e-01 0.9438715 0.9698492 86 0.86060525 0.88690131 9.19381e-01 0.9518597 0.9781558 87 0.86722242 0.89384640 9.26731e-01 0.9596149 0.9862389 88 0.87357322 0.90053476 9.33836e-01 0.9671371 0.9940986 89 0.87965804 0.90696658 9.40696e-01 0.9744261 1.0017347 90 0.88547781 0.91314239 9.47312e-01 0.9814814 1.0091460 91 0.89103290 0.91906239 9.53683e-01 0.9883028 1.0163323 92 0.89632328 0.92472655 9.59808e-01 0.9948904 1.0232937 93 0.90134850 0.93013464 9.65689e-01 1.0012443 1.0300304 94 0.90610776 0.93528622 9.71326e-01 1.0073650 1.0365434 95 0.91060065 0.94018104 9.76717e-01 1.0132527 1.0428331 96 0.91482784 0.94481950 9.81863e-01 1.0189071 1.0488987 97 0.91878971 0.94920179 9.86765e-01 1.0243279 1.0547400 98 0.92248624 0.95332789 9.91422e-01 1.0295152 1.0603569 99 0.92591703 0.95719761 9.95833e-01 1.0344692 1.0657498 100 0.92908136 0.96081053 1.00000e+00 1.0391902 1.0709194 knots : [1] -1.0000020 -0.9183673 -0.7959184 -0.7142857 -0.5918367 -0.5102041 [7] -0.3877551 -0.2653061 -0.1836735 -0.0612245 0.0204082 0.1428571 [13] 0.2244898 0.3469388 0.4693878 0.5510204 0.6734694 0.7551020 [19] 0.8775510 1.0000020 coef : [1] -4.01161e-07 8.18714e-03 3.36534e-02 6.66159e-02 1.04576e-01 [6] 1.50032e-01 2.00486e-01 2.70027e-01 3.35473e-01 4.05918e-01 [11] 4.83858e-01 5.64259e-01 6.37163e-01 7.05069e-01 7.77561e-01 [16] 8.30474e-01 8.78390e-01 9.18810e-01 9.54232e-01 9.87743e-01 [21] 1.00000e+00 5.99960e-01 > > plot(x, y, main = "cobs(x,y, constraint=\"increase\", pointwise = *)") > matlines(x, cbind(fitted(coR), fitted(coR1), fitted(coS)), + col = 2:4, lty=1) > > ##-- real data example (still n = 50) > data(cars) > attach(cars) > co1 <- cobs(speed, dist, "increase") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > co1.1 <- cobs(speed, dist, "increase", knots.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > co1.2 <- cobs(speed, dist, "increase", knots.add = TRUE, repeat.delete.add = TRUE) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Searching for missing knots ... > ## These three all give the same -- only remaining knots (outermost data): > ic <- which("call" == names(co1)) > stopifnot(all.equal(co1[-ic], co1.1[-ic]), + all.equal(co1[-ic], co1.2[-ic])) > 1 - sum(co1 $ resid ^2) / sum((dist - mean(dist))^2) # R^2 = 64.2% [1] 0.642288 > > co2 <- cobs(speed, dist, "increase", lambda = -1)# 6 warnings Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.002 0.001 0.002 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) > > showProc.time() Time (user system elapsed): 0.681 0.035 1.101 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.049 0 0.05 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > summary(co.o50.) COBS smoothing spline (degree = 2) from call: cobs(x = day, y = speed, constraint = "periodic", nknots = 10, method = "quantile", tau = 0.5, lambda = -1, knots.add = TRUE) {tau=0.5}-quantile; dimensionality of fit: 7 from {14,13,11,8,7,30} x$knots[1:10]: 0.999635, 41.000000, 82.000000, ... , 366.000365 lambda = 101002.6, selected via SIC, out of 25 ones. coef[1:12]: 1.121550e+01, 1.139573e+01, 1.089025e+01, 9.954427e+00, 8.148158e+00, ... , 5.373106e-04 R^2 = 8.22% ; empirical tau (over all): 3287/6574 = 0.5 (target tau= 0.5) > summary(pc.5 <- predict(co.o50., interval = "both")) z fit cb.lo cb.up Min. : 0.9996 Min. : 7.212 Min. : 6.351 Min. : 7.951 1st Qu.: 92.2498 1st Qu.: 7.790 1st Qu.: 7.000 1st Qu.: 8.600 Median :183.5000 Median : 9.436 Median : 8.555 Median :10.326 Mean :183.5000 Mean : 9.314 Mean : 8.388 Mean :10.241 3rd Qu.:274.7502 3rd Qu.:10.798 3rd Qu.: 9.716 3rd Qu.:11.787 Max. :366.0004 Max. :11.290 Max. :10.347 Max. :13.416 ci.lo ci.up Min. : 6.782 Min. : 7.598 1st Qu.: 7.370 1st Qu.: 8.213 Median : 8.974 Median : 9.901 Mean : 8.830 Mean : 9.798 3rd Qu.:10.197 3rd Qu.:11.311 Max. :10.797 Max. :12.366 > > showProc.time() Time (user system elapsed): 2.83 0.017 3.206 > > if(doExtra) { ## + repeat.delete.add + co.o50.. <- cobs(day,speed, knots.add = TRUE, repeat.delete.add=TRUE, + constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") + summary(co.o50..) + showProc.time() + } > > co.o9 <- ## Compute the .9 quantile smoothing B-spline + cobs(day,speed,knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .9,lambda = -1, method = "uniform") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-fedora-clang