(L=
|- ©

GAISLER RESEARCH

LEON3 GR-XC3S5-1500 Template Design

Based on GRLIB, October 2006

Jiri Gaisler, Marko | somaki

Copyright Gaisler Research, 2006.

1.1

1.2

1.3

Introduction

Scope

This document describes a LEON3 template design customized for the GR-X C3S-1500 FPGA devel-
opment board. The template design is intended to familiarize users with the LEON3 processor and the
GRLIPIPlibrary.

Requirements

The following hardware and software components are required in order to use and implement the GR-
XC3S-1500 LEON3 templ ate design:

e GRLIBIPLibrary 1.0.8

* PCwork station with Linux or Windows 2000/XP with Cygwin

* GR-XC3S5-1500 board with JTAG programming cable

e Xilinx ISE 7.1.04i Development software (WebPack or Regular Edition)
* Synplicity Synplify 8.4 or higher (optional).

For LEON3 software development, the following tools are recommended
* BCCBare-C LEON Cross-compiler 1.0.24
* RCCRTEMSERC32/LEON Cross-compiler system 1.0.12

GR-XC3S-1500 board

The GR-XC3S-1500 board is developed by Pender Electronic Design (CH), and provides a flexible
and low-cost prototype platform for LEON systems. The GR-XC3S-1500 board has the following
features:

» Xilinx Spartan3 XC3S-1500-4 FPGA

e 8 Mbyteflash prom (8Mx8) and 64 Mbyte SDRAM (16Mx32)
* Two RS-232 interfaces

+ USB-2.0PHY

* 10/100 Mbit/s ethernet PHY

» Two PS/2interfaces

VGA video DAC and 15-pin connector

« JTAG interface for programming and debug

e 4x20 pin expansion connectors

14

=

L __1

-

L}

e

‘R
G

GR-XC3S-1500 Devel opment Board

Reference documents

The LEON3 template design is based on GRLIB, and uses the GRLIP AMBA plug& play configura-
tion method. The following manuals should therefore be carefully studied in order to understand the

design concept:

e GRLIB User'sManual 1.0.8
* AMBA Specification 2.0

* GRLIB IP Core'sManud

21

Architecture

Overview

The LEON3 GR-XC3S-1500 template design consists of the LEON3 processor and a set of |P cores
connected through the AMBA AHB/APB buses.

RS232 JTAG PHY 3x LVDS 2x CAN
Spartan3-1500 FPGA

r——— - - - - - - - - -\ — — - - - 0 - - — | — — 1
| Serial JTAG Ethernet | [SpaceWire| |Multi-core |

LEONS |jummm DSU3 Dbg Link | | Dbg Link MAC Links CAN-2.0
| Processor |
| AMBA AHB ‘ ‘ |
| AMBA APB |

AHB Memory AHB/APB I I I T T 1
| Controller Controller Bridge |
| PS/2 UART Timers IrqCtrl 1/0 port |
L - - - - - r - - — — — 4
8/32-bits memory bus

Vldeo PS/2 IF RS232 WDOG 16-bit 1/0 port

PROM 110 SDRAM

Figure 1. LEONS3 template design block diagram

The design is centered around the AMBA Advanced High-Speed bus (AHB), to which the LEON3
processor and other high-bandwidth devices are connected. External memory is accessed through a
combined PROM/IO/SRAM/SDRAM memory controller. The on-chip peripheral devices include
three SpaceWire links, ethernet 10/100 Mbit MAC, dual CAN-2.0 interface, serial and JTAG debug
interfaces, two UARTS, interrupt controller, timers and an |/O port. The design is highly configurable,
and the various features can be suppressed if desired.

Most parts of the design is provided in source code under the GNU GPL license. The exception is the
floating-point unit (GRFPU-Lite) and the SpaceWire core, which are only available under a commer-
cial license. For evaluation and prototyping, suitable netlists for the GR-XC3S-1500 board are pro-
vided. The netlists will automatically be included in the design during place& route.

The LEONS processors and associated |P cores aso exist in a fault-tolerant (FT) version. The FT
cores detects and removes SEU errors due to cosmic radiation, and are particularly suitable for sys-
tems that operate in the space environment. The FT version of LEONS3 and GRLIB is only licensed
commercially, please contact Gaisler Research for further details.

2.2 LEONS3SPARC V8 processor

Thetemplate design is based the LEON3 SPARC V8 processor. The processor core can be extensively
configured through the xconfig graphical configuration program. In the default configuration, the
cache system consists or 8 + 4 Kbyte I/D cache with cache snooping enabled. The LEON3 debug sup-
port unit (DSU3) is also enabled by default, allowing downloading and debugging of programs

through a serial port or JTAG

3-Port Register File

IEEE-754 FPU

7-Stage

Trace Buffer

[&——» Debug support unit

\&—— Interrupt controller

Co-Processor Integer pipeline Debug port
HW MUL/DIV Interrupt port
b
Local IRAM ‘ I-Cache ‘ D-Cache Local DRAM
/D MMU
AHB I/F

!

AMBA AHB Master (32-bit)

Figure 2. LEON3 processor core block diagram

23 Memory interfaces

The external memory is interfaced through a combined PROM/IO/SRAM/SDRAM memory control-
ler core (MCTRL). The GR-XC3S-1500 board provides 8 Mbyte flash PROM and 64 Mbyte
SDRAM, and the SRAM and |/O signals are available on the extension connectors.

APB AHB A D
ROMSN[L:0] cs
OEN ot PROM * [® R
WRITEN WE ° @ »
< I
@ v 10SN cs |
Lo 110 /; D .
MEMORY M . v
CONTROLLER
RAMSN[4:0] cs
RAMOEN([4:0] ce SRAM
RWEN[3:0] WE hg
MBEN(3:0] MBEN
16:15]
sDeLK CLK i |
e) SDCSN[L:0] CSN [14:2]
SDRASN RAS SDRAM A .
SDCASN CAS
SDWEN WE D
SDDQM[3:0] DQM
Al27:0] :
D[31:0] : :.

Figure 3. PROM/IO/SRAM/SDRAM Memory controller

24 AHB statusregister

The AHB status register captures error responses on the AHB bus, and lock the failed address and
active master. These values allows the software to recover from error events in the system.

2.5

2.6

2.7

2.8

29

2.10

211

212

2.13

214

SpaceWirelinks

The template design can be configured with up to three SpaceWire links. Each link is controlled sepa-
rately through the APB bus, and transfers received and transmitted data through DMA transfer on
AHB. The SpaceWire links can aso optionally be configured with RMAP support in hardware.

Timer unit

The timer unit consists of acommon scaler and up to 7 individual timers. The timers can work in peri-
odical or on-shot mode. One of the timers can optionally be configured as a watchdog.

Interrupt controller

The interrupt controller handles up to 15 interrupts in two priority levels. The interrupt are automati-
cally assigned and routed to the controller through the use of the GRLIB plug& play system.

UART

One or two UARTS can be configured in the design. The UART have configurable FIFO sizes, and
have separate baud rate generators.

General purpose /O port

A genera purpose I/O port (GPIO) is provided in the design. The port can be 1 - 32 bits wide, and
each bit can be dynamically configured as input or output. The GPIO can aso generate interrupts
from external devices.

Ether net

An ethernet MAC can be enabled. The MAC supports 10/100 Mbit operation is half-or full duplex.
An ethernet based debug interface (EDCL) can optionally also be enabled.

CAN-2.0

One or two CAN-2.0 interfaces can be enabled. Thisinterface is based on the CAN core from Open-
cores, with some additional improvements.

VGA controller

A text-based video controller can optionally be enabled. The controller can display a 80x48 character
screen on a 640x480 monitor.

PS/2 keyboard interface

A PS/2 keyboard interface can optionally be enabled. It provides the scan codes from a regular key-
board, and has a 16 byte FIFO.

Clock generator

The portable clock generator core is used to generate the processor and synchronized SDRAM clock.
The clock generator can generate an arbitrary frequency by multiplying and dividing the 50 MHz
board clock. The clock scaling factor is configurable through the xconfig tool.

215 GRLIBIPCores
The design is based on the | P cores from the GRLIB IP library shown in table 1.

Table1l. Used IP cores

Core Function Vendor Device
LEON3 LEON3 SPARC V8 32-hit processor 0x01 0x003
DSU3 LEON3 Debug support unit 0x01 0x004
IRQMP LEONS Interrupt controller 0x01 0x00D
APBCTRL AHB/APB Bridge 0x01 0x006
MCTRL 32-bit PROM/SRAM/SDRAM controller 0x04 0x00F
AHBSTAT AHB failing address register 0x01 0x052
AHBUART Serial/AHB debug interface 0x01 0x007
AHBJTAG JTAG/AHB debug interface 0x01 0x01C
APBUART 8-bit UART with FIFO 0x01 0x00C
GPTIMER Modular timer unit with watchdog 0x01 0x011
GRGPIO General purpose I/O port 0x01 O0x01A
GRSPW SpaceWire link 0x01 Ox01F
ETH_OC 10/100 Mbit/s Ethernet MAC 0x01 0x01D
CAN_MC Multi-core CAN 2.0 interface 0x01 0x019
APBPS2 PS/2 Mouse/Keyboard interface 0x01 0x060
APBVGA Text-based VGA controller 0x01 0x061

216 Interrupts
The following table indicates the interrupt assignment:

Table 2. Interrupt assignment

Core Interrupt
APBUART1 2
APBUART2 3
APBPS2 5
AHBSTAT 7
GPTIMER 8,9
GRSPW 1,2, 3 10, 11, 12
ETH_OC 12

CAN 13,14

See the manual of the respective core for how and when the interrupts are raised. All interrupts are
forwarded to the LEON3 processor, through the IRQMP interrupt controller.

2.17 Memory map
The memory map of the AHB bus can be seen below:

Table3. AHB address range and bus indexes

Core Addressrange Bus Index
MCTRL 0x00000000 - 0x20000000 : PROM area 0
0x20000000 - 0x40000000 : 1/O area
0x40000000 - 0x80000000 : SRAM/SDRAM area

APBCTRL 0x80000000 - 0x81000000 : APB bridge 1
DSU3 (0x90000000 - 0xA0000000 : Registers 2
ETH_OC OxFFFB0000 - OxFFFB1000 : Registers 5
CAN_MC OxFFFC0000 - OxFFFC1000 : Registers 4

AHB plug&play OxFFFFF000 - OXFFFFFFFF : Registers

Access to addresses outside the ranges described above will return an AHB error response. The
detailed register layout is defined in the manual for each I P core. The control registers of most on-chip
peripherals are accessible viathe AHB/APB bridge, which is mapped at address 0x80000000.

Table4. APB address range and bus indexes

Core Addressrange Bus I ndex
MCTRL 0x80000000 - 0x80000100 0
APBUART 0x80000100 - 0x80000200 1
IRQMP 0x80000200 - 0x80000300 2
GPTIMER 0x80000300 - 0x80000400 3
APBPS2 0x80000500 - 0x80000600 5
APBVGA 0x80000600 - 0x80000700 6
AHBUART 0x80000700 - 0x80000800 7
GRGPIO (0x80000800 - 0x80000900 8
GRSPW 1 0x80000A 00 - 0x80000B00 12
GRSPW 2 (0x80000B00 - 0x80000C00 13
GRSPW 3 0x80000D00 - 0x80000EOO 14
AHBSTAT (0x80000F00 - 0x80001000 15
APB plug&play 0x800FF000 - 0x80100000 -

The address of the on-chip peripherals is defined through the AMBA plug& play configuration, and
can be changed by editing the top level design (leon3mp.vhd).

218 Signals

The template design has the following external signals.

Table5. Signals
Name Usage Direction Polarity
CLK Main system clock (50 MHz) In -
CLK3 Ethernet clock (25 MHz) In -

Table5. Signas

Name Usage Direction Polarity
RESETN System reset In Low
PLLREF Feedback for SDRAM clock generation In -
ERRORN Processor error mode indicator Out Low
ADDRESS[21:2] Memory word address Out High
DATA[31:0] Memory data bus BiDir High
RAMSN[3:0] SRAM chip selects Out Low
RAMOENT[3:0] SRAM output enable Out Low
RWEN][3:0] SRAM write enable strobe Out Low
OEN Output enable Out Low
WRITEN Write strobe Out Low
BRDYN Bus ready In Low
ROMSN[1:0] PROM chip select Out Low
IOSN 1/0 areachip select Out Low
READ Read cycle indicator Out High
SDCLK SDRAM Clock Out -
SDCSN[1:0] SDRAM chip select Out Low
SDWEN SDRAM write enable Out Low
SDRASN SDRAM row address select Out Low
SDCASN SDRAM column address select Out Low
SDDQM[3:0] SDRAM Data qualifier Out Low
DSUEN DSU Enable In High
DSUBRE DSU Break In High
DSUACT DSU Active Out High
TXD1 UART transmit data Out Low
RXD1 UART 1 receive data In Low
RTSN1 UART 1 ready to send Out Low
CTSN1 UART 1 clear to send In Low
TXD2 UART 2 transmit data Out Low
RXD2 UART 2 receive data In Low
RTSN2 UART 2 ready to send Out Low
CTSN2 UART 2 clear to send In Low
PIO[15:0] Genera purpose /O port BiDir High
TCK JTAG clock In High
T™MS JTAG strobe In High
TDI JTAG datain In High
TDO JTAG data out Out High

10

2.19

Table 6. SpaceWiresignals

Name Usage Direction Polarity
SPW_RXDP[0:2] SpaceWire receiver data LVDS pair In

SPW_RXDN[0:2]

SPW_RXSP[0:2] SpaceWire receiver strobe LVDS pair In

SPW_RXSN[0:2]

SPW_TXDP[0:2] SpaceWire transmitter data LV DS pair Out

SPW_RXDN[0:2]

SPW_TXSF[0:2] SpaceWire transmitter strobe LV DS pair Out

SPW_RXSN[0:2]

The mapping of the signals to the FPGA pins is provided in the leon3mp.ucf file. The .ucf file also
includes placement constraints for the SDRAM clock manager (DCM) and the SpaceWire clock re-
generation logic. The SpaceWire signals are mapped on the J13 connector, using balanced PCB traces

to minimize skew. See the GR-XC3S-1500 manual and schematics for details.

CAN signals

The CAN interface signals are mapped on the 16-bit GPIO port (PIO[15:0]). When one or more CAN
interfaces are enabled in the configuration, the CAN signal will replace certain PIO signas, as defined

in the table below.

Table7. CAN signals

Name Usage Direction PIO

CAN_TXD1 CAN core 1 transmit Out PIO[5]
CAN_RXD1 CAN core 1 receive In PIO[4]
CAN_TXD2 CAN core 2 transmit Out PIO[2]
CAN_RXD2 CAN core 2 receive In PIO[1]

31

3.2

3.3

34

11
Simulation and synthesis

Design flow

Configuring and implementing the LEON3 template design on the GR-XC3S-1500 board is done in
three basic steps:

e Configuration of the design using xconfig
e Simulation of design and test bench (optional)
e Synthesis and place&route

The template design is based on the GRLIB IP library, and all implementation step are described in
detailedinthe‘GRLIB IP Library User’s Manual’. The following sections will summarize these steps,
but will not provide a exhaustive description.

Installation

The template design is distributed together with the GRLIP IP library. The library is provided as a
gzipped tar file, which should be extracted as follows:

tar xzf grlib-eval-1.0.8.tar.gz

The will create a directory called grlib-eval-1.0.4, containing all IP cores an template designs. On
windows hosts, the extraction and all further steps should be made inside a Cygwin shell.

Template design overview

The template design is located in grlib-1.0.8/designs/leon3-gr-xc3s-1500, and is based on three files:

» config.vhd - aVHDL package containing design configuration parameters. Automatically gener-
ated by the xconfig GUI tool.

e leon3mp.vhd - contains the top level entity and instantiates all on-chip IP cores. It uses con-
fig.vhd to configure the instantiated | P cores.

e testbench.vhd - test bench with external memory, emulating the GR-XC3S-1500 board.

Each core in the template design is configurable using VHDL generics. The value of these genericsis
assigned from the constants declared in config.vhd, created with the xconfig GUI tool.

Configuration

Configuration of the template design is done by issuing the ‘make xconfig’ command in the design
directory. This will launch the xconfig GUI tool. When the configuration is saved and xconfig is
exited, the config.vhd is automatically updated with the selected configuration:

=L AR g Limtig e [T}
sy | Dby st o wrnl |xdl
Ooch gessraion | Peepibersls il B Foving
T SN E. f R 4 L..:..u-.,rg..:u-.-|_m.

AHER comfigrion | ftars Contgertion o Fie

Figure 4. Xconfig GUI

12

3.5

Simulation

Thetemplate design can be simulated in atest bench that emulates the prototype board. The test bench
includes external PROM and SDRAM which are pre-loaded with a test program. The test program
will execute on the LEON3 processor, and test various functionality in the design. The test program
will print diagnostics on the simulator console during the execution.

The following command should be give to compile and simulate the template design and test bench:

meke vsim
vsi m t est bench

A typical simulation log can be seen below.
$ vsimtestbench
VSIM 1> run -a

LEON3 GR- XC3S- 1500 Denonstration design
GRLIB Version 1.0.4

ahbctrl :
ahbctrl :
ahbctrl:

menory at 0x90000000,

Target technol ogy: spartan3, nenory library: spartan3

ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor

ahbctrl: nmstl: Gaisler Research AHB Debug UART

ahbctrl: nst2: Gaisler Research JTAG Debug Li nk

ahbctrl: slv0: European Space Agency Leon2 Menory Controller

ahbctrl : menory at 0x00000000, size 512 Moiyte, cacheable, prefetch
ahbctrl : menory at 0x20000000, size 512 Moyte

ahbctrl : menmory at 0x40000000, size 1024 Moyte, cacheable, prefetch
ahbctrl: slvl: Gaisler Research AHB/ APB Bri dge

ahbctrl : menory at 0x80000000, size 1 Myyte

ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit

size 256 Muyte

AHB arbiter/multiplexer rev 1
Common |/ O area at Oxfff00000,

1 Myte

ahbctrl: Configuration area at Oxfffff000, 4 kbyte

apbctrl: APB Bridge at 0x80000000 rev 1

apbctrl: slv0: European Space Agency Leon2 Menory Controller
apbctrl: 1/0O ports at 0x80000000, size 256 byte

apbctrl: slvl: Gaisler Research Generic UART

apbctrl: I/0O ports at 0x80000100, size 256 byte

apbctrl: slv2: Gaisler Research Mul ti-processor Interrupt Crl.
apbctrl: I1/0O ports at 0x80000200, size 256 byte

apbctrl: slv3: Gaisler Research Modul ar Timer Unit
apbctrl: 1/0O ports at 0x80000300, size 256 byte

apbctrl: slv7: Gaisler Research AHB Debug UART

apbctrl: I/0 ports at 0x80000700, size 256 byte

apbctrl: slv8: Gaisler Research General Purpose |/0O port
apbctrl: I1/0O ports at 0x80000800, size 256 byte

apbctrl: slv1l5: Gaisler Research AHB Status Register

B T T T i o e s T T i i - S T T i i i T T T - S T S

apbctrl: 1/0O ports at 0x80000f 00, size 256 byte
ahbstat15: AHB status unit rev 0, irq 7
grgpi 08: 18-bit GPIO Unit rev O

2 32-bit timers,
rev 3, #cpu 1

rev 0, 8-bit scaler,
Interrupt Controller
fifo 8, irq 2

gptiner3: GR Timer Unit
irgmp: Milti-processor
apbuart1: Generic UART rev 1,
ahbjtag AHB Debug JTAG rev 0O
ahbuart7: AHB Debug UART rev 0

irg 8

dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
| eon3_0: LEON3 SPARC V8 processor rev 0

| eon3_0: icache 1*8 kbyte, dcache 1*4 kbyte

cl kgen_virtex2: virtex-2 sdranfpci clock generator, version 1

cl kgen_virtex2: Frequency 50000 KHz, DCM divisor 4/5

**** GRLIB systemtest starting ****
Leon3 SPARC V8 Processor
register file
mul tiplier
cache system
Mil ti - processor
Generic UART

Interrupt Ctrl.

3.6

3.7

13

Modul ar Timer Unit
Test passed, halting with U error node

Time: 1009488500 ps |Iteration: O Process: /testbench/iuerr File: testbench.vhd
Break at testbench.vhd line 264
St opped at testbench.vhd |ine 264
VSI M 2>

#
#
#
** Failure: *** [Uin error node, sinulation halted ***
#
#
#

The test program executed by the test bench consists of two parts, a simple prom boot loader (prom.S)
and the test program itself (systest.c). Both parts can be re-compiled using the * make soft’ command.
This requires that the BCC tool-chain isinstalled on the host computer.

NOTE: the design cannot be simulated when spacewire or GRFPU-Lite are enabled, as these two
block are only provided as netlist. These blocks should therefore only be enabled for synthesis.

Synthesis and place& route

The template design can be synthesized with either Synplify-8.2.1 or ISE-7.1.04i. Synthesis can be
donein batch or interactively. To use synplify in batch mode, use the command:

make synplify

To use synplify interactively, use:

make scripts
synplify | eon3nmp_synplify.prj

The corresponding command for I SE are:

make i se-map
or

make scripts
ise leon3np.ise

To perform place& route for a netlist generated with synplify, use:
make ise-synp

For anetlist generated with XST, use:

make ise

In both cases, the final programming file will be called *leon3mp.bit’. See the GRLIB User’'s Manual
chapter 3 for details on simulation and synthesis script files.

Board re-programming

The GR-XC3S-1500 FPGA configuration PROMs can be programmed from the shell window with
the following command:

make i se-prog-prom

For interactive programming, use Xilinx Impact software. See the GR-XC3S-1500 Manual for details
on which configuration PROMs to specify.

A pre-compiled FPGA hit file is provided in the bitfiles directory, and the board can be re-pro-
grammed with this bit file using:

make i se-prog-promref

14

4.1

4.2

4.3

4.4

Softwar e development

Tool chains

The LEON3 processor is supported by several software tool chains:
e Bare-C cross-compiler system (BCC)

e RTEMScross-compiler system (RCC)

e Snapgear embedded linux

* eCosred-time kernel

All these tool chains and associated documentation can be downloaded from www.gaisler.com.

Downloading softwareto the tar get system

LEONS has an on-chip debug support unit (DSU) which greatly simplifies the debugging of software
on atarget system. The DSU provides full access to all processor registers and system memory, and
also includes instruction and data trace buffers. Downloading and debugging of software is done
using the GRMON debug monitor, atool that runs on the host computer and communicates with the
target through either serial or JTAG interfaces.

Please refer to the GRMON User’s Manual for a description of the GRMON operations.

Flash PROM programming

The GR-XC3S-1500 board has a 64 Mbit (8Mx8) Intel flash PROM for LEONS application software.
A PROM image is typicaly created with the sparc-elf-mkprom utility provided with the BCC tool
chain. The suitable mkprom parameters for the GR-XC3S-1500 board are:

sparc-el f-mkprom -romns 4 -freq 40 -col 9 -nosram -sdram 64 -nsoft-float -baud 38400

Note that the -freq option should reflect the selected processor frequency, which depends on the clock
generator settings. If the processor includes an FPU, the -msoft-float switch can be omitted.

Once the PROM image has been created, the on-board flash PROM can be programmed through
GRMON. The procedure is described in the GRMON manual, below is the required GRMON com-
mand sequence:

flash erase all
flash | oad prom out

RTEM S spacewiredriver and demo program

The RTEM S tool chain (RCC) contains adriver for the spacewire corein the LEONS template design.
The operation of the driver is described in the RTEMS SPARC BSP Manual. A sample spacewire
application is provided with the template design in software/rtems-sendback.c. The sample applica-
tion receives spacewire data using node address 1, and sends all received data back on the spacewire
transmitter to node address 2. On selected GR-X C3S-1500 boards, this sample application is aready
programmed into the flash PROM. It is then possible to perform a loop-back test using an external
spacewire test equipment (such as GRESB from Gaisler Research).

5.1

15
L EON3 - High-performance SPARC V8 32-bit Processor

Overview

LEON3 is a 32-hit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features. 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
pprocessor extensions.

3-Port Register File

IEEE-754 FPU Trace Buffer

7-Stage

Co-Processor B .
Integer pipeline

Debug port |[¢—— Debug support unit

HW MUL/DIV Interrupt port [¢———» Interrupt controller
Local IRAM I-Cache | D-Cache | Local DRAM
ITLB SRMMU DTLB
AHB I/F

!

AMBA AHB Master (32-bit)

Figure 5. LEONS processor core block diagram

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

5.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

5.1.2 Cachesub-system

LEONS has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch
pad ram can be added to both the instruction and data cache controllers to allow O-waitstates access
memory without data write back.

16

5.1.3 Floating-point unit and co-processor

The LEONS integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU (available from Gaisler
Research) and one for the Meiko FPU core (available from Sun Microsystems). The floating-point
processors and co-processor execute in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

514 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and 36-bit physical memory. A three-level hardware table-walk is
implemented, and the MMU can be configured to up to 64 fully associative TLB entries.

5.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also alows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

5.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with atotal of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

517 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are gener-
ated to optimise the data transfer.

5.1.8 Power-down mode

The LEONS3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. Thisis an efficient way to minimize power-consumption when the application
isidle, and does not require tool-specific support in form of clock gating.

5.1.9 Multi-processor support

LEON3 is designed to be use in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.

5.1.10 Performance

Using 8K + 8K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,500 iteration/s/
MHz using the gcc-3.4.4 compiler (-02). Thistrandates to 0.85 dhrystone MIPS/MHz using the VAX
11/780 value areference for one MIPS.

5.2

LEONS3 integer unit

521 Overview

17

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation isfocused on high performance and low complexity. The LEON3 integer unit has the following

main features:

» 7-stageinstruction pipeline
e Separateinstruction and data cache interface

» Support for 2 - 32 register windows

» Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator
* Radix-2 divider (non-restoring)
* Single-vector trapping for reduced code size

Figure 6 shows a block diagram of the integer unit.

I-cache

data address

call/branch address

@i jmpa tbr
[|

Fetch
[—d nst] pdpc}
Decode
777777777777 Drmst]---------DPTrpPe } ------------ -~ FiMm]- - - - - = = = = = = = = = = = = = — = = - - -
—|rd
register file imm
rsl rs2
Register Access [‘ y, thr, wim, psr
N
———————————— Cems - - - - - - - - - et ST - - DORENG2 - - - - - e
I 1 l [
Execute < s mul/div
epc y .
- 30, jmpl address
[sy b pe] b resur] Ty
D-cache
Memory g% d;tdarliss/dataoul
777777777777 Doxinst} - - - - - - - - - P xpc] - - - - - - - - -Dxres |- - P xy} = - - - s s ==
Exception
777777777777 Dw_inst}fffffffffbw‘_pc] - - - ------Dwres] b \‘(} e
.
30
Writeback -]
‘ tbr, wim, psr

Figure 6. LEONS integer unit datapath diagram

18

5.2.2 Instruction pip€ine

The LEON integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the
instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction isvalid
at the end of this stage and is latched inside the |U.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are gener-
ated.

3. RA (Register access): Operands are read from the register file or from internal data bypasses.

4, EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g.,
LD) and for IMPL/RETT, the address is generated.

5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the
data cache at thistime.

6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appro-
priate.

7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the
register file.

Table 8 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

Table 8. Instruction timing

Instruction Cycles
JMPL, RETT 3
Double load 2
Single store 2
Double store 3
SMUL/UMUL 4
SDIV/UDIV 35
Taken Trap 5
Atomic load/store 3

All other instructions

* Multiplication cycle count is 5 clocks when the multiplier is configured to be pipelined.

5.23 SPARC Implementor’s|D

Gaisler Research is assigned number 15 (OxF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %ps.

5.2.4 Divideinstructions

Full support for SPARC V8 divide instructionsis provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

19

5.25 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-hit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 16x16 signed hardware multiplier, which is iterated four times. To
improve the timing, the 16x16 multiplier can optionally be provided with a pipeline stage.

5.2.6 Multiply and accumulate instructions

To accelerate DSP agorithms, two multiply& accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 Isb bits from the %y register and the %asr18 register.
Theleast significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umacrsl, reg_imm rd
smacrsl, reg_imm rd

Operation:

prod[31:0] = rs1[15:0] * reg_innf15:0]

result[39:0] = (Y[7:0] & % asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]

rd = resul t[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

5.2.7 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (Yoasr24/25, %asr26/27, %asr28/30 and %asr30/31)
registers; one with the break address and one with a mask:

31 2 10
Vo2g, vhors0 | WADDR[31:2] G

31 2 0
bk ‘ WMASK[31:2] ‘ DL ‘ DS‘

Y%asr29, %asr31

Figure 7. Watch-point registers

Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK]X] = 1 enables comparison). On a breakpoint hit, trap Ox0B is gener-
ated. By setting the IF, DL and DS hits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

20

5.2.8 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

e Instruction address and opcode
e Instruction result

* Load/store data and address

e Trapinformation

e 30-hittimetag

The operation and control of the trace buffer is further described in section 8.4. Note that in multi-pro-
cessor systems, each processor has its own trace buffer allowing simultaneous tracing of all instruc-
tion streams.

5.2.9 Processor configuration register

The application specific register 17 (Y%asrl7) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

31 28 13 1211109 8 7 5 4 0
%17 | INDEX | RESERVED ‘S\/‘LD’ FPU‘M‘VB‘ NWP | NWIN

Figure 8. LEONS configuration register (%asr17)

Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The
valueinthisfield isidentical to the hindex generic parameter in the VHDL model.

[14]: Disable write error trap (DWT). When set, awrite error trap (tt = 0x2b) will be ignored. Set to zero after reset.

[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not
implemented. Set to zero after reset.

[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from
the lddel generic parameter in the VHDL model.

[11:10]: FPU option. “00” = no FPU; “01" = GRFPU; “10" = Meiko FPU, “11” = GRFPU-Lite

[9]: If set, the optional multiply-accumulate (MAC) instruction is available

[8]: If set, the SPARC V8 multiply and divide instructions are available.

[7:5]: Number of implemented watchpoints (O - 4)

[4:0]: Number of implemented registers windows corresponds to NWIN+1.

5.2.10 Exceptions

21

LEON adheres to the general SPARC trap model. The table below shows the implemented traps and

their individual priority.

Table 9. Trap alocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch
illegal_instruction 0x02 5 UNIMP or other un-implemented instruction
privileged_instruction 0x03 4 Execution of privileged instruction in user mode
fp_disabled 0x04 6 FP instruction while FPU disabled
cp_disabled 0x24 6 CP instruction while Co-processor disabled
watchpoint_detected 0x0B 7 Hardware breakpoint match
window_overflow 0x05 8 SAVE into invalid window
window_underflow 0x06 8 RESTORE into invalid window
register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)
mem_address not_aligned 0x07 10 Memory access to un-aligned address
fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access exception 0x09 13 Access error during load or store instruction
tag_overflow Ox0A 14 Tagged arithmetic overflow
divide_exception Ox2A 15 Divide by zero

interrupt_level_1 Ox11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9
interrupt_level_10 Ox1A 22 Asynchronous interrupt 10
interrupt_level_11 0x1B 21 Asynchronous interrupt 11
interrupt_level_12 0x1C 20 Asynchronous interrupt 12
interrupt_level_13 0x1D 19 Asynchronous interrupt 13
interrupt_level_14 Ox1E 18 Asynchronous interrupt 14
interrupt_level_15 Ox1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - OxFF 16 Software trap instruction (TA)

5.2.11 Singlevector trapping (SVT)

Single-vector trapping (SVT) isan SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will beindicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

22

5.2.12 Address spaceidentifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-hit address spaces. During normal operation, the LEONS processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, aternative address spaces can be accessed. The table shows the AS| usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation.

Table 10. ASI usage

ASl Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)
0x08, 0x09, Ox0A, 0x0B Normal cached access (replace if cacheable)
ox0C Instruction cache tags

0x0D Instruction cache data

Ox0E Data cache tags

OxOF Data cache data

0x10 Flush instruction cache

Ox11 Flush data cache

5.2.13 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
Y%asr19:

w %0, %asr 19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.

5.2.14 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

Table 11. Processor reset values

Register Reset value
PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1

By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is however always aligned on a 4 kbyte
boundary.

5.2.15 Multi-processor support

The LEONS3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the first processor will
start. All other processors will remain halted in power-down mode. After the system has been initial-
ized, the remaining processors can be started by writing to the ‘MP status register’, located in the
multi-processor interrupt controller. The halted processors start executing from the reset address (O or
RSTADDR generic). Enabling SMP is done by setting the smp generic to 1 or higher. Cache snooping

5.3

23

should aways be enabled in SMP systems to maintain data cache coherency between the processor
nodes.

5.2.16 Cache sub-system

The LEONS3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativity
of 2 - 4. The set sizeis configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-set configurations, one of three replacement policies can be selected: least-recently-
used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm can only be
used when the cache is 2-way associative. A cache line can be locked in the instruction or data cache
preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU algo-
rithm needs extra flip-flops per cache line to store access history. The random replacement algorithm
isimplemented through modulo-N counter that selects which line to evict on cache miss.

Cachability for both cachesis controlled through the AHB plug& play address information. The mem-
ory mapping for each AHB slave indicates whether the areais cachable, and this information is used
to (statically) determine which access will be treated as cacheable. This approach meansthat the cach-
ability mapping is always coherent with the current AHB configuration.

The detailed operation of the instruction and data caches is described in the following sections.
Instruction cache

5.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of atag field, valid
field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On an instruction
cache miss to a cachable location, the instruction is fetched and the corresponding tag and data line
updated. In amulti-set configuration a line to be replaced is chosen according to the replacement pol-
icy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the U (streaming). If the U cannot accept the streamed instructions due
to internal dependencies or multi-cycle instruction, the U is halted until the line fill is completed. If
the 1U executes a control transfer instruction (branch/CALL/IMPL/RETT/TRAP) during the linefill,
the line fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction
streaming is enabled even when the cache is disabled. In this case, the fetched instructions are only
forwarded to the U and the cache is not updated. During cache linerefill, incremental burst are gener-
ated on the AHB bus.

If amemory access error occurs during aline fill with the [U halted, the corresponding valid bit in the
cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache miss
will occur, triggering a new access to the failed address. If the error remains, an instruction access
error trap (tt=0x1) will be generated.

24

5.4

5.3.2 Instruction cachetag
A instruction cache tag entry consists of several fields as shown in figure 9:

Tag for 1 Kbyte set, 32 bytes/line

31 0 9 8 7 0
ATAG | LRR‘LOCK‘ VALID

Tag for 4 Kbyte set, 16bytes/line
31 12 9 8 3 0
ATAG 0 |LRR \ LOCK‘ 0000 VALID

Figure 9. Instruction cache tag layout examples

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.

[9]: LRR - Used by LRR agorithm to store replacement history, otherwise 0.

[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.

[7:0]: Vadlid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits is set when a
sub-block isfilled due to a successful cache miss; a cache fill which resultsin amemory error will leave the valid
bit unset. A FLUSH instruction will clear al valid bits. V[Q] corresponds to address 0 in the cache line, V[1] to
address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits and 20
tag bits. The cache rams are sized automatically by the ram generatorsin the model.

Data cache

54.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cachelines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of atag field, valid
field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a data cache
read-miss to a cachable location 4 bytes of data are loaded into the cache from main memory. The
write policy for stores is write-through with no-allocate on write-miss. In a multi-set configuration a
line to be replaced on read-miss is chosen according to the replacement policy. If a memory access
error occurs during a dataload, the corresponding valid bit in the cache tag will not be set. and a data
access error trap (tt=0x9) will be generated.

5.4.2 Writebuffer

The write buffer (WRB) consists of three 32-hit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to aload-miss cache-fill sequence to avoid any stale data from being read
in to the data cache.

Since the processor executes in parallel with the write buffer, awrite error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap Ox2b.

5.5

25

Note: the 0x2b trap handler should flush the data cache, since awrite hit would update the cache while
the memory would keep the old value due the write error.

5.4.3 Datacachetag

A data cache tag entry consists of severa fields as shown in figure 10:

31 0 9 8 7 0
ATAG | LRR‘LOCK‘ VALID

Figure 10. Data cache tag layout

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.

[9]: LRR - Used by LRR agorithm to store replacement history. ‘0’ if LRR is not used.

[8]: LOCK - Locksacache linewhen set. ‘O’ if instruction cache locking was not enabled in the configuration.

[3:0]: Vadlid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits is set when a
sub-block isfilled due to a successful cache miss; a cache fill which results in amemory error will leave the valid
bit unset. V[0] correspondsto address 0 in the cacheline, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits and 21
tag bits. The cache rams are sized automatically by the ram generatorsin the model.

Additional cache functionality

55.1 Cacheflushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, or by writing to any location
with ASI=0x15. The data cache is a so flushed by setting the FD bit in the cache control register, or by
writing to any location with ASI=0x16. Cache flushing takes one cycle per cache line, during which
the 1U will not be halted, but during which the caches are disabled. When the flush operation is com-
pleted, the cache will resume the state (disabled, enabled or frozen) indicated in the cache control reg-
ister. Diagnostic access to the cache is not possible during a FLUSH operation and will cause a data
exception (trap=0x09) if attempted.

55.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASIl address space 0xC, 0xD,
OXE and OxF by executing LDA and STA instructions. Address bits making up the cache offset will be
used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cachetags. A cacheline and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the addresstag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and A SI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG filed (see above) and the valid bits are written with the D[7:0] of

26

the write data. Bit D[9] iswritten into the LRR bit (if enabled) and D[8] is written into the lock bit (if
enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

5.5.3 Cachelinelocking

In amulti-set configuration the instruction and data cache controllers can be configured with optional
lock hit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the replacement
algorithm. A cache line is locked by performing a diagnostic write to the instruction tag on the cache
offset of the line to be locked setting the Address Tag field to the address tag of the line to be locked,
setting the lock bit and clearing the valid bits. The locked cache line will be updated on a read-miss
and will remain in the cache until the line is unlocked. The first cache line on certain cache offset is
locked in the set 0. If severa lines on the same cache offset are to be locked the locking is performed
on the same cache offset and in sets in ascending order starting with set 0. The last set can not be
locked and is always replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line locking
was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking was
enabled otherwise it will be 0.

554 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of the
local instruction is configurable from 1-64 kB. The local instruction ram can be mapped to any 16
Mbyte block of the address space. When executing in the local instruction ram all instruction fetches
are performed from the local instruction ram and will never cause 1U pipeline stall or generate an
instruction fetch on the AHB bus. Local instruction ram can be accessed through load/store integer
word instructions (LD/ST). Only word accesses are alowed, byte, halfword or double word access to
the local instruction ram will generate data exception.

5.5.5 Local scratch pad ram

Local scratch pad ram can optionally be attached to both instruction and data cache controllers. The
scratch pad ram provides fast O-waitstates ram memories for both instructions and data. The ram can
be between 1 - 512 kbyte, and mapped on any 16 Mbyte block in the address space. Accessed per-
formed to the scratch pad ram are not cached, and will not appear on the AHB bus. The scratch pads
rams do not appear on the AHB bus, and can only be read or written by the processor. The instruction
ram must be initialized by software (through store instructions) before it can be used. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000. See section 5.10 for
additional configuration details. Note: local scratch pad ram can only be enabled when the MMU is
disabled.

5.5.6 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 11). Each cache can be in one of three modes: disabled, enabled and frozen. If dis-
abled, no cache operation is performed and load and store requests are passed directly to the memory
controller. If enabled, the cache operates as described above. In the frozen state, the cache is accessed

27
and kept in sync with the main memory as if it was enabled, but no new lines are allocated on read
mi sses.

2 23 2 21 16 15 14 6 5432 10
DS|FD FI | ‘IB ‘IP P DFIF | DCS| ICS ‘

Figure 11. Cache control register

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.

[16]: Instruction burst fetch (1B). This bit enables burst fill during instruction fetch.

[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation isin progress.

[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation
isin progress.

[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous
interrupt is taken.

[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.

[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =
frozen, 11 = enabled.

[2:0: Instruction Cache state (ICS) - Indicates the current data cache state according to the
following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

5.5.7 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches.

31 3029 2827 26 25 24 23 20 19 18 16 15 121 43 0
’CL‘ ’REPL‘SN‘ SETS ‘ SSIZE ‘LR’ LSIZE ‘ LRSIZE ‘ LRSTART ‘M‘

Figure 12. Cache configuration register

[31]: Cachelocking (CL). Set if cache locking isimplemented.

[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), O1 - least recently used
(LRU), 10 - least recently replaced (LRR), 11 - random

[27]: Cache snooping (SN). Set if snooping isimplemented.

[26:24]: Cacheassociativity (SETS). Number of setsin the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-way
associative, 011 - 4-way associative

[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 25'%F

[19]: Loca ram (LR). Set if local scratch pad ram isimplemented.

[18:16]: Linesize (LSIZE). Indicated the size (words) of each cache line. Line size = 2852

[15:12]: Lt)gglz ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad ram. Local ram size =
2

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.

28

5.6

[3]: MMU present. Thishitissetto ‘1" if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

Table 12. ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register
ox0C Data cache configuration register

5.5.8 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, aflush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:

flush
set 0x81000f, %yl
sta%gl, [%0] 2

Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can optionally
be configured. For details on operation, see the SPARC V8 manual.

5.6.1 ASI mappings
When the MMU is used, the following ASlI mappings are added:

Table 13. MMU ASI usage

ASl Usage

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

Ox14 MMU diagnostic dcache context access
0x15 MMU diagnostic icache context access
0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

5.6.2 Cacheoperation

When the MMU is disabled, the caches operate as normal with physical address mapping. When the
MMU isenabled, the cachestags store the virtual address and also include an 8-bit context field. AHB
cache snooping is not available when the MMU is enabled.

5.7

29

5.6.3 MMU registers
The following MMU registers are implemented:

Table 14. MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register
0x100 Context pointer register
0x200 Context register

0x300 Fault status register
0x400 Fault address register

The definition of the registers can be found in the SPARC V8 manual .

5.6.4 Trandation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries can be set to 2 - 32 in the configuration record. The organisation of the TLB
and number of entriesis not visible to the software and does thus not require any modification to the
operating system.

Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. The LEONS pipeline provides an interface port for both of these units.
Two different FPU’s can be interfaced: Gaisler Research’'s GRFPU, and the Melko FPU from Sun.
Selection of which FPU to useis done through the VHDL model’s generic map. The characteristics of
the FPU’s are described in the next sections.

5.7.1 Gaider Research’sfloating-point unit (GRFPU)

The high-performance GRFPU operates on single- and doubl e-precision operands, and implements all
SPARC V8 FPU instructions. The FPU is interfaced to the LEONS3 pipeline using a LEON3-specific
FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with integer
instructions. Only in case of adata or resource dependency isthe integer pipeline held. The GRFPU is
fully pipelined and allows the start of one instruction each clock cycle, with the exception is FDIV
and FSQRT which can only be executed one at atime. The FDIV and FSQRT are however executed
in a separate divide unit and do not block the FPU from performing all other operationsin parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This resultsin a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

Table 15. GRFPU instruction timing with GRFPC

Instruction Throughput | Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,

FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4
FDIVS 14 16
FDIVD 15 17
FSQRTS 22 24
FSQRTD 23 25

30

5.8

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to three queued instructions when an FPU exception is taken. When the GRFPU is enabled
in the model, the version field in %fsr has the value of 2.

572 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-L.ite to execute in paralel with
the processor pipeline aslong as no new FPU instructions are pending. Below is atable of worst-case
throughput of the GRFPU-L.ite:

Table 16. GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput | Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,

FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8
FDIVS 31 31
FDIVD 57 57
FSQRTS 46 46
FSQRTD 65 65

When the GRFPU-L ite is enabled in the model, the version field in %fsr has the value of 3.

573 TheMeiko FPU

The Meiko floating-point core operates on both single- and double-precision operands, and imple-
ments all SPARC V8 FPU instructions. The Meiko FPU isinterfaced through the Meiko FPU control-
ler (MFC), which allows one FPU instruction to execute in parallel with IU operation. The MFC
implements the SPARC deferred trap model, and the FPU trap queue (FQ) can contain up to one
queued instruction when an FPU exception is taken.

When the Meiko FPU is enabled in the model, the version field in %fsr has the value of 1.

The Meiko FPU is not distributed with the open-source LEON3 model, and must be obtained sepa-
rately from Sun.

5.74 Generic co-processor

LEON can be configured to provide a generic interface to a user-defined co-processor. The interface
allows an execution unit to operate in parallel to increase performance. One co-processor instruction
can be started each cycle as long as there are no data dependencies. When finished, the result is writ-
ten back to the co-processor register file.

Vendor and deviceidentifers

The core has vendor identifers 0x01 (Gaisler Research) and device identifers 0x003. For description
of vendor and device identiferss see GRLIB IP Library User’s Manual.

5.9

31

Synthesis and hardware

59.1 Areaand timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations.

Table 17. Areaand timing

Actel AX2000 ASIC (0.13 um)
Configuration Cdls RAM64 MHz Gates MHz
LEONS, 8 + 8 Khyte cache 6,500 40 30 20,000 400
LEONS3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 25,000 400

5.9.2 Technology mapping

L EONS has two technology mapping generics, fabtech and memtech. The fabtech generic controls the
implementation of some pipeline features, while memtech selects which memory blocks will be used
to implement cache memories and the |U/FPU register file. Fabtech can be set to any of the provided
technologies (0 - NTECH) as defined in the GRPIB.TECH package. The memtech generic can only be
et to one of the following technologies:

Table 18. MEMTECH generic supported technologies

Tech name Technology Max cache set size Max windows
inferred Behavioral description unlimited unlimited
axcel Actel AX, RTAX 16 Kbyte unlimited
proasic Actel Proasic 64 Kbyte unlimited
proasic3 Actel Proasic3 16 Kbyte unlimited

The table above also indicates the maximum cache set size and number of register windows for each
of the supported memtech technologies. Exceeding these limits or choosing an unsupported memtech
will generate an error report during simulation.

5.9.3 Doubleclocking

The LEON3 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
guency. The two clocks have to be synchronous and a multicycle path between the two clock domains
has to be defined at synthesis tool level. A separate component (leon3s2x) is provided for the double
clocked core.

32

5.10 Configuration options

Table 19 shows the configuration options of the core (VHDL generics).

Table 19. Configuration options

Generic Function Allowed range | Default

hindex AHB master index 0-NAHBMST-1 |0

fabtech Target technology 0- NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0- NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windowstobe | 2- 32 8
compatible with Bare-C and RTEMS cross-compilers.

dsu Enable Debug Support Unit interface -

fpu Floating-point Unit. - 0
0-noFPU, 1- GRFPU, 2 - Meiko, 3- GRFPU-Lite

v8 Generate SPARC V8 MUL and DIV instructions 0-2 0

cp Generate co-processor interface 0-1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0-1 0

pclow Least significant bit of PC (Program Counter) that is actually 0,2 2
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

notag Currently not used -

nwp Number of watchpoints -

icen Enable instrcution cache -1 1

Table 19. Configuration options

33

Generic Function Allowed range | Default
irepl Instruction cache replacement policy. 0-1 0

0 - least recently used (LRU), 1 - least recently replaced (LRR),

2 - random
isets Number of instruction cache sets 1-4 1
ilinesize Instruction cache line size in number of words 4,8 4
isetsize Size of each instruction cache set in kByte 1- 256 1
isetlock Enable instruction cache line locking 0-1 0
dcen Data cache enable 0-1 1
drepl Data cache replacement policy. 0-1 0

0 - least recently used (LRU), 1 - least recently replaced (LRR),

2 - random
dsets Number of data cache sets 1-4 1
dlinesize Data cache line size in number of words 4,8 4
dsetsize Size of each data cache set in kByte 1- 256 1
dsetlock Enable instruction cache line locking 0-1 0
dsnoop Enable data cache snooping 0-2 0

0: disable, 1: slow, 2: fast (see text)
ilram Enable local instruction RAM 0-1 0
ilramsize Local instruction RAM sizein kB 1-512 1
ilramstart 8 MSB bits used to decode local instruction RAM area 0- 255 16#8E#
diram Enable local data RAM (scratch-pad RAM) 0-1 0
diramsize Local data RAM sizein kB 1-512 1
diramstart 8 MSB bits used to decode local data RAM area 0- 255 16#8F#
mmuen Enable memory management unit (MMU) 0-1 0
ittbnum Number of instruction TLB entries 2-64 8
dtlbnum Number of data TLB entries 2-64 8
tib_type Separate (0) or shared TLB (1) 0-1 1
tib_rep Random (0) or LRU (1) TLB replacement 0-1 0
Iddel Load delay. One cycle gives best performance, but might createa | 1- 2 2

critical path on targets with slow (data) cache memories. A 2-

cycle delay can improve timing but will reduce performance

with about 5%.
disas Print instruction disassembly in VHDL simulator console. 0-1
tbuf Size of instruction trace buffer in kB (0 - instruction trace dis- 0-64

abled)
pwd Power-down. O - disabled, 1 - areaefficient, 2 - timing efficient. | 0- 2 1
svt Enable single-vector trapping 0-1 0
rstaddr Default reset start address 0- (2+*20.1) 0
smp Enable multi-processor support 0-15 0

34

5.11

5.12

5.13

Signal descriptions
Table 20 shows the interface signals of the core (VHDL ports).

Table 20. Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RSTN N/A Input Reset Low
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
AHBSI * Input AHB dave input signals -
IRQI IRL[3:0] Input Interrupt level High
RST Input Reset power-down and error mode High
RUN Input Start after reset (SMP system only)
IRQO INTACK Output Interrupt acknowledge High
IRL[3:0] Output Processor interrupt level High
DBGI - Input Debug inputs from DSU -
DBGO - Output Debug outputs to DSU -

* see GRLIB IP Library User’'s Manual

Library dependencies
Table 21 shows the libraries used when instantiating the core (VHDL libraries).

Table 21. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEONS3 Component, signals LEON3 component declaration, interrupt and
debug signals declaration

Component declaration

The core has the following component declaration.

entity leon3s is

generic (
hi ndex i nteger 1= 0;
fabtech integer range 0 to NTECH := O;
ment ech integer range 0 to NTECH := O;
nw ndows integer range 2 to 32 := 8;
dsu integer range 0 to 1 = 0;
fpu integer range 0 to 3 = 0;
v8 integer range 0 to 2 = 0;
cp integer range 0 to 1 = 0;
mac integer range 0 to 1 = 0;
pcl ow integer range 0 to 2 = 2;
not ag integer range 0 to 1 = 0;
nwp integer range 0 to 4 = 0;
icen integer range 0 to 1 = 0;
irepl integer range 0 to 2 = 2,
isets : integer range 1 to 4 = 1;
ilinesize : integer range 4 to 8 = 4
i setsize integer range 1 to 256 := 1;
i setlock integer range 0 to 1 = 0;
dcen integer range 0 to 1 = 0;
dr epl integer range 0 to 2 = 2;

dsets integer range 1 to 4 = 1;
dlinesize : integer range 4 to 8 = 4,
dset si ze integer range 1 to 256 := 1;
dset | ock integer range 0 to 1 = 0;
dsnoop integer range 0 to 2 = 0;
ilram integer range 0 to 1 := 0;
ilransi ze integer range 1 to 512 := 1;
ilramstart integer range 0 to 255 := 16#8e#;
dl ram integer range 0 to 1 := 0;
dl ransi ze integer range 1 to 512 := 1;
diramstart : integer range 0 to 255 := 16#8f#;
muen integer range 0 to 1 = 0,
itlbnum integer range 2 to 64 := 8;
dt | bnum integer range 2 to 64 := 8;
tlb_type integer range 0 to 1 := 1;
tlb_rep integer range 0 to 1 := 0;
| ddel integer range 1 to 2 := 2;
di sas integer range 0 to 1 = 0;
t buf integer range 0 to 64 := 0;
pwd integer range 0 to 2 = 2; -- power - down
svt integer range 0 to 1 = 1; -- single vector trapping
rstaddr i nteger 1= 0;
smp : integer range 0 to 15 := 0);

port (
cl k :in std_ul ogic;
rstn :in std_ul ogic;
ahbi :in ahb_mst_in_type;
ahbo : out ahb_nst_out _type;
ahbsi : in ahb_slv_in_type;
ahbso : in ahb_slv_out_vector;
irqi cin 13_irqg_in_type;
irgo : out I3_irq_out_type;
dbgi :in [13_debug_in_type;
dbgo : out |3_debug_out _type

end;

36

6.1

6.2

GRFPU - High-performance | EEE-754 Floating-point unit

Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in |EEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754). Sup-
ported formats are single and double precision floating-point numbers. The advanced design
combines two execution units, afully pipelined unit for execution of the most common FP operations
and a non-blocking unit for execution of divide and square-root operations.

Thelogical view of the GRFPU is shown in figure 13.

.) GRFPU
clk ~ Pipelined execution
Lg unit
reset o
L
startd >)
opcode 9 ready
P // > — »
. allow
opid 6 3.
// 4] Vd >
operandl 64 resid 6,
7~ > | N vamd
result 64
operand? 64, > Iteration unit £—p
4 t
round 2 except 6 ,
AN — 7
2
flush > >] L —p
flushid 6
>
nonstd o
L

Figure 13. 1: GRFPU Logica View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU implementation of the IEEE-754 standard including FP formats, opera-
tions, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For imple-
mentation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-Point
Unit” (available at www.gaisler.com).

Functional description

6.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in |EEE-754
standard with exception for denormalized numbers. See section 6.2.5 for more information on denor-
malized numbers.

6.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move. The
operations implement all FP instructions specified by SPARC V8 instruction set, and most of the
operations defined in |IEEE-754. All operations are summarized in table 22, with their opcodes, oper-
ands, results and exception codes. Throughputs and latencies and are shown in table 22.

37

Table 22. : GRFPU operations

Operation OpCod€8:0] Opl | Op2 | Result Exceptions | Description
Arithmetic operations
FADDS 001000001 SP SP SP UNF, NV, Addition
FADDD 001000010 DP DP | DP OF, UF, NX
FSUBS 001000101 SP SP SP UNF, NV, Subtraction
FSUBD 001000110 DP DP DP OF, UF, NX
FMULS 001001001 SP SP SP UNF, NV, Multiplication, FSMULD gives
FMULD 001001010 DP DP DP OF, UF, NX | exact double-precision product of
FSMULD SP SP DP two single-precision operands.
001101001 UNF, NV, gep P
OF, UF, NX
UNF, NV,
OF, UF
FDIVS 001001101 SP SP SP UNF, NV, Division
FDIVD 001001110 DP |DP |DP OF, UF, NX
FSQRTS 000101001 - SP SP UNF, NV, Square-root
FSQRTD 000101010 - DP |DP NX
Conversion operations
FITOS 011000100 - INT |SP NX Integer to floating-point conversion
ATOD 011001000 DP -
FSTOI 011010001 - SP INT UNF, NV, Floating-point to integer conversion.
FDTOI 011010010 DP NX The result is rounded in round-to-
zero mode.
FSTOI_RND 111010001 - SP INT UNF, NV, Floating-point to integer conversion.
FDTOI_RND 111010010 DP NX Rounding according to RND input.
FSTOD 011001001 - SP DP UNF, NV Conversion between floating-point
FDTOS 011000110 DP SP UNF, NV, formats
OF, UF, NX
Comparison operations
FCMPS 001010001 SP SP CcC NV Floating-point compare. Invalid
FCMPD 001010010 DP DP exce_pti on is gt_anerated if either oper-
and isasignaling NaN.
FCMPES 001010101 SP SP cC NV Floating point compare. Invalid
FCMPED 001010110 DP DP exce_pti onis gene_rated if eith_er oper-
andisaNaN (quiet or signaling).
Negate, Absolute value and Move
FABSS 000001001 - SP SP - Absolute value.
FNEGS 000000101 - SP SP - Negate.
FMOVS 000000001 SP SP - Move. Copies operand to result out-
put.
SP - single precision floating-point number CC - condition codes, seetable 25

DP - double precision floating-point number UNF, NV, OF, UF, NX - floating-point exceptions, see section 6.2.3
INT - 32 bit integer

Arithmetic operations include addition, subtraction, multiplication, division and square-root. Each
arithmetic operation can be performed in single or double precision formats. Arithmetic operations
have one clock cycle throughput and latency of three clock cycles, except for divide and square-root
operations, which have a throughput of 14 - 23 clock cycles and latency of 15 - 25 clock cycles (see

38

table 23). Add, sub and multiply can be started on every clock cycle providing very high throughput
for these common operations. Divide and sgquare-root operations have lower throughput and higher
latency due to complexity of the algorithms, but are executed parallelly with al other FP operationsin
a non-blocking iteration unit. Out-of-order execution of operations with different latencies is easily
handled through the GRFPU interface by assigning an id to every operation which appears with the
result on the output once the operation is completed (see section 3.2).

Table 23. : Throughput and latency

Operation Throughput Latency
FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 3

FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD, 1 3

FDTOS

FCMPS, FCMPD, FCMPES, FCMPED 1 3

FDIVS 15 15

FDIVD 16.5 (15/18)* 16.5 (15/18)*
FSQRTS 23 23

FSQRTD 24.5 (23/26)* 24.5 (23/26)*

* Throughput and latency are data dependant with two possible cases with equal statistical possibility.

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of three clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.

Comparison functions offering two different types of quiet Not-a-numbers (QNaNs) handling are pro-
vided. Move, negate and absolute value are also provided. These operations do not ever generate
unfinished exception (unfinished exception is never signaled since compare, negate, absolute value
and move handle denormalized numbers).

6.2.3 Exceptions

GRFPU detects al exceptions defined by the |IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) excep-
tion conditions. Generation of special results such as NaNs and infinity is also implemented. Over-
flow (OF) and underflow (UF) are detected before rounding. When an underflow is signaled the result
is rounded (flushed) to zero (this variation is alowed by the |EEE-754 standard and is implementa-
tion-dependent). A special Unfinished exception (UNF) is signaled when one of the operands is a
denormalized number which are not handled by the arithmetic and conversion operations.

6.24 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

6.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A sys-
tem (microprocessor) with the GRFPU could emulate rare cases of operations on denormals in soft-
ware using non-FPU operations. A special Unfinished exception (UNF) isused to signal an arithmetic
or conversion operation on the denormalized numbers. Compare, move, negate and absolute value
operations can handle denormalized numbers and don't raise unfinished exception. GRFPU does not
generate any denormalized numbers during arithmetic and conversion operations on normalized num-
bers since the result of an underflowed operation is flushed (rounded) to zero (see section 6.2.3).

39

6.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic and con-
version operations are treated as (correctly signed) zeroes. Calculations are performed on zero oper-
andsinstead of the denormalized numbers obeying all rules of the floating-point arithmetics including
rounding of the results and detecting exceptions.

6.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard. Opera-
tions on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate Invalid exception and
deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for FCMPES and
FCMPED, do not raise any exceptions and propagate QNaNs through the FP operations by delivering
NaN-results according to table 24. QNaN_GEN is 0x7fffe00000000000 for double precision results
and 0x7fff0000 for single precision results.

Table 24. : Operations on NaNs

Operand 2
FP QNaN2 SNaN2
none FP QNaN2 QNaN_GEN
Operand 1 FP FP QNaN2 QNaN_GEN
QNaN1 QNaN1 QNaN2 QNaN_GEN
SNaN1 ONaN_GEN ONaN_GEN ONaN_GEN

40

6.3

6.4

Signal descriptions

Table 25 shows the interface signals of the core (VHDL ports). All signals are active high except for
RST which is active low.

Table 25. : Signal descriptions

Signal I/0 | Description

CLK | Clock

RST | Reset

START | Start an FP operation on the next rising clock edge

NONSTD | Nonstandard mode. Denormalized operands are converted to zero.

OPCODE[8:0] | FP operation. For codes see table 22.

OPID[5:0] I FP operation id. Every operation is associated with an id which will appear on the RESID
output when the FP operation is completed. This value shall be incremented by 1 (with wrap-
around) for every started FP operation.

OPERAND1[63:0] | | FP operation operands are provided on these one or both of these inputs. All 64 bits are used

OPERAND2[63.0] for IEEE-754 double precision floating-point numbers, bits [63:32] are used for |EEE-754
single precision floating-point numbers and 32-bit integers.

ROUNDI1:0] | Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 - round-
to--inf.

FLUSH | Flush FP operation with FLUSHID.

FLUSHID[5:0] | Id of the FP operation to be flushed.

READY @) The result of a FP operation will be available at the end of the next clock cycle.

ALLOW[2:0] (0] Indicates allowed FP operations during the next clock cycle.

ALLOWIQ] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed
ALLOWI[1] - FMULS, FMULD, FSMULD allowed
ALLOWI[2] - al other FP operations allowed

RESID[5:0] (0] Id of the FP operation whose result appears at the end of the next clock cycle.

RESULT[63:0] o] Result of an FP operation. If the result is double precision floating-point number all 64 bits
are used, otherwise single precision or integer result appears on RESULT[63:32].

EXCEPT[5:0] 0] Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with
denormalized input(s).

EXC[4] - Invalid exception.

EXC[3] - Overflow.

EXC[2] - Underflow.

EXCI[1] - Division by zero.

EXC[Q] - Inexact.

CC[1:Q] o Result (condition code) of an FP compare operation.

00 - equal,
01 - operandl < operand2
10 - operandl > operand2
11 - unordered

Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before arising edge while all other signals
are latched on rising edge.

The FPU isfully pipelined and a new operation can be started every clock cycle. The only exceptions
are divide and square-root operations which require 15 to 26 clock cyclesto complete, and which are
not pipelined. Division and sguare-root are implemented through iterative series expansion algorithm.

41

Since the algorithms basic step is multiplication the floating-point multiplier is shared between multi-
plication, division and sguare-root. Division and sguare-root do not occupy multiplier during the
whole operation and allow multiplication to be interleaved and executed parallelly with division or
sguare-root.

One clock cycle before an operation is completed, the output signal RDY is asserted to indicate that
the result of an FPU operation will appear on the output signals at the end of the next cycle. Theid of
the operation to be completed and allowed operations are reported on signals RESID and ALLOW.
During the next clock cycle the result appears on RES, EXCEPT and CC outputs.

Table 14 shows signal timing during four arithmetic operations on GRFPU.

CLK

A e S
0pooDE L
OPERANDL_{ : X ' D_@_D . : :
OPERANDZ . . . : : .
oo D) :

READY i ! L
RESID —(o0— C—0— . {(Z)—
RESULT ' — O——A— : : ; —{(
ALLOW(2] : ‘ N : : :
ALLOW] | o I R I
ALLOW[O] | ! : ’7

Figure 14. Signal timing

42

7.1

1.2

7.3

GRFPC - GRFPU Control Unit

GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU). GRFPC
performs scheduling, decoding and dispatching of the FP operations to the GRFPU as well as manag-
ing the floating-point register file, the floating-point state register (FSR) and the floating-point
deferred-trap queue (FQ). Floating-point operations are executed in parallel with other integer instruc-
tions, the LEON integer pipelineisonly stalled in case of operand or resource conflicts.

In the FT-version, al registers are protected with TMR and the floating-point register file is protected
using (39,7) BCH coding. Correctable errors in the register file are detected and corrected using the
instruction restart function in the 1U.

Floating-Point register file

GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The regis-
ter file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and float-
ing-point operate instructions (FPap).

Floating-Point State Register (FSR)

GRFPC manages the floating-point state register (FSR) containing FPU mode and status information.
All fields of the FSR register as defined in SPARC V8 specification are implemented and managed by
the GRFPU conforming to SPARC V8 specification and |EEE-754 standard. I mplementation-specific
parts of the FSR managing are the NS (non-standard) bit and ftt field.

If the NS (non-standard) bit of the FSR register is set, all floating-point operation will be performed in
non-standard mode as described in section 6.2.6. When NS bit is cleared all operations are performed
in standard | EEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented FPop: all FPop operations are implemented

- hardware_error: non-resumable hardware error

-invalid _fp_register: no check that double-precision register is0 mod 2 is performed

GRFPU implements the gne bit of the FSR register which reads O if the floating-point deferred-queue
(FQ) is empty and 1 otherwise.

The FSR is accessed using LDFSR and STFSR instructions.

Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by afloating-point instruction performing an operation resulting in
one of following conditions:

e an operation raises |IEEE floating-point exception (ftt = IEEE 754 exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

e an operation on denormalized floating-point numbers (in standard IEEE-mode) raises
unfinished_FPop floating-point exception

* sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

Thetrap is deferred to one of the floating-point instruction (FPop, FP load/store, FP branch) following
the trap-inducing instruction (note that this may not be next floating-point instruction in the program
order due to exception-detecting mechanism and out-of-order instruction execution in the GRFPC).
When the trap is taken the floating-point deferred-queue (FQ) contains trap-inducing instruction and
up to two FPop instructions that where dispatched in the GRFPC but did not complete.

43

After the trap is taken the gne bit of the FSR is set and remains set until the FQ is emptied. STDFQ
instruction reads a double-word from the floating-point deferred queue, the first word is the address of
the instruction and the second word is the instruction code. All instructions in the FQ are FPop type
instructions. First access to the FQ gives double-word with trap-inducing instruction, following dou-
ble-words contain pending floating-point instructions. Supervisor software should emulate FPops
from the FQ in the same order as they were read from the FQ.

Note that instructions in the FQ may not appear in the same order as the program order since GRFPU
executes floating-point instructions out-of-order. A floating-point trap is never deferred past an
instruction specifying source registers, destination registers or condition codes that could be modified
by the trap-inducing instruction. Execution or emulation of instructions in the FQ by the supervisor
software gives therefore the same FPU state as if the instructions where executed in the program
order.

8.1

8.2

DSU3 - LEON3 Hardware Debug Support Unit

Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a specia debug interface. The
LEON3 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB dave and can be accessed by any AHB master. An externa debug host can therefore
access the DSU through several different interfaces.

Such an interface can be a serial UART (RS232), JTAG, PCI or ethernet. The DSU supports multi-
processor systems and can handle up to 16 processors.

r—— " —-"—-"—-"—--"—-"—-"—-" - —-"—-"'—-"—-"'—-"'—"'"—"'"—' ' — - — - = — 1
| B |
I] Debug I/F I
LEON3 -
I Processor(s) < > I
< » Debug Support
g Supp
| < > Unit |
| x < >
I | A |
I ‘ 'y A I
4 AHB Slave I/F
! AHB Master I/F I
| AXR y AMBA AHB BUS [
A A A A
[[
[[
A4 A4 A4 v
| |
| RS232 PCI Ethernet JTAG |
[[
L e e e e e e N e e\ e L L A d

DEBUG HOST

Figure 15. LEON3/DSU Connection

Operation

Through the DSU AHB dlave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

e executing abreakpoint instruction (ta 1)

* integer unit hardware breakpoint/watchpoint hit (trap Oxb)

e rising edge of the external break signal (DSUBRE)

e setting the break-now (BN) bit in the DSU control register

e atrap that would cause the processor to enter error mode

e occurrence of any, or a selection of traps as defined in the DSU control register
e dfter asingle-step operation

8.3

45

e oneof the processorsin a multiprocessor system has entered the debug mode
e DSU breakpoint hit

The debug mode can only be entered when the debug support unit is enabled through an external pin
(DSUEN). When the debug mode is entered, the following actions are taken:

* PCand nPC are saved in temporary registers (accessible by the debug unit)
e anoutput signal (DSUACT) is asserted to indicate the debug state
» thetimer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor isin the debug mode, an accessto ASI diagnostic areais forwarded to the IU which
performs access with AS| equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128 bits wide, the information stored isindicated in the table below:

Table 26. AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Setto ‘1’ if aDSU AHB breakpoint hit occurred.
126 - Not used

125:96 Timetag DSU time tag counter

95 - Not used

94:80 Hirqg AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76.74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA
31.0 Load/Store address AHB HADDR

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer isthen stored in the buffer in acircular manner. The address to which the next transfer is writ-
tenisheld in the trace buffer index register, and is automatically incremented after each transfer. Trac-
ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily

46

8.4

suspended when the processor enters debug mode. Note that neither the trace buffer memory nor the
breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.
Instruction trace buffer

The instruction trace buffer consists of acircular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored isindicated in the table below:

Table 27. Instruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Setto ‘1’ on the second and third instance of a multi-cycle instruc-
tion (LDD, ST or FPOP)

125:96 Timetag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 Isb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [63:32] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the loaded data.
Multiply and divide instructions are entered twice, but only the last entry contains the result. Bit 126
is set for the second entry. For FPU operation producing a double-precision result, the first entry puts
the MSB 32 hits of the resultsin bit [63:32] while the second entry putsthe LSB 32 bitsin thisfield.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed.

47

DSU memory map

The DSU memory map can be seen in table 28 below. In a multiprocessor systems, the register map is
duplicated and address bits 27 - 24 are used to index the processor.

Table 28. DSU memory map

Address offset Register
0x000000 DSU control register
0x000008 Time tag counter
0x000020 Break and Single Step register
0x000024 Debug Mode Mask register
0x000040 AHB trace buffer control register
0x000044 AHB trace buffer index register
0x000050 AHB breakpoint address 1
0x000054 AHB mask register 1
0x000058 AHB breakpoint address 2
0x00005¢ AHB mask register 2
0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)
0x110000 Intruction Trace buffer control register
0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)
0x300000 - 0x300FFC IU register file
0x301000 - 0x30107C FPU register file
0x400000 - Ox4FFFFC IU specia purpose registers
0x400000 Y register
0x400004 PSR register
0x400008 WIM register
0x40000C TBR register
0x400010 PC register
0x400014 NPC register
0x400018 FSR register
0x40001C CPSR register
0x400020 DSU trap register
0x400024 DSU ASI register
0x400040 - 0x40007C ASR16 - ASR31 (when implemented)
0x700000 - OX7FFFFC ASI diagnostic access (ASl = valuein DSU ASl register, address = address[19:0])
ASl =0x9: Local instruction RAM
AS| = 0xB : Local dataRAM
AS| =0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
AS| = OXE : Data cache tags
ASI = OxF : Instruction cache data

The addresses of the |U registers depends on how many register windows has been implemented:
* %0on :0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))
* %In :0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))
e %in :0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))

8.6

e %gn :0x300000 + (NWINDOWS*64)
e %fn :0x301000 + n*4

DSU registers

8.6.1 DSU control register
The DSU is controlled by the DSU control register:

31 11 109 8 7 6 5 4 3 2 1 0
| | PW HL|PE EB EE|DM BZ BX BSBWBE TE

Figure 16. DSU control register

[O]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the trace buffer. Remains set
when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error
condition (trap in trap).

[2]: Break on U watchpoint (BW)- if set, debug mode will be forced on alU watchpoint (trap Oxb).

[3]: Break on S/W breakpoint (BS) - if set, debug mode will beforced when an breakpoint instruction (ta 1) is executed.

[4]: Break ontrap (BX) - if set, will force the processor into debug mode when any trap occurs.

[5]: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the following traps:
priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous interrupt, ticc_trap.

[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).

[7]: EE - value of the external DSUEN signal (read-only)

[8]: EB - value of the external DSUBRE signal (read-only)

[9]: Processor error mode (PE) - returns ‘1’ on read when processor isin error mode, else‘0'. If written with ‘1", it will

clear the error and halt mode.

[10]: Processor halt (HL). Returns‘1" on read when processor is halted. If the processor isin debug mode, setting this bit
will put the processor in halt mode.

[11]: Power down (PW). Returns ‘1’ when processor in in power-down mode.

8.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls al processorsin a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

31 18 17 16 15 2 1 o0
\3515\ ‘ssz ‘SSl‘SSO ‘BNlS‘ ‘BNZ‘BNl‘BNO‘

Figure 17. DSU Break and Single Step register

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on S/\W breakpoint (BS) bit in the processors
DSU control register is set. If cleared, the processor x will resume execution.

[31:16] : Singlestep (SSx) - if set, the processor x will execute oneinstruction and return to debug mode. The bit remains set
after the processor goes into the debug mode.

8.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEONS3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

49

31 18 17 16 15 2 1 0
’DMlS‘ ‘DM#DMﬂDMqEDls\ ‘EDZ‘EDI‘EDO‘

Figure 18. DSU Debug Mode Mask register

[15:0] : Enter debug mode (EDXx) - Force processor x into debug mode if any of processorsin amultiprocessor system enters
the debug mode. If 0, the processor x will not enter the debug mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running processorsinto debug mode
even if it enters debug mode.

8.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be Oxb (hardware watchpoint trap).

31 13 12 11 4 3 0

| RESERVED EM TRAPTYPE 0000 |

Figure 19. DSU trap register

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

8.6.5 Tracebuffer timetag counter
The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is resumed.

31 29 0
‘ 00 ‘ DSU TIME TAG VALUE

Figure 20. Trace buffer time tag counter
The valueis used astimetag in the instruction and AHB trace buffer.
The width of the timer (up to 30 bits) is configurable through the DSU generic port.

8.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASl areas. The value in the ASI diagnostic
access register isused as AS| while the address is supplied from the DSU.

31 7 0
‘ ASI

Figure21. ASI diagnostic access register

[7:0]: ASI to beused on diagnostic ASI access

50

8.6.7 AHB Tracebuffer control register
The AHB trace buffer is controlled by the AHB trace buffer control register:

a1 16 10
‘ DCNT ‘ RESERVED \DM EN‘

Figure 22. AHB trace buffer control register

[O]: Trace enable (EN). Enables the trace buffer.

[1]: Delay counter mode (DM). Indicates that the trace buffer isin delay counter mode.

[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the
trace buffer.

8.6.8 AHB tracebuffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31 4 3 0
INDEX 0000

Figure 23. AHB trace buffer index register

314 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

8.6.9 AHB tracebuffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on ablock of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

" 2 10
Break addressreg. | BADDR[3L:2] 0o

31 2 10
Break mask reg. | BMASK[3L:2] LD ST

Figure 24. Trace buffer breakpoint registers

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)

[1]: LD - break on data load address
[0]: ST - beak on data store address

51

8.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

31

16

RESERVED

| IT POINTER

Figure 25. Instruction trace control register

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the size of the trace buffer.

8.7 Vendor and deviceidentifiers
The core has vendor identifier Ox01 (Gaisler Research) and device identifier 0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.
8.8 Configuration options
Table 29 shows the configuration options of the core (VHDL generics).
Table 29. Configuration options
Generic Function Allowed range Default
hindex AHB dlave index 0- AHBSLVMAX-1 0
haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900¢
hmask AHB slave address mask 0 - 16#FFF# 16#F00#
ncpu Number of attached processors 1-16 1
thits Number of bitsin the time tag counter 2-30 30
tech Memory technology for trace buffer RAM 0- TECHMAX-1 0 (inferred)
kbytes Size of trace buffer memory in Kbytes. A valueof 0 | 0- 64 0 (disabled)
will disable the trace buffer function.
89 Signal descriptions
Table 30 shows the interface signals of the core (VHDL ports).
Table 30. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB dave input signals -
AHBSO * Output AHB slave output signals -
DBGI - Input Debug signals from LEON3 -
DBGO - Output Debug signalsto LEON3 -
DSUI ENABLE Input DSU enable High
BREAK Input DSU break High
DSUO ACTIVE Output Debug mode High

* see GRLIB IP Library User's Manual

52

8.10 Library dependencies
Table 31 shows libraries used when instantiating the core (VHDL libraries).

Table 31. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEONS3 Component, signals Component declaration, signals declaration

8.11 Component declaration

The core has the following component declaration.

conponent dsu3

generic (
hi ndex : integer := 0;
haddr : integer := 16#900#;
hmask : integer := 16#f 00#;
ncpu : integer := 1,
thits . integer := 30;
tech . integer := 0;
irq . integer := 0;
kbytes : integer := 0
)
port (
rst in std_ul ogic;
cl k in std_ulogic;
ahbm in ahb_nst_in_type;
ahbsi in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;
dbgi : in | 3_debug_out_vector(0 to NCPU-1);
dbgo : out |3_debug_in_vector(0 to NCPU-1);
dsui :in dsu_in_type;
dsuo : out dsu_out_type

)

end conponent;

8.12 Instantiation

This examples shows how the core can be instantiated.

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;

use ieee.std_|logic_1164.all;
library grlib;

use grlib.anba.all;

library gaisler;

use gaisler.leon3.all;

constant NCPU : integer := 1; -- select nunber of processors
signal leon3i : 13_in_vector(0 to NCPU-1);

signal leon3o : |3_out_vector(0 to NCPU-1);

signal irqi :irg_in_vector(0 to NCPU-1);

signal irqo : irqg_out_vector(0 to NCPU-1);

signal dbgi : |3_debug_in_vector(0 to NCPU-1);

signal dbgo : |3_debug_out_vector(0 to NCPU1);

signal dsui : dsu_in_type;
signal dsuo : dsu_out _type;
begi n

cpu : for i in O to NCPU-1 generate
u0 : |l eon3s-- LEON3 processor
generic map (ahbndx => i, fabtech => FABTECH, mentech => MEMIECH)
port map (clkm rstn, ahbm, ahbmo(i), ahbsi, ahbsi, ahbso,
irgi (i), irgo(i), dbgi (i), dbgo(i));
irqi(i) <=1leon3o(i).irq; leon3i(i).irq <=irqo(i);
end generate;

dsuO : dsu3-- LEON3 Debug Support Unit
generic map (ahbndx => 2, ncpu => NCPU, tech => nentech, kbytes => 2)

port map (rstn, clkm ahbm, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);

dsui . enabl e <= dsuen; dsui.break <= dsubre; dsuact <= dsuo. active;

53

9.1

9.2

IRQMP - Multiprocessor Interrupt Controller

Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller coreis attached to AMBA bus as an APB dave, and monitors the combined
interrupt signals.

Theinterrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority to the processor. In
multiprocessor systems, the interrupts are propagated to all processors.

Interrupt level
Interrupt acknowledge
v v
MPIRQ Processor 0 Processor 1 Processor n
CTRL
y A
BUS v AHB BUS
CONTROL y A
v v
SLAVE 1 SLAVE 2

Figure 26. LEON3 multiprocessor system with Multiprocessor Interrupt controller

Operation

9.21 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus. Each interrupt can be assigned
to one of two levels (0 or 1) as programmed in the interrupt level register. Level 1 has higher priority
than level 0. The interrupts are prioritised within each level, with interrupt 15 having the highest pri-
ority and interrupt 1 the lowest. The highest interrupt from level 1 will be forwarded to the processor.
If no unmasked pending interrupt exists on level 1, then the highest unmasked interrupt from level O
will be forwarded.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

55

Priority
select
IRQ
Pending
Priority
encoder
15 4
APBI.PIRQ[15:1] % IRQO[0].IRL[3:0]
_— =
IRQ IRQ
Force[O]| mask[0]
— Priority
encoder
4
IRQO[N].IRL[3:0]

IRQ IRQ
Force[n]| mask[n]

Figure 27. Interrupt controller block diagram

When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the pro-
cessor acknowledgement will clear the force bit rather than the pending bit. After reset, the interrupt
mask register is set to all zeros while the remaining control registers are undefined. Note that interrupt
15 cannot be maskable by the LEON3 processor and should be used with care - most operating sys-
tems do not safely handle this interrupt.

9.2.2 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUSfield
in this register indicates if a processor is halted (‘1) or running (‘0"). A halted processor can be reset
and restarted by writing a ‘1’ to its status field. After reset, all processors except processor O are
halted. When the system is properly initialized, processor 0 can start the remaining processors by
writing to their STATUS bits.

Registers

The coreis controlled through registers mapped into APB address space. The number of implemented
registers depend on number of processor in the multiprocessor system.

Table 32. Interrupt Controller registers

APB address offset Register

0x00 Interrupt level register

0x04 Interrupt pending register

0x08 Interrupt force register (NCPU = 0)
ox0C Interrupt clear register

0x10 Multiprocessor status register
0x40 Processor interrupt mask register
0x44 Processor 1 interrupt mask register
0x40+4* n Processor n interrupt mask register
0x80 Processor interrupt force register
0x84 Processor 1 interrupt force register
0x80+4*n Processor n interrupt force register

9.3.1 Interrupt level register

31 17 16 1 0
“000..0" IL[15:1] ‘ 0 ‘

Figure 28. Interrupt level register

[31:16] Reserved.
[15:1] Interrupt Level n (IL[n]): Interrupt level for interrupt n.
[0] Reserved.

9.3.2 Interrupt pending register

31 16 15 1 0
“000..0" IP[15:1] ‘ 0 ‘

Figure 29. Interrupt pending register

[31:17] Reserved.
[16:1] Interrupt Pending n (IP[Nn]): Interrupt pending for interrupt n.
[Q] Reserved

57
9.3.3 Interrupt forceregister (NCPU =0)

31 16 15 1 0
“000...0" IF[15:1] 0|

Figure 30. Interrupt force register

[31:16] Reserved.
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.

9.3.4 Interrupt clear register

31 16 15 1 0
“000...0" IC[15:1] 0|

Figure 31. Interrupt clear register

[31:16] Reserved.
[15:1] Interrupt Clear n (IC[n]): Writing ‘1’ to ICn will clear interrupt n.
[0] Reserved.

9.3.5 Multiprocessor statusregister

31 28 16 15 0
\ NCPU \ “000...0" STATUS[15:0]

Figure 32. Multiprocessor status register

[31:28] NCPU. Number of CPU’sin the system -1..

[27:16] Reserved.

[15:1] Power-down status of CPU [n]: ‘1" = power-down, ‘0" = running. Write with ‘1" to force processor n out of power-
down.

9.3.6 Processor interrupt mask register

31 16 15 1 0
“000...0" IM[15:1] \ 0 \

Figure 33. Processor interrupt mask register

[31:16] Reserved.
[15:1] Interrupt Mask n (IM[n]): If IMn =0 theinterrupt n is masked, otherwiseit is enabled.
[0] Reserved.

58
9.3.7 Processor interrupt forceregister (NCPU > 0)

31 17 16 15 1 0
IFC[15:1] o] IF[15:1]

Figure 34. Processor interrupt force register

[31:17] Interrupt force clear n (IFC[N]).
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.
9.4 Vendor and deviceidentifiers
The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00D. For description
of vendor and device identifiers see GRLIB IP Library User’'s Manual.
9.5 Configuration options
Table 33 shows the configuration options of the core (VHDL generics).
Table 33. Configuration options
Generic Function Allowed range Default
pindex Selectswhich APB select signal (PSEL) will beusedto | O0to NAPBMAX-1 0
access the timer unit
paddr The 12-bit MSB APB address 0to 4095 0
pmask The APB address mask 0to 4095 4095
ncpu Number of processors in mulitprocessor system 1to 16 1
9.6 Signal descriptions
Table 34 shows the interface signals of the core (VHDL ports).
Table 34. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB daveinput signals -
APBO * Output APB dlave output signals -
IRQI[N] INTACK Input Processor n Interrupt acknowledge High
IRL[3:0] Processor n interrupt level High
IRQQO[N] IRL[3:0] Output Processor n Input interrupt level High
RST Reset power-down and error mode of processor n | High
RUN Start processor n after reset (SMP systemsonly) | High

* see GRLIB IP Library User’'s Manual

9.7

9.8

Library dependencies
Table 35 shows libraries that should be used when instantiating the core.

Table 35. Library dependencies

59

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER LEONS3 Signals, component Signals and component declaration
I nstantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.leon3.all;

entity irqgnp_ex is

port (
clk : in std_ulogic;
rstn : in std_ul ogic;
.. -- other signals
)
end;

architecture rtl of irgnp_ex is
constant NCPU : integer := 4;

-- AMBA signal s

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbm : ahb_mnst _in_type;

signal ahbrmo : ahb_nst_out_vector := (others => ahbm none);
signal ahbsi : ahb_slv_in_type;

-- GP Timer Unit input signals
signal irqi :irqg_in_vector(0 to NCPU-1);
signal irqo :irqg_out_vector(0 to NCPU-1);

-- LEON3 signals
signal leon3i : 13_in_vector(0 to NCPU-1);
signal leon3o : |3 _out_vector(0 to NCPU1);

begin

-- 4 LEON3 processors are instantiated here
cpu : for i in O to NCPU-1 generate
u0 : |eon3s generic map (hindex => i)
port map (clk, rstn, ahbm , ahbno(i), ahbsi,
irqi(i), irqo(i), dbgi (i), dbgo(i));
end generate;

-- MP IRQ controller

irgectrl0 : irgnp

generic map (pindex => 2, paddr => 2, ncpu => NCPU)

port map (rstn, clk, apbi, apbo(2), irqgi, irqo);
end

60

10

10.1

MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller

Overview

The memory controller handles a memory bus hosting PROM, memory mapped 1/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts asadave
on the AHB bus. The function of the memory controller is programmed through memory configura-
tionregisters1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus. The memory bus supports
four types of devices: prom, sram, sdram and local 1/0. The memory bus can also be configured in 8-
or 16-bit mode for applications with low memory and performance demands.

Chip-select decoding is done for two PROM banks, one 1/0O bank, five SRAM banks and two
SDRAM banks.

The controller decodes three address spaces (PROM, I/0O and RAM) whose mapping is determined
through VHDL -generics.

Figure 35 shows how the connection to the different device typesis made.

APB AHB A D
MEMO.ROMSN[1:0] cs A | qu—
MEMO.OEN oe PROM
MEMO.WRITEN WE D |G |
— MEMO.IOSN cs >
L—]oe 1/0 5 -
WE | C—
MEMORY
CONTROLLER ,
MEMO.RAMSN[4:0] cs A
MEMO.RAMOEN[4:0] o SRAM
MEMO.RWEN[3:0] WE =)
MEMO.MBEN[3:0] MBEN
[A[16:15]
MEMO.SD([:LK] CLK oa
MEMO.SDCSN[1.0 CSN
i || —) A[14:2
MEMO.SDRASN RAS SDRAM A 1142
MEMO.SDCASN CAS
MEMO.SDWEN WE D |
MEMO.SDDQM[3:0] DQM
MEMI.A[27:0] >
MEMI.D[31:0]/ |«
MEMO.D[3L:0] | =>

Figure 35. Memory controller conected to AMBA bus and different
types of memory devices

10.2

10.3

104

61

PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM cycles
can have up to 15 waitstates.

datal data2 lead-out
ok [\ \ \ \ \ \
A Al)
ROMSN
OEN \ /
0 D

Figure 36. Prom read cycle

Two PROM chip-select signas are provided, MEMO.ROMSN[1:0]. MEMO.ROMSNIQ] is asserted
when the lower half of the PROM area as addressed while MEMO.ROMSNJ1] is asserted for the
upper half. When the VHDL model is configured to boot from internal prom, MEMO.ROMSNIO] is
never asserted and all accesses to the lower half of the PROM area are mapped on the internal prom.

Memory mapped 1/0

Accesses to 1/0 have smilar timing to ROM/RAM accesses, the differences being that a additional
waitstates can be inserted by de-asserting the MEMI.BRDYN signa. The I/O select signal
(MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is asserted.

lead-in data lead-out
ck / _/ \ \ \ \ \
A Al
IOSN ‘
OEN \ /
° 1D
BRDYN _ J

Figure 37. 1/0 read cycle

SRAM access

The SRAM area can be up to 1 Ghyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (MEMO.RAMSN[4]) decodes the upper 512
Mbyte. A read access to SRAM consists of two data cycles and between zero and three waitstates.
Accesses to MEMO.RAMSN[4] can further be stretched by de-asserting MEMI.BRDYN until the
datais available. On non-consecutive accesses, a lead-out cycle is added after aread cycle to prevent

62

bus contention due to slow turn-off time of memories or 1/0O devices. Figure 38 shows the basic read
cycle waveform (zero waitstate).

datal data2 lead-out
clk /o \ \ \ \ \ \
A Al)
RAMSN
RAMOEN \
0 =

Figure 38. Static ram read cycle (O-waitstate)

For read accesses to MEMO.RAMSN[4:0], a separate output enable signal (MEMO.RAMOENIN]) is
provided for each RAM bank and only asserted when that bank is selected. A write accessis similar to
the read access but takes a minimum of three cycles:

lead-in data |ead-out
ck /o \ \ \ \ \
A — Al
RAMSN ——\
RWEN
/
D D1

Figure 39. Static ram write cycle

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be driven
until the write strobes are de-asserted. Each byte lane has an individua write strobe to allow efficient
byte and half-word writes. If the memory uses a common write strobe for the full 16- or 32-bit data,
the read-modify-write bit in the MCFG2 register should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data |/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

10.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not neces-
sary to always have full 32-bit memory banks. The SRAM and PROM areas can be individualy con-
figured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory
configuration registers. Since read access to memory is always done on 32-bit word basis, read access
to 8-bit memory will be transformed in a burst of four read cycles while access to 16-bit memory will
generate a burst of two 16-bits reads. During writes, only the necessary bytes will be writen. Figure 40
shows an interface example with 8-bit PROM and 8-bit SRAM. Figure 41 shows an example of a 16-
bit memory interface.

10.6

10.7

63

8-bit PROM A b
MEMO.ROMSN[0] cs R A[27:0)
MEMO.OEN o PROM .
MEMO.WRITEN WE D 43%— =)
MEMORY)
CONTROLLER 8-bit RAM
MEMO.RAMSN[O] cs HAZS
MEMO.RAMOEN([0] OE SRAM .
MEMO.RWENI[0] RWEO] | \ve I I elite -
MEMI.A[27:0] >
MEMI.D[3L:24]/ |«
MEMO.D[[31:24]1] - =>
Figure 40. 8-bit memory interface example
16-bit PROM A D
MEMO.ROMSN[0] cs N _A[27:]]
MEMO.OEN o PROM —
MEMO.WRITEN WEE D QBM— =)
MEMORY
NTROLLER .
o © 16-bit RAM
MEMO.RAMSN[O] cs M A Al27:1]
MEMO.RAMOEN[O] —Joe SRA DI31:16]
MEMO.RWEN[0:1] RWE[L0| | \yE D =)
MEMI.A[27:0] >
MEMI.D[3L:16]/ |
MEMO.D[[Sl:lE]S] h =-»

Figure 41. 16-bit memory interface example

Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of aburst cycleisidentical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer.

8- and 16-bit 1/O access

Similar to the PROM/RAM areas, the I/O area can a so be configured to 8- or 16-bits mode. However,
the I/0O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but only

10.8

10.9

with one single access just as in 32-bit mode. To accesses an 1/0O device on a 16-bit bus, LDUH/STH
instructions should be used while LDUB/STB should be used with an 8-bit bus.

SDRAM access

10.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. Thisis implemented by a special version of the SDCTRL SDRAM controller core from
Gaider Research, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

10.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is
enabled and mapped into upper half of the RAM area aslong asthe SRAM disable bit is not set. If the
SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are mapped into the
lower half of the RAM area.

10.8.3 Initialisation

When the SDRAM controller is enabled, it automaticaly performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neoudly. The controller programs the SDRAM to use page burst on read and single location access on
write.

10.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2) The pro-
grammable SDRAM parameters can be seen in tabel 36.

Table 36. SDRAM programmable timing parameters

Function Par ameter Range Unit

CAS latency, RAS/ICAS delay tcas trep 2-3 clocks
Precharge to activate trp 2-3 clocks
Auto-refresh command period trRrc 3-11 clocks
Auto-refresh interval 10 - 32768 clocks

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 us (corresponding to 780 or 1560 clocks at 100 MHZz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

10.10

65

10.9.1 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in MCFG2 will be used, remaining fields are fixed: page
read burst, single location write, sequential burst. The command field will be cleared after acommand
has been executed. Note that when changing the value of the CAS delay, a LOAD-MODE-REGIS
TER command should be generated at the same time.

10.9.2 Read cycles

A read cycleis started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are | eft open between two accesses.

10.9.3 Writecycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cyclesin-between.

10.9.4 Address bus connection

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

10.9.5 Databus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data busif 64-bit data busis not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM busis used. SDRAM bus signals are
described in section 10.13, for configuration options refer to section 10.15.

10.9.6 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Xilinx and Altera
device, the GR Clock Generator can be configured to produce a properly synchronised SDRAM
clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

Using busready signalling

The MEMI.BRDYN signal can be used to stretch access cycles to the 1/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will aways have at |east the pre-programmed number
of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched until
MEMI.BRDYN is asserted. MEMI.BRDY N should be asserted in the cycle preceding the last one.

66

The use of MEMI.BRDY N can be enabled separately for the I/O and RAM areas.

datal data2 waitstate lead-out
ak /N[/[\ \ \ \
A — Al
RAMSN[4]
OEN
° (oD
BRDYN _| /

Figure 42. RAM read cycle with one BRDY N controlled waitstate

10.11 Accesserrors

An access error can be signalled by asserting the MEMI.BEXCN signal, which is sampled together
with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register 1, an error
response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled or disabled
through memory configuration register 1, and is active for all areas (PROM, 1/0 an RAM).

datal data2 lead-out
ck / _/ \ \ \ \ \
A Al
RAMSN \
OEN \ /
° «an
BEXCN _ |/

Figure 43. Read cyclewith BEXCN

10.12 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it alows the cycle
time to vary through the use of MEMI.BRDY N. In this way, delays can be inserted as required for
opening of banks and refresh.

67

10.13 Registers
The memory controller is programmed through registers mapped into APB address space.

Table 37. Memory controller registers

APB address offset Register
0x0 MCFG1
0x4 MCFG2
0x8 MCFG3

10.13.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local 1/O accesses.

31 29 28 27 26 25 24 23 20 19 18 17 12 11 10 9 8 7 4 3 0
‘ Reserved ‘ ‘ ‘ ‘ ‘I/O Waitstat&‘ ‘ ‘ Reserved ‘ ‘ ‘ ‘Prom Writews‘ Prom read ws
1/0 width 1/0 enable J

1/0 ready enable
BEXCN enable

Prom write enable
Prom width

Figure 44. Memory configuration register 1

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”"=0, “0001"=1,...
“1111"=15).

[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (*0000"=0, “0001"=1,...
“1111"=15).

[9:8]: Prom width. Defines the data with of the prom area (“00”=8, “01"=16, “10"=32).

[10]: Reserved

[11]: Prom write enable. If set, enables write cyclesto the prom area.

[17:12]: Reserved

[19]: 1/0 enable. If set, the access to the memory bus I/O area are enabled.

[23:20]: 1/O waitstates. Defines the number of waitstates during I/O accesses (“0000"=0, “0001"=1, “0010"=2,...,
“1111"=15).

[25]: Bus error (BEXCN) enable.

[26]: Busready (BRDY N) enable.

[28:27]: 1/O buswidth. Defines the data with of the I/O area (“*00"=8, “01"=16, “10"=32).

During power-up, the prom width (bits[9:8]) are set with value on MEMI.BWIDTH inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All other
fields are undefined.

68

10.14

10.13.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

3130 29 27 26 25 23 2221 2019 18 14 13 12 9 87 65 4 32 10

|

[1:0]:
[3:2]:
[5:4]:
[6]:

[7]:
[12:9]:
[13]:
[14]:
[18]:
[20:19]

[22:21]:
[25:23]:
[26]:

[29:27]:

[30]:
[31]:

[T T1T [[[0 [e[s [srambenks] [[[| []

L SDRAM command BRDYN enable J
SDRAM Col. size Read-mod.-write

SDRAM Bank size Ram width

CAS delay, tRCD Write waitstates
tRFC Read waitstates
tRP

Refresh enable

Figure 45. Memory configuration register 2

Ram read waitstates. Defines the number of waitstates during ram read cycles (“*00"=0, “01"=1, “10"=2, “11"=3).
Ram write waitstates. Defines the number of waitstates during ram write cycles (“00"=0, “01"=1, “10"=2, “11"=3).
Ram with. Defines the data with of the ram area (“00”=8, “01"=16, “1X"= 32).

Read-modify-write. Enable read-modify-write cycles on sub-word writesto 16- and 32-bit areaswith common write
strobe (no byte write strobe).

Bus ready enable. If set, will enable BRDY N for ram area

Ram bank size. Defines the size of each ram bank (“0000”=8 Kbyte, “0001"=16 Kbyte... “1111"=256 Mbyte).

Sl - SRAM disable. If set together with bit 14 (SDRAM enable), the static ram access will be disabled.

SE - SDRAM enable. If set, the SDRAM controller will be enabled.

64-bit data bus (D64) - Reads ‘1" if memory controller is configured for 64-bit data bus, otherwise ‘0'. Read-only.
SDRAM command. Writing a non-zero value will generate an SDRAM command: “01"=PRECHARGE,
“10"=AUTO-REFRESH, “11"=LOAD-COMMAND-REGISTER. The field is reset after command has been
executed.

SDRAM column size. “00" =256, “01"=512, “10"=1024, “11"=4096 when bit[25:23]= “111", 2048 otherwise.
SDRAM banks size. Defines the banks size for SDRAM chip selects: “000"=4 Mbyte, “001"=8 Mbyte, “010"=16
Mbyte ... “111"=512 Mbyte.

SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER
command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

SDRAM trpc timing. tgec Will be equal to 3 + field-value system clocks.

SDRAM tgp timing. tgp Will be equal to 2 or 3 system clocks (0/1).

SDRAM refresh. If set, the SDRAM refresh will be enabled.

10.13.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

31

27 26 12 11 0

RESERVED ‘ SDRAM refresh reload value ‘ RESERVED

Figure 46. Memory configuration register 3

The period between each AUTO-REFRESH command is calculated as follows:
trerresH = ((reload value) + 1) / SYSCLK

Vendor and device identifiers

The core has vendor identifier 0x04 (ESA) and device identifier OXOOF. For description of vendor and
device identifier see GRLIB IP Library User's Manual.

10.15 Configuration options

Table 38 shows the configuration options of the core (VHDL generics).

Table 38. Configuration options

69

Generic Function Allowed range | Default

hindex AHB dave index 1-NAHBSLV-1 |0

pindex APB daveindex 0- NAPBSLV-1 |0

romaddr ADDR filed of the AHB BARO defining PROM address space. | 0 - 16#FFF# 16#000#
Default PROM areais 0x0 - Ox1FFFFFFF.

rommask MASK filed of the AHB BARO defining PROM address space. | O - 16#FFF# 16H#EQO#

ioaddr ADDR filed of the AHB BAR1 defining 1/0 address space. 0 - 16#FFF# 16#200#
Default 1/0 areais 0x20000000 - Ox2FFFFFFF,

iomask MASK filed of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 164#EQ0#

ramaddr ADDR filed of the AHB BAR2 defining RAM address space. 0 - 16#FFF# 16#400#
Default RAM areais 0x40000000-0x 7FFFFFFF.

rammask MASK filed of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR filed of the APB BAR configuration registers address 0 - 16#FFF# 0
space.

pmask MASK filed of the APB BAR configuration registers address 0 - 16#FFF# 16#FFF#
space.

wprot RAM write protection. 0-1

invelk Inverted clock is used for the SDRAM. 0-1

fast Enable fast SDRAM address decoding. 0-1

romasel log2(PROM address space size) - 1. E.g. if size of the PROM 0-31 28
area is 0x20000000 romase! islog2(2129)-1 = 28.

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM 0-31 29
address space is 0x40000000 sdrasel is1og2(2°30)-1= 29.

srbanks Number of SRAM banks. 0-5 4

ram8 Enable 8-bit PROM and SRAM access. 0-1 0

raml6 Enable 16-bit PROM and SRAM access. 0-1 0

sden Enable SDRAM controller. 0-1 0

sepbus SDRAM islocated on separate bus. 0-1 1

sdbits 32 or 64 -bit SDRAM data bus. 32,64 32

oepol Select polarity of drive signals for datapads. 0 = activelow, 1= | 0-1 0
active high.

70

10.16 Signal descriptions
Table 39 shows the interface signal's of the core (VHDL ports).

Table 39. Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
MEMI DATA[31:0] Input Memory data High
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input SRAM write enable feedback signal Low
BWIDTH[1:Q] Input Sets the reset value of the PROM databuswidth | High
field in the MCFGL1 register
SD[31:0] Input SDRAM separate data bus High
MEMO ADDRESS[27:0] Output Memory address High
DATA[31:0] Output Memory data -
SDDATA[63:0] Output Sdram memory data -
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN]4:0] Output SRAM output enable Low
IOSN Output Local 1/0 select Low
ROMSN[1:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable Low
MBEN[3:0] Output Byte enable Low
BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con- | Low/High
trols I/0O-pads connected to external memory
bus.
VBDRIVE[31:0] Output Vectored |/O-pad drive signals. Low/High
SVBDRIVE[63:0] Output Vectored |/O-pad drive signals for separate Low/High
sdram bus.
READ Output Read strobe High
SA[14:0] Output SDRAM separate address bus High
AHBSI * Input AHB slaveinput signals -
AHBSO * Output AHB dave output signals -
APBI * Input APB daveinput signals -
APBO * Output APB dave output signals -
WPROT WPROTHIT Input Unused -
SDO SDCASN Output SDRAM column address strobe Low
SDCKE[1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDDQM[7:0] Output SDRAM data mask Low
SDRASN Output SDRAM row address strobe Low
SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’'s Manua

10.17

10.18

Library dependencies

Table 40 shows libraries used when instantiating the core (VHDL libraries).

Table 40. Library dependencies

71

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals Memory bus signals definitions
Components SDMCTRL component
ESA MEMORY CTRL Component Memory controller component declaration
I nstantiation

This examples shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-

erator and Reset Generator.

Memory controller decodes default memory areas: PROM area is Ox0 - OX1FFFFFFF, 1/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - Ox7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;

use grlib.tech.all;
library gaisler;

use gaisler.menctrl.all;
use gai sl er.pads.all;
library esa;

use esa. nmenoryctrl.all;

-- used for |/0O pads

entity nctrl_ex is

port (

clk : in std_ul ogic;
resetn : in std_ulogic;
pllref : in std_ulogic;
-- nenory bus
addr ess out std_l ogi c_vector (27 downto 0);
dat a inout std_|ogic_vector (31 downto 0);
ramsn out std_l ogic_vector(4 downto 0);
ranoen out std_l ogic_vector(4 downto 0);
rwen inout std_|l ogic_vector(3 downto 0);
romsn out std_l ogic_vector(1l downto 0);
iosn out std_|l ogic;
oen out std_| ogic;
read out std_| ogic;
writen : inout std_logic;
brdyn cin std_| ogi c;
bexcn in std_|l ogic;

-- sdrami/f
sdcke out std_l ogic_vector (1 downto 0);
sdcsn out std_logic_vector (1 downto 0);
sdwen out std_| ogic;
sdrasn out std_| ogic;
sdcasn out std_l ogic;
sddgm out std_|logic_vector (7 downto 0);
sdcl k : out std_l ogic;
sa : out std_logic_vector (14 downto 0);

sd : inout std_logic_vector (63 downto 0)

-- optional
-- optional

-- nmenory bus

-- clk en

-- chip sel

-- wite en

-- row addr stb
-- col addr stb

-- data i/o mask

-- sdram cl k out put
sdram addr ess
sdram dat a

72

)

end;
architecture rtl of nttrl_ex is
-- AVBA bus (AHB and APB)
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbm : ahb_mst_in_type;
signal ahbnmo : ahb_nst_out_vector := (others => ahbm none);
-- signals used to connect nenory controller and nmenory bus
signal nmem : nenory_in_type;
signal meno : nenory_out _type;
signal sdo : sdramout_type;
signal wprot : wprot_out_type; -- dummy signal, not used
signal clkm rstn : std_ulogic; -- systemclock and reset
-- signals used by clock and reset generators
signal cgi : clkgen_in_type;
signal cgo : cl kgen_out_type;
signal gnd : std_ul ogic;
begi n

-- Cock and reset generators

cl kgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)

port map (clk, gnd, clkm open, open, sdclk, open, cgi, cgo);

cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

-- Menory controller
mctrl O @ nctrl generic map (srbanks => 1, sden => 1)
port map (rstn, clkm nenm, neno, ahbsi, ahbso(0), apbi, apbo(0), wprot,

-- nmenory controller inputs not used in this configuration
mem . brdyn <= '1'; nem.bexcn <= '1'"; mem.wn <= "1111";
nem . sd <= sd;

-- promw dth at reset
mem . bwi dth <= "10";

-- 1/ 0O pads driving data nmenory bus data signals
datapads : for i in O to 3 generate
data_pad : iopadv generic map (width => 8)
port map (pad => data(31l-i*8 downto 24-i*8),
o => nem .data(31-i *8 downto 24-i*8),
en => meno. bdrive(i),
i => meno.data(31-i *8 downto 24-i*8));
end generate;

-- connect nmenory controller outputs to entity output signals
address <= nenp. address; ransn <= nMEND.ransn; ronsn <= MEND.rONsN;
oen <= menp.oen; rwen <= penD.wn; ranoen <= "1111" & meno. ranoen(0);
sa <= nmeno. sa;

witen <= nenp.witen; read <= neno.read; iosn <= neno.iosn;

sdcke <= sdo. sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo. sdcsn;

sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddgm <= sdo. dgm

end;

sdo) ;

1n

1.1

11.2

11.3

73
AHBSTAT - AHB Satus Registers

Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tol-
erant core.

The status register and the failing address register are accessed from the AMBA APB bus.

Operation

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01") is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated.

The interrupt is generated on the line selected by the pirg VHDL generic.

The interrupt is usually connected to the interrupt controller to inform the processor of the error con-
dition. The normal procedure is that an interrupt routine handles the error with the aid of the informa-
tion in the status registers. When it is finished it resets the NE bit and the monitoring becomes active
again.

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a single error is detected. When
such an error is detected, the effect will be the sasme asfor an AHB error response, The only difference
is that the Correctable Error (CE) bit in the status register is set to one when a single error is detected.
When the CE bit is set the interrupt routine can acquire the address containing the single error from
the failing address register and correct it. When it is finished it resets the CE bit and the monitoring
becomes active again.

The correctable error signals from the fault tolerant units should be connected to the stati.cerror input
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect asan AHB error response.

Registers
The core is programmed through registers mapped into APB address space.

Table 41. AHB Status registers

APB address offset Registers
0x0 AHB Status register
0x4 AHB Failing address register

Table 42. AHB Status register

31 10 9 8 7 6 3 2 0
RESERVED ‘CE ‘ NE ‘ HWRITE | HMASTER | HSIZE
31: 10 RESERVED
9 CE: Correctable Error. Set if the detected error was caused by asingle error and zero otherwise.
8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by

writing azero to it.

74

Table 42. AHB Status register

7 The HWRITE signal of the AHB transaction that caused the error.
6: 3 The HMASTER signal of the AHB transaction that caused the error.
20 The HSIZE signal of the AHB transaction that caused the error
Table 43. AHB Failing address register
31
AHB FAILING ADDRESS
310 The HADDR signal of the AHB transaction that caused the error.

11.4 Vendor and deviceidentifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x052. For description of

vendor and device identifiers see GRLIB IP Library User’'s Manual .

11.5 Configuration options

Table 44 shows the configuration options of the core (VHDL generics).

Table 44. Configuration options

Generic Function Allowed range Default
pindex APB daveindex 0- NAHBSLV-1 0
paddr APB address 0 - 16#FFF# 0
pmask APB address mask 0 - 16#FFF# 16#FFF#
pirq Interrupt line driven by the core 0 - 16#FFF# 0
nftslv Number of FT slaves connected to the cerror vector 1- NAHBSLV-1 3
11.6 Signal descriptions

Table 45 shows the interface signals of the core (VHDL ports).

Table 45. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB dave input signals -
AHBSI * Input AHB slave output signals -
STATI CERROR Input Correctable Error Signals High
APBI * Input APB daveinput signals -
APBO * Output APB dave output signals -

* see GRLIB IP Library User's Manual

11.7 Library dependencies

Table 46 shows libraries used when instantiating the core (VHDL libraries).

Table 46. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MISC Component Component declaration

11.8

75

I nstantiation

This examples shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
register cerror vector. The connection of the different memory controllers to external memory is not
shown.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;

use grlib.tech.all;
library gaisler;

use gaisler.menctrl.all;
use gaisler.msc.all;

entity nctrl_ex is

port (
clk : in std_ul ogic;
rstn : in std_ul ogic;

--other signals
)
end;

architecture rtl of nctrl _ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector
signal ahbm : ahb_mst_in_type;
signal ahbrmo : ahb_nst_out_vector := (others => ahbm none);

(others => apb_none);

(others => ahbs_none);

-- signals used to connect nenory controller and nmenory bus
signal mem : nmenory_in_type;
signal nmeno : nenory_out _type;

signal sdo, sdo2: sdctrl_out_type;
signal sdi : sdctrl_in_type;

-- correctable error vector
signal stati : ahbstat_in_type;
signal aranmo : ahbram out_type;

begi n
-- AMBA Conponents are defined here ...

-- AHB Status Register
astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 3)
port map(rstn, clkm ahbnm, ahbsi, stati, apbi, apbo(13));
stati.cerror(3 to NAHBSLV-1) <= (others => ‘0');

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
errcnt => 1, cntbhits => 4)
port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aranp);
stati.cerror(0) <= arano.ce;
-- SDRAM control | er
sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
ioaddr => 1, fast => 0, pwon => 1, invclk => 0, edacen => 1, errcnt => 1,
cntbhits => 4)

76

port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);
stati.cerror(1l) <= sdo.ce;

-- Menory controller
nctrl 0 : ftsrctrl generic map (rnmw => 1, pindex => 10, paddr => 10,
edacen => 1, errcnt => 1, cntbits => 4)
port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), mem , neno,
stati.cerror(2) <= meno.ce;
end;

sdo2);

12

121

12.2

77
APBUART - AMBA APB UART Serial Interface

Overview

Theinterface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-
bit clock divider. Optional hardware flow-control is supported through the RTSN/CTSN hand-shake
signals. Two configurable FIFOs are used for data transfer between the bus and UART.

<«—K3 CTSN
Serial port
Baud-rate 8*bitclk Controller ——»J RTSN
generator
RXD K}—» Receiver shift register Transmitter shift register ——»K TXD
¢ A
Receiver FIFO or Transmitter FIFO or
holding register holding register

L w1

Figure 47. Block diagram

Operation

12.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO by writing to the data register (see section 5) . This FIFO is configurable
to different sizes (see table 1). When the sizeis 1, only asingle holding register is used but in the fol-
lowing discussion both will be referred to as FIFOs. When ready to transmit, data is transferred from
the transmitter FIFO to the transmitter shift register and converted to a serial stream on the transmitter
serial output pin (TXD). It automatically sends a start bit followed by eight data bits, an optional par-
ity bit, and one stop bit (figure 48). The least significant bit of the datais sent first.

Data frame, no parity: TStart‘ DO ’ D1 ’ D2 ’ D3 ’ D4 | D5 | D6 | D7 |Stop‘

Data frame with parity: TStart‘ DO] D1] D2] D3] D4 | D5 | D6 | D7 |Parity‘8top

Figure 48. UART dataframes

Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register (see section 5). Transmission resumes and the TS is cleared when a

78

12.3

new character isloaded into the transmitter FIFO. When the FIFO isempty the TE bit is set in the sta-
tus register. If the transmitter is disabled, it will immediately stop any active transmissions including
the character currently being shifted out from the transmitter shift register. The transmitter holding
register may not be loaded when the transmitter is disabled or when the FIFO (or holding register) is
full. If thisis done, data might be overwritten and one or more frames are | ost.

The discussion above applies to any FIFO configurations including the special case with a holding
register (fifosize = 1). If FIFOs are used (fifosize > 1) some additional status and control bits are
available. The TF status bit (not to be confused with the TF control bit) is set if the transmitter FIFO is
currently full and the TH bit is set aslong as the FIFO is less than half-full (lessthan half of entriesin
the FIFO contain data). The TF control bit enables FIFO interrupts when set. The status register al'so
contains a counter (TCNT) showing the current number of data entriesin the FIFO.

If flow control is enabled, the CTSN input must be low in order for the character to be transmitted. If
it is deasserted in the middle of atransmission, the character in the shift register is transmitted and the
transmitter serial output then remainsinactive until CTSN is asserted again. If the CTSN is connected
to areceivers RTSN, overrun can effectively be prevented.

12.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If atransition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit isinvalid and the search for avalid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming alow-pass filter with a cut-off frequency of 1/8 system clock.

The receiver aso has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO.

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set. The data frame is not stored in the FIFO if an error is
detected. Also, the new error status bits are or:ed with the old values before they are stored into the
status register. Thus, they are not cleared until written to with zeros from the AMBA APB bus. If both
the receiver FIFO and shift registers are full when anew start bit is detected, then the character held in
the receiver shift register will be lost and the overrun bit will be set in the UART status register. If
flow control is enabled, then the RTSN will be negated (high) when avalid start bit is detected and the
receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When fifosize > 1, which means that holding registers are not considered here, some additional status
and control bits are available. The RF status bit (not to be confused with the RF control bit) is set
when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is half-full (at least
half of the entries in the FIFO contain data frames). The RF control bit enables receiver FIFO inter-
rupts when set. A RCNT field is also available showing the current number of data frames in the
FIFO.

Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. It is reloaded with

12.4

79

the value of the UART scaler reload register after each underflow. The resulting UART tick frequency
should be 8 times the desired baud-rate. If the EC bit is set, the scaler will be clocked by the
UARTI.EXTCLK input rather than the system clock. In this case, the frequency of UARTI.EXTCL
must be less than half the frequency of the system clock.

12.3.1 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

12.3.2 Interrupt generation

Interrupts are generated differently when a holding register is used (fifosize = 1) and when FIFOs are
used (fifosize > 1). When holding registers are used, the UART will generate an interrupt under the
following conditions: when the transmitter is enabled, the transmitter interrupt is enabled and the
transmitter holding register moves from full to empty; when the receiver is enabled, the receiver inter-
rupt is enabled and the receiver holding register moves from empty to full; when the receiver is
enabled, the receiver interrupt is enabled and a character with either parity, framing or overrun error is
received.

For FIFOs two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART islessthan haf-full (that is, whenever the TH status bit is set). Thisisalevel interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames).

Registers
The coreis controlled through registers mapped into APB address space.

Table 47. UART registers

APB address offset Register

0x0 UART Dataregister
0x4 UART Status register
0x8 UART Control register
oxC UART Scaler register

12.4.1 UART Data Register

31 8 7 0
RESERVED DATA

Figure 49. UART dataregister

[7:0]: Receiver holding register or FIFO (read access)
[7:0]: Transmitter holding register or FIFO (write access)

80

12.4.2 UART SatusRegister

31 26 25 20 19 1109 87 6 5 4 3 2 1 0
| RCNT | TONT | RESERVED RF| TFRHTH FE PE OVBRTE TS DR

Figure 50. UART status register

Dataready (DR) - indicates that new datais available in the receiver holding register.
Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty.

Break received (BR) - indicates that a BREAK has been received.

Overrun (OV) - indicates that one or more character have been lost due to overrun.
Parity error (PE) - indicates that a parity error was detected.

Framing error (FE) - indicates that aframing error was detected.

Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full.
Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data.
Transmitter FIFO full (TF) - indicates that the Transmitter FIFO isfull.

10: Receiver FIFO full (RF) - indicates that the Receiver FIFO isfull.

[25:20]: Transmitter FIFO count - shows the number of data frames in the transmitter FIFO.
[31:26]: Receiver FIFO count (RCNT) - shows the number of data framesin the receiver FIFO.

12.4.3 UART Control Register

31 09 8 7654 32 10
RESERVED ‘RF‘TF‘EC‘LB‘FL‘PE‘PS‘TI ‘RI ‘TE‘RQ

Figure 51. UART control register

Receiver enable (RE) - if set, enables the receiver.

Transmitter enable (TE) - if set, enables the transmitter.

Receiver interrupt enable (RI) - if set, interrupts are generated when aframeis received
Transmitter interrupt enable (TI) - if set, interrupts are generated when aframe is transmitted
Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)

Parity enable (PE) - if set, enables parity generation and checking.

Flow control (FL) - if set, enables flow control using CTS/RTS.

Loop back (LB) - if set, loop back mode will be enabled.

External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK
Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled.

=
Q

12.4.4 UART Scaler Register

31 12 11 0
RESERVED SCALER RELOAD VALUE

Figure 52. UART scaler reload register

125 Vendor and deviceidentifiers

The core has vendor identifier 0xO1 (Gaisler Research) and device identifier 0x00C. For a description

of vendor and device identifiers see GRLIB IP Library User’'s Manual.

12.6 Configuration options

Table 48 shows the configuration options of the core (VHDL generics).

Table 48. Configuration options

81

Generic Function Allowed range Default
pindex APB daveindex 0- NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0- 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
console Prints output from the UART on console during VHDL | 0-1 0
simulation and speeds up simulation by always returning
‘1’ for Data Ready bit of UART Status register. Does not
effect synthesis.
pirq Index of theinterrupt line. 0- NAHBIRQ-1 0
parity Enables parity 0-1 1
flow Enables flow control 0-1 1
fifosize Selects the size of the Receiver and Transmitter FIFOs 1,2,4,8, 16, 32 1
12.7 Signal descriptions
Table 49 shows the interface signals of the core (VHDL ports).
Table 49. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB daveinput signals -
APBO * Output APB dlave output signals -
UARTI RXD Input UART receiver data -
CTSN Input UART clear-to-send Low
EXTCLK Input Use as dternative UART clock -
UARTO RTSN Output UART request-to-send Low
TXD Output UART transmit data -

12.8

12.9

* see GRLIB IP Library User's Manual

Library dependencies

Table 50 shows libraries that should be used when instantiating the core.

Table 50. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signal's, component Signal and component declaration
I nstantiation

This examples shows how the core can be instantiated.

library ieee;

use ieee.std_|logic_1164.all;

library grlib;

82

use grlib.anba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is

port (
clk : in std_ul ogic;
rstn : in std_ul ogic;

-- UART signals

rxd :in std_ul ogic;
t xd : out std_ul ogic
)

end;

architecture rtl of apbuart_ex is

-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- UART signals
signal uarti : uart_in_type;
signal uarto : uart_out_type;

begi n

-- AMBA Conponents are instantiated here

-- APB UART

uartO0 : apbuart

generic map (pindex => 1, paddr => 1, pirq => 2,
console => 1, fifosize => 1)

port map (rstn, clk, apbi, apbo(l), uarti, uarto);

-- UART input data
uarti.rxd <= rxd;

-- APB UART inputs not used in this configuration
uarti.ctsn <= '0"; uarti.extclk <='0";

-- connect APB UART output to entity output signal
txd <= uarto.txd;

end;

13

131

83
GPTIMER - General Purpose Timer Unit

Overview

The General Purpose Timer Unit implements one prescaler and one to seven decrementing timers.
Number of timers is configurable through a VHDL-generic. The timer unit acts a slave on AMBA
APB bus. The unit is capable of asserting interrupt on when timer(s) underflow. Interrupt is config-
urable to be common for the whole unit or separate for each timer.

timer 1 reload

timer 2 reload

prescaler reload timer n reload
l A

timer 1 value ——— pirq

prescaler value

timer 2 value ——— pirq+1

tick

»| timernvalue ——— pirq+2

Figure 53. General Purpose Timer Unit block diagram

13.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and atimer tick is generated. Timers
share the decrementer to save area. On the next timer tick next timer is decremented giving effective
division rate equal to (prescaler reload register value + 1).

The operation of each timersis controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable
bit.

The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. If configured
to signal interrupt for each timer the timer unit will signal an interrupt on appropriate line when a
timer underflows (if the interrupt enable bit for the current timer is set). The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘0’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the number of
implemented timers.

By setting the chain bit in the control register timer n can be chained with preceding timer n-1. Decre-
menting timer n will start when timer n-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer can also be configured as a watchdog, driving a watch-
dog output signal when expired.

13.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-

mented registers depend on number of implemented timers.

Table 51. General Purpose Timer Unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Unused

0x10 Timer 1 counter value register
Ox14 Timer 1 reload value register
0x18 Timer 1 control register

0x1C Unused

0xn0 Timer n counter value register
oxn4 Timer n reload value register
0xn8 Timer n control register

Figures 54 to 59 show the layout of the general purpose timer unit registers.

31 shits shits-1
‘ “000...0” ‘ SCALER Vaue
Figure54. Scaler value
31 shits shits-1
“000...0” SCALER Reload Value
Figure 55. Scaler reload value
31 9 8 7

“000..0" DF| s |

Figure 56. GP Timer Unit Configuration register

[31:10] - Reserved.

[9] - Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT freezes the timer unit.
[8] - Separateinterrupts (Sl). Reads ' 1’ if the timer unit generates separate interrupts for each timer, otherwise ' 0’. Read-only.
[7:3] - APB Interrupt: If configured to use common interrupt al timerswill drive APB interrupt nr. IRQ, otherwisetimer nwill

drive APB Interrupt IRQ+n (hasto be less the MAXIRQ). Read-only.

[2:0] - Number of implemented timers. Read-only.

85

31 nbits nbits-1 0
“000...0" TIMER COUNTER VALUE

Figure 57. Timer counter value registers

[31:nbits] - Reserved. Always reads as ‘ 000...0°
[nbits-1:0] - Timer Counter value. Decremented by 1 for each n prescaler tick where n is number of implemented timers.

31 nbits nbits-1 0
“000...0" TIMER RELOAD VALUE

Figure 58. Timer reload value registers

[31:nbits] - Reserved. Always reads as * 000...0°
[nbits-1:0] - Timer Reload value. This valueisloaded into the timer counter value register when ‘1’ is written to load bit in
the timers control register or when the RS bit is set in the control register and the timer underflows.

31 7 6 5 4 3 2 1 0
“000...0" ‘ DH‘ CH‘ 1P ‘ IE ’ LD’ RS‘ EN|

Figure 59. Timer control registers

[31:7] - Reserved. Always reads as ‘ 000...0°

[6] - Debug Halt (DH): Value of GPTI.DHALT signal whichisused to freeze counters (e.g. when asystemisin debug mode).
Read-only.

[5] - Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when timer (n-1) underflows.

[4] - Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1" until cleared by writing ‘O’ to this bit.

[3] - Interrupt Enable (IE): If set the timer signalsinterrupt when it underflows.

[2] - Load (LD): Load value from the timer reload register to the timer counter value register.

[1] - Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register when the timer
underflows.

[0] - Enable (EN): Enable the timer.

13.4 Vendor and deviceidentifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0xO11. For description of
vendor and device identifiers see GRLIB IP Library User’'s Manual.

86

13.5 Configuration options

Table 52 shows the configuration options of the core (VHDL generics).

Table 52. Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will beusedto | 0to NAPBMAX-1 0
access the timer unit
paddr The 12-bit MSB APB address 0 to 4095 0
pmask The APB address mask 0to 4095 4095
nbits Defines the number of bitsin the timers 1to 32 32
ntimers Defines the number of timersin the unit 1to7
pirq Defines which APB interrupt the timers will generate 0to MAXIRQ-1
Ssepirq If set to 1, each timer will drive an individual interrupt 0to MAXIRQ-1
line, starting with interrupt irg. If set to O, al timers will (note: ntimers + irq must
drive the sameinterrupt line (irg). be less than MAXIRQ)
shits Defines the number of bitsin the scaler 1to32 16
wdog Watchdog reset value. When set to a non-zero value, the | g tg 2nbits . 1 0
last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.
13.6 Signal descriptions
Table 53 shows the interface signals of the core (VHDL ports).
Table 53. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB daveinput signals -
APBO * Output APB dave output signals -
GPTI DHALT Input Freeze timers High
EXTCLK Input Use as adternative clock -
GPTO TICK[O:7] Output Timer ticks. TICK[0] is high for one clock each | High
time the scaler underflows. TICK[1-n] are high
for one clock each time the corrspondning timer
underflows.
WDOG Output Watchdog output. Equivalent to interrupt pend- | High
ing bit of last timer.
WDOGN Output Watchdog output Equivaent to interrupt pending | Low
bit of last timer.

* see GRLIB IP Library User’'s Manual

13.7 Library dependencies
Table 54 shows libraries used when instantiating the core (VHDL libraries).

Table 54. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signal's, component Component declaration

13.8 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.msc.all;

entity gptiner_ex is

port (
clk : in std_ulogic;
rstn : in std_ul ogic;
. -- other signals
)
end;

architecture rtl of gptiner_ex is
-- AMBA signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- GP Timer Unit input signals
signal gpti : gptimer_in_type;

begin

-- AMBA Conponents are instantiated here

-- Ceneral Purpose Timer Unit

timer0 : gptiner

generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
port map (rstn, clk, apbi, apbo(3), gpti, open);

gpti.dhalt <= '0"; gpti.extclk <= '0"; -- unused inputs

end;

88

14

141

14.2

GRGPIO - General Purpose /O Port

Overview

The general purpose input output port core is a scalable and provides optional interrupt support. The
port width can be set to 2 - 32 bits through the nbits VHDL generic. Interrupt generation and shaping
isonly available for those I/O lines where the corresponding bit in the imask VHDL generic has been
setto 1.

Each bit in the genera purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection.

The figure 60 shows adiagram for one 1/O line.

Direction —{p Q

Output

vaue —1P Q ’ PAD
Input ‘
Vadue ——Q D—Q D ‘

Figure 60. General Purpose I/O Port diagram

Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The input
from each buffer is synchronized by two flip-flops in series to remove potential meta-stability. The
synchronized values can be read-out from the I/O port dataregister. The output enableis controlled by
the I/O port direction register. A ‘1’ in a bit position will enable the output buffer for the correspond-
ing I/O line. The output value driven is taken from the /O port output register.

Each 1/0 port can drive a separate interrupt line on the APB interrupt bus. The interrupt number is
equal to the 1/O lineindex (PIO[1] = interrupt 1, etc.). The interrupt generation is controlled by three
registers: interrupt mask, polarity and edge registers. To enable an interrupt, the corresponding bit in
the interrupt mask register must be set. If the edge register is‘0', the interrupt istreated as level sensi-
tive. If the polarity register is‘0’, the interrupt is active low. If the polarity register is*1’, the interrupt
is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The polarity register then
selects between rising edge (‘1) or falling edge (‘0').

89

14.3 Registers
The coreis programmed through registers mapped into APB address space.

Table 55. General Purpose I/O Port registers

APB address offset Register

0x00 I/O port data register
0x04 1/O port output register
0x08 1/O port direction register
0x0C Interrupt mask register
0x10 Interrupt polarity register
0x14 Interrupt edge register

Figures 61 to 65 show the layout of the General Purpose I/O Port registers.

31 nbits nbits-1 0
“000...0" 1/O port value

Figure 61. 1/O port data register

31 nbits nbits-1 0
“000...0" 1/O port output register

Figure 62. 1/O port data register

31 nbits nbits-1 0
“000...0" I/0 port direction register

Figure 63. 1/O port direction register

31 nbits nbits-1 0
“000...0" Interrupt mask register

Figure 64. Interrupt mask register

31 nbits nbits-1 0
“000...0" Interrupt polarity register

Figure 65. Interrupt polarity register

90

31

nbits nbits-1

Interrupt edge register

Figure 66. Interrupt edge register

14.4 Vendor and deviceidentifiers

The core has vendor identifier O0x01 (Gaisler Research) and device identifier OXO1A. For description

of vendor and device identifiers see GRLIB IP Library User’'s Manual.

14.5 Configuration options

Table 56 shows the configuration options of the core (VHDL generics).

Table 56. Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will beusedto | 0to NAPBMAX-1 0
access the GPIO unit

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

nbits Defines the number of bitsin the 1/0 port 1to 32 8

imask Defines which /O lines are provided with interrupt gen- | 0 - 16#FFFF# 0
eration and shaping

oepol Select polarity of output enable signas. 0= activelow,1 | 0-1 0
= active high.

14.6 Signal descriptions
Table 57 shows the interface signal's of the core (VHDL ports).
Table 57. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB daveinput signals -

APBO * Output APB dlave output signals -

GPIOO OEN[31:0] Output 1/O port output enable see oepol
DOUT[31:0] Output 1/0 port outputs -

GPIOI DIN[31:0] Input 1/O port inputs -

* see GRLIB IP Library User's Manual

14.7

14.8

14.9

Library dependencies
Table 58 shows libraries used when instantiating the core (VHDL libraries).

Table 58. Library dependencies

91

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signal's, component Component declaration

Component declaration
The core has the following component declaration.
library gaisler;

use gaisler.msc.all;

entity grgpio is

generic (
pi ndex . integer := 0;
paddr : integer := 0;
pmask ©integer = 16#fff#,
i mask : integer := 16#0000#;
nbits : integer := 16-- GPIO bits
)
port (
rst :in std_ul ogic;
cl k :in std_ul ogic;
apbi :in apb_slv_in_type;
apbo : out apb_slv_out_type;
gpioi : in gpio_in_type;
gpi oo : out gpio_out_type
)
end;
I nstantiation

This examples shows how the core can be instantiated.

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.msc.all;

signal gpti : gptimer_in_type;
begi n
gpio0 : if CFG CGRGPIO EN /= 0 generate -- R GIOunit

grgpi 00: grgpio

generic map(pindex => 11, paddr => 11, imask => CFG GRGPI O | MASK, nbits => 8)

port map(rstn, clkm apbi, apbo(11), gpioi, gpioo);

pio_pads : for i in O to 7 generate
pio_pad : iopad generic map (tech => padtech)
port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i));
end generate;
end generate;

92
15 APBPS2 - PS/2 keyboard with APB interface

15.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 67
shows amodel of APBPS2 and the electrical interface.

Ve
FPGA/ASIC
-

PS2Data_out

|

|

|

| Data
| Keyboard
|

i

|

|

Clock

PS2Clk

L
APBPS2 PS2CIk_out <||
L
pd
~J

|
|
|
|
| Ps2Data
|
|
|
|

Figure 67. APBPS2 electrical interface

PS/2 datais sent in a 11 bits frames. Thefirst bit is a start bit followed by eight data bits, one odd par-
ity bit and finally one stop hit. Figure 68 shows atypical PS/2 data frame.

Data frame with parity: |start| Do | b1 | b2 | b3 [D4 | 5 | D6 | D7 Parity|stop

Figure 68. PS/2 dataframe

15.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboardor or mouse, and convertsit to 8-bit data
frames to be read out viathe APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received datawill be transferred to a 16 byte FIFO. The dataready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at |east one data frame. When the FIFO is full,
the output buffer full (OF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it's up to
the software to handle any resend operations if the parity bit is wrong. Figure 69 shows a flow chart
for the operations of the receiver state machine.

93

Idle

1

ps2_data_sync

update parity flag

0

Idle

Figure 69. Flow chart for the receiver state machine

15.3 Transmitter operations

154

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate isthe repeat rate of akey that is held down, while the delay controls for how long akey has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 66.

If the TE bit is set and the transmission FIFO is hot empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 70 shows the flow chart for the transmission state machine.

Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 KHz. To generate the PS/2 clock, APBPS2
divides the APB clock with either a fixed or programmable division factor. The divider consist of a
14-bit down-counter and can divide the APB clock with afactor of 1 - 16383. If the fixed genericis set
to 1, the division rate is set to the fKHz generic divided by 10 in order to generate a 10 KHz clock. If
fixed is 0, the division rate can be programmed through the timer reload register.

R 2 R

Idle Start Stop

ps2clkoe=1
read FIFO

ps2_clk_fall
1
Data !
fifo_empty ps2data= 1

0
ps2clk =0
ps2clkoe =0

\Waitrequest

timer =timer + 1 Parity

timer < 5000

0

ps2clk = 1, ps2data= 0
timer =0

1
ps2data = parity bit

Figure 70. Flow chart for the transmitter state machine

155 Registers
The coreis controlled through registers mapped into APB address space.

Table 59. APB PS/2 registers

APB address offset Register

0x00 PS/2 Dataregister

0x04 PS/2 Status register

0x08 PS/2 Control register
0x0C PS/2 Timer reload register

15.5.1 PS2 Data Register

31 8 7

RESERVED DATA

Figure 71. PS/2 dataregister

[7:0]: Receiver holding FIFO (read access)

15.6

95
15.5.2 PS2 Satus Register

31 2726 2 5432 10
| RCNT | TCNT | RESERVED |IF|OF KI FE PE DR

Figure 72. PS/2 status register

Dataready (DR) - indicates that new datais available in the receiver holding register.
Parity error (PE) - indicates that a parity error was detected.

Framing error (FE) - indicates that aframing error was detected.

Keyboard inhibit (KI) - indicates that the keyboard is inhibited.

Output buffer full (OF) - indicates that the output buffer (FIFO) isfull.

5: Input buffer full (IF) - indicates that the input buffer (FIFO) is full

[26:22]: Transmit FIFO count (TCNT) - shows the number of dataframesin the transmit FIFO.
[31:27]: Receiver FIFO count (RCNT) - shows the number of data framesin the receiver FIFO.

AW NhRO

15.5.3 PS/2 Control Register

31 3210
| RESERVED T RI|TERE

Figure 73. PS/2 control register

Receiver enable (RE) - if set, enables the receiver.

Transmitter enable (TE) - if set, enables the transmitter.

Keyboard interrupt enable (RI) - if set, interrupts are generated when aframeis received
Host interrupt enable (T1) - if set, interrupts are generated when a frame is transmitted

1554 PS2 Timer Reload Register

31 12 11 0
‘ RESERVED TIMER RELOAD REG

Figure 74. PS/2 timer register

[11:0]: PS/2timer reload register

Vendor and deviceidentifiers

The core has vendor identifier Ox01 (Gaisler Research) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

96

15.7 Configuration options

Table 60 shows the configuration options of the core (VHDL generics).

Table 60. Configuration options

Generic Function Allowed range Default
pindex APB daveindex 0- NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Index of theinterrupt line. 0- NAHBIRQ-1 0
fKHz Frequency of APB clock in KHz. 1-163830 50000
fixed Used fixed clock divider to generate PS/2 clock 0-1 1
15.8 Signal descriptions
Table 61 shows the interface signals of the core (VHDL ports).
Table 61. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB daveinput signals -
APBO * Output APB dave output signals -
PS2I PS2_CLK_I Input PS/2 clock input -
PS2_ DATA_| Input PS/2 data input -
PS20 PS2 CLK_O Output PS/2 clock output -
PS2 CLK_OE Output PS/2 clock output enable Low
PS2_DATA_O Output PS/2 data output -
PS2_DATA_OE Output PS/2 data output enable Low

159

15.10

* see GRLIB IP Library User's Manual

Library dependencies

Table 62 shows libraries used when instantiating the core (VHDL libraries).

Table 62. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component PS/2 signal and component declaration
I nstantiation

This examples shows how the core can be instantiated.

library ieee;

use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;
use grlib.genconp.all;

library gaisler;
use gaisler.msc.all;

entity apbps2_ex is

port (
rstn : in std_ul ogic
clk : in std_ul ogic

-- PS/2 signals

ps2cl k : inout std_ulogic
ps2data : inout std_ulogic
)

end;

architecture rtl of apbuart_ex is

-- APB signals
signal apbi : apb_slv_in_type
signal apbo : apb_slv_out_vector := (others => apb_none);

-- PS/2 signals

signal kbdi : ps2_in_type

signal kbdo : ps2_out_type
begi n

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirq => 4)
port map(rstn, clkm apbi, apbo(5), kbdi, kbdo);

kbdcl k_pad : iopad generic map (tech => padtech)
port map (psZ2clk, kbdo. ps2_cl k_o, kbdo. ps2_cl k_oe, kbdi.ps2_clk_i);

kbdat a_pad : iopad generic map (tech => padtech)

port map (ps2data, kbdo.ps2_data_o, kbdo.ps2_data_oe, kbdi.ps2_data_i);

end;

97

98

15.11 Keboard scan codes

Table 63. Scan code set 2, 104-key keyboard

FO,77

KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK
A 1C FO0,1C 9 46 FO0,46 [54 FO,54
B 32 FO0,32 "OE FO,0E INSERT EO,70 EO,FO,70
C 21 F0,21 - 4E FO,4E HOME EO0,6C EO,F0,6C
D 23 FO0,23 = 55 FO,55 PG UP EO,7D EO,FO,7D
E 24 FO,24 \ 5D FO0,5D DELETE | EO,71 EO,FO,71
F 2B F0,2B BKSP 66 FO0,66 END E0,69 EO,F0,69
G 34 F0,34 SPACE 29 F0,29 PG DN EO,7A EO,FO,7A
H 33 FO0,33 TAB 0D FO,0D U EO,75 EO,FO,75
ARROW
| 43 F0,43 CAPS 58 F0,58 L EO0,6B EO,F0,6B
ARROW
J 3B FO,3B L SHFT 12 FO,12 D EO,72 EO,FO0,72
ARROW
K 42 F0,42 LCTRL |14 FO,14 R EO,74 EO,FO,74
ARROW
L 4B F0,4B L GUI EO,1F EO,FO,1F NUM 7 FO,77
M 3A FO,3A L ALT 1 FO,11 KP/ EO0,4A EO,FO,4A
N 31 F0,31 RSHFT |59 F0,59 KP* 7C FO,7C
o 44 F0,44 RCTRL |EO14 EO,FO0,14 KP- 7B FO,7B
P 4D F0,4D R GUI EO0,27 EO,F0,27 KP+ 79 FO,79
Q 15 FO0,15 RALT EO,11 EO,FO,11 KPEN EO0,5A EO,FO,5A
R 2D F0,2D APPS EO,2F EO,FO,2F KP. 71 FO,71
S 1B F0,1B ENTER 5A FO,5A KPO 70 FO,70
T 2C F0,2C ESC 76 FO,76 KP1 69 FO0,69
U 3C FO0,3C F1 FO0,05 KP2 72 FO,72
\% 2A FO,2A F2 FO0,06 KP3 7A FO,7A
W 1D FO,1D F3 FO0,04 KP4 6B FO,6B
X 22 F0,22 F4 oc FO,0C KPS 73 FO,73
Y 35 FO0,35 F5 3 F0,03 KP6 74 FO,74
z 1A FO,1A F6 0B FO,0B KP7 6C FO,6C
0 45 FO0,45 F7 83 F0,83 KP8 75 FO,75
1 16 FO,16 F8 OA FO,0A KP9 7D FO,7D
2 1E FO,1E F9 FO0,01] 5B FO,5B
3 26 FO,26 F10 9 FO0,09 ; 4C F0,4C
4 25 FO0,25 F11 78 FO,78 52 FO0,52
5 2E FO,2E F12 7 FO,07 , 41 FO0,41
6 36 FO0,36 PRNT EO,12, EO,FO, 49 FO0,49
SCRN EO,7C 7C,EQ,
FO,12
3D FO,3D SCROLL | 7E FO,7E / 4A FO,4A
3E FO,3E PAUSE E1,14,77, | -NONE-
E1,F0,14,

Table 64. Windows multimedia scan codes

KEY MAKE BREAK
Next Track EO, 4D EO, FO, 4D
Previous Track | EO, 15 EO, FO, 15
Stop EO, 3B EO, FO, 3B
Play/Pause EO, 34 EO, FO, 34
Mute EO, 23 EO, FO, 23
Volume Up EO, 32 EO, FO, 32
Volume Down EO, 21 EO, FO, 21
Media Select EO, 50 EO, FO, 50
E-Mail EO, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer EO, 40 EO, FO, 40
WWW Search | EO, 10 EO, FO, 10
WWW Home EO, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward | EO, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh | EO, 20 EO, FO, 20
WWW Favor- EO, 18 EO, FO, 18
ites

Table 65. ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE | BREAK
Power EO0,37 | EO, FO,37
Sleep EO,3F | EO, FO, 3F
Wake EO,5E | EO, FO, 5E

99

100

15.12 Keyboard commands

Table 66. Transmit commands:

Command Description

OXED Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an
argument byte*

OXEE Echo command - expects an echo response

OxFO Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03
which determines the scan code set to use. 0x00 returns the current set.

OxF2 Read ID - the keyboard responds by sending a two byte device ID of OXAB 0x83

OxF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which
determines the typematic rate.

OxF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an
acknowledgement.

OxF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-
ment.

OxF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

OxFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte

OxFF Reset - resets the keyboard

* bit 0 controls the scrall lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 67. Receive commands:

Command Description

OxFA Acknowledge

OxAA Power on self test passed (BAT compl eted)

OxEE Echo respond

OXFE Resend - upon receipt of the resend command the host should retransmit the last byte
0x00 Error or buffer overflow

OxXFF Error of buffer overflow

Table 68. The typematic rate/delay argument byte

MSB

LSB

] 0 \ DELAY

DELAY RATE RATE RATE RATE RATE

Table 69. Typematic repeat rates

Bits0- | Rate BitsO- | Rate Bits0- | Rate Bits0- | Rate
4 (cps) 4 (cps) 4 (cps) 4 (cps)
00h 30 08h 15 10h 7.5 18h 37
01h 26.7 09h 13.3 11h 6.7 19h 3.3
02h 24 OAh 12 12h 6 1Ah 3
03h 21.8 0Bh 10.9 13h 55 1Bh 27
04h 20.7 0Ch 10 14h 5 1Ch 25
05h 18.5 0Dh 9.2 15h 4.6 1Dh 23
06h 17.1 OEh 8.6 16h 4.3 1Eh 21
07h 16 OFh 8 17h 4 1Fh 2

Table 70. Typematic delays

Bits 5-6 | Delay (seconds)
00b 0.25

01b 0.5

10b 0.75

11b 1

101

102

16

16.1

16.2

APBVGA - VGA controller with APB interface

I ntroduction

The APBVGA coreis atext-only video controller with aresolution of 640x480 pixels, creating adis-
play of 80x37 characters. The controller consists of avideo signal generator, a4 Kbyte text buffer, and
aROM for character pixel information. The video controller is controlled through an APB interface.

A block diagram for the data path is shown in figure 75.

Character ROM
—»K] HSYNC
—»K] VSYNC
. Video
Video memory Generator —» gl(_DIL\:I\IPIZSYNC
—»d RED[7:0]
A GREEN][7:0]
BLUE[7:0]

APB

Figure 75. APBVGA block diagram

Operation

Thevideo timing of APBV GA isfixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits[7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when al eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that al characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV 7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by
only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

16.3

16.4

103

Registers
The APB VGA is controlled through three registers mapped into APB address space.

Table 71. APB VGA registers

APB address offset Register

0x0 VGA Dataregister

0x4 VGA Background color
0x8 VGA Foreground color

16.3.1 VGA Data Register

31 19 8 7 0
RESERVED ADDRESS DATA

Figure 76. VGA dataregister

[19:8]: Video memory address (write access)
[7:0]: Video memory data (write access)

16.3.2 VGA Background Color

31 24 23 16 15 8 7 0
RESERVED | RED GREEN BLUE

Figure 77. PS/2 status register

[23:16]: Video background color red.
[15:8]: Video background color green.
[7:0]: Video background color blue.

16.3.3 VGA Foreground Color

31 24 23 16 15 8 7 0
RESERVED ‘ RED GREEN BLUE

Figure 78. PS/2 status register

[23:16]: Video foreground color red.
[15:8]: Video foreground color green.
[7:0]: Video foreground color blue.

Vendor and deviceidentifiers

The core has vendor identifier Ox01 (Gaisler Research) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

104

16.5 Configuration options

Table 72 shows the configuration options of the core (VHDL generics).

Table 72. Configuration options

Generic Function Allowed range Default

memtech Technology to implement on-chip RAM 0-NTECH 2

pindex APB daveindex 0- NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

16.6 Signal descriptions
Table 73 shows the interface signals of the core (VHDL ports).
Table 73. Signal descriptions

Signal name Field Type | Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

VGACLK N/A Input VGA Clock -

APBI * Input | APB slaveinput signals -

APBO * Output | APB dlave output signals -

VGAO HSYNC Output | Horizontal synchronization High
VSYNC Vertical synchronization High
COMP_SYNC Composite synchronization Low
BLANK Blanking Low
VIDEO_OUT_R[7:Q] Video out, color red -
VIDEO_OUT_QG[7:0] Video out, color green -
VIDEO_OUT_B[7:Q] Video out, color blue -

* see GRLIB IP Library User's Manual

16.7 Library dependencies

Table 74 shows libraries used when instantiating the core (VHDL libraries).

Table 74. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signal's, component VGA signal and component declaration

16.8 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.msc.all;

105

architecture rtl of apbuart_ex is

signal apbi : apb_slv_in_type

signal apbo : apb_slv_out_vector := (others => apb_none);
signal vgao : apbvga_out_type
begin

-- AMBA Conponents are instantiated here

-- APB VGA

vga0 : apbvga

generic map (nmemtech => 2, pindex => 6, paddr => 6)

port map (rstn, clk, vgaclk, apbi, apbo(6), vgao)
end;

106

17

17.1

17.2

AHBUART- AMBA AHB Serial Debug Interface

Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
aread or write transfer can be generated to any address on the AMBA AHB bus.

Baud-rate *hi Serial port
generator gbitclk Controller [€——— AMBA APB
RX KF——» Receiver shift register Transmitter shift register ——» TX
AHB master interface AHB data/response
A
AMBA AHB

Figure 79. Block diagram

Operation

17.2.1 Transmission protocol

Theinterface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Datais sent on 8-bit basis as shown below.

TStart| DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 |Stop‘

Figure 80. Dataframe

Write Command

Send [11]Length -1][Addr[31:24] || Addr[23:16] || Addr{15:8] || Addr[7:0] | | Data[31:24] || Data[23:16]|| Data[15:8] || Data[7:0] |

Receive Resp. byte | (optional)

Response byte encoding
Read command bit 7:3 = 00000
bit 2 = DMODE
Send [10[Length -1|| Addr[31:24] || Addr[23:16] || Addr{15:8] | | Addr[7:0] | bit 1:0 = AHB HRESP
Receive | Data[31:24]|| Data[23:l6]|| Data[15:8] || Data[7:0] | | Resp. byte I (optional)

Figure 81. Commands

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

17.3

107

read accesses, the control byte and addressis sent once and the corresponding number of datawordsis
returned.

17.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
valueislatched into the reload register, and the BL bit is set in the UART control register. If the BL bit
is reset by software, the baud rate discovery process is restarted. The baud-rate discovery is also
restarted when a ‘break’ or framing error is detected by the receiver, alowing to change to baudrate
from the external transmitter. For proper baudrate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((systemcl k*10)/(baudrate*8))-5)/10

Registers
The coreis programmed through registers mapped into APB address space.

Table 75. AHB UART registers

APB address offset Register
0x4 AHB UART dtatus register
0x8 AHB UART control register
oxC AHB UART scaler register
31 2 10
RESERVED ‘ BL‘ EN‘

Figure 82. AHB UART control register

0: Receiver enable (RE) - if set, enables both the transmitter and receiver.
1 Baud rate locked (BL) - isautomatically set when the baud rate is locked.
31 76 54 3 2 10
RESERVED ‘FE’ ’0\4 ‘TH‘TS‘DF#

Figure 83. AHB UART status register

0: Dataready (DR) - indicates that new data has been received by the AMBA AHB master interface.
1 Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
31 14 13 0
RESERVED SCALER RELOAD VALUE

Figure 84. AHB UART scaler reload register

108

17.4 Vendor and deviceidentifiers

17.5

The core has vendor identifier 0xO1 (Gaisler Research) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

Configuration options

Table 76 shows the configuration options of the core (VHDL generics).

Table 76. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0- NAHBMST-1 0

pindex APB daveindex 0- NAPBSLV-1 0

paddr ADDR filed of the APB BAR. 0 - 16#FFF# 0

pmask MASK filed of the APB BAR. 0 - 16#FFF# 16#FFF#

17.6 Signal descriptions
Table 77 shows the interface signals of the core (VHDL ports)..
Table 77. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High
CTSN Input UART clear-to-send High
EXTCLK Input Use as dternative UART clock -

UARTO RTSN Output UART request-to-send High
TXD Output UART transmit data High

APBI * Input APB daveinput signals -

APBO * Output APB dlave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

17.7

17.8

* see GRLIB IP Library User’'s Manual

Library dependencies

Table 78 shows libraries used when instantiating the core (VHDL libraries).

Table 78. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER UART Signal's, component Signals and component declaration
I nstantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_|logic_1164.all;

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.uart.all;

entity ahbuart_ex is

port (
clk : in std_ul ogic;
rstn : in std_ul ogic;

-- UART signal s

ahbr xd :in std_ul ogic;
ahbt xd : out std_ul ogic
)

end;
architecture rtl of ahbuart_ex is

-- AMBA signal s
signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);

signal ahbm : ahb_mst_in_type;

signal ahbnmo : ahb_nst_out_vector := (others => ahbm none);

-- UART signals
signal ahbuarti : uart_in_type;
signal ahbuarto : uart_out_type;

begin

-- AMBA Conponents are instantiated here

-- AHB UART

ahbuart0 : ahbuart

generic map (hindex => 5, pindex => 7, paddr => 7)

port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7),

-- AHB UART input data
ahbuarti.rxd <= ahbrxd;

-- connect AHB UART output to entity output signal
ahbt xd <= ahbuarto. t xd;

end;

ahbni ,

ahbno(5));

109

110

18

18.1

18.2

AHBJTAG - JTAG Debug Link with AHB Master Interface

Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which trandates JTAG instructions to AHB transfers.
Through thislink, aread or write transfer can be generated to any address on the AHB bus.

TDI

!

Tck —» JTAG TAP
T™s ~— | Controller JTAG Communication
Interface
TbO AHB master interface
A
AMBA AHB
Figure 85. JTAG Debug link block diagram
Operation

18.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers. the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write accessis
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write datainto the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequentia transfers are always word based.

Table 79. JTAG debug link Command/Address register

34 33 32 31 0
‘ w ‘ SIZE ‘ AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer

33 32 AHB transfer size- “00” - byte, “01” - half-word, “10” - word, “11”- reserved

31 30 AHB address

Table 80. JTAG debug link Data register

32 31 0
‘ SEQ ‘ AHB DATA
32 Sequential transfer (SEQ) - If ‘1" is shifted in this bit position when read data is shifted out or write
data shifted in, the subsequent transfer will be to next word address.
31 30 AHB Data- AHB write/read data. For byte and half-word transfers datais aligned according to big-

endian order where data with address offset O datais placed in MSB bits.

m

18.3 Registers
The core does not implement any registers mapped in the AMBA AHB or APB address space.

18.4 Vendor and deviceidentifiers

The core has vendor identifier OxO1 (Gaider Research) and device identifier OxO1C. For description
of vendor and device identifiers see GRLIB IP Library User’'s Manual.

18.5 Configuration options
Table 81 shows the configuration options of the core (VHDL generics).

Table 81. Configuration options

Generic Function Allowed range Default
tech Target technology 0-NTECH 0
hindex AHB master index 0- NAHBMST-1 0
nsync Number of synchronization registers between clock 1-2 1
regions
idcode JTAG IDCODE instruction code (generic tech only) 0-255
id_msb JTAG Device indentification code MSB bits (generic 0 - 65536
tech only)
id_Isb JTAG Deviceindentification code L SB bits (generictech | 0 - 65536 0
only)
idcode JTAG IDCODE instruction (generic tech only) 0-255
ainst Code of the JTAG instruction used to access JTAG 0-255
Debug link command/address register
dinst Code of the JTAG instruction used to access JTAG 0-255 3
Debug link data register

112

18.6 Signal descriptions
Table 82 shows the interface signals of the core (VHDL ports).

Table 82. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input System clock (AHB clock domain) -
TCK N/A Input JTAG clock* -
TCKN N/A Input Inverted JTAG clock* -
T™MS N/A Input JTAG TMSsignal* High
TDI N/A Input JTAG TDI signal* High
TDO N/A Output JTAG TDO signa* High
AHBI *xk Input AHB Master interface input -
AHBO *k Output AHB Master interface output -
TAPO_TCK N/A Output TAP Controller User interface TCK signal** High
TAPO_TDI N/A Output TAP Controller User interface TDI signal** High
TAPO_INST[7:0] | N/A Output TAP Controller User interface INSTsignal** High
TAPO_RST N/A Output TAP Controller User interface RST signal** High
TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High
TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High
TAPO_UPD N/A Output TAP Controller User interface UPD signal** High
TAPI_TDO N/A Input TAP Controller User interface TDO signal** High

*) If the target technology is Xilinx Virtex-1, Virtex-4 or Spartan3 the cores JTAG signals TCK, TCKN, TMS, TDI and
TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins areimplicitly made visible to the core
through Xilinx TAP controller instantiation.

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG
TAP Controller [P-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

***) see GRLIB IP Library User’s Manual

18.7 Library dependencies
Table 83 shows libraries used when instantiating the core (VHDL libraries).

Table 83. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER JTAG Signals, component Signals and component declaration

18.8 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_l ogic_1164.all;

library grlib;

use grlib.anba.all;
library gaisler;

use gaisler.jtag.all;

entity ahbjtag_ex is

port (
clk : in std_ul ogic;
rstn : in std_ul ogic;

-- JTAG signal s

tck : in std_ulogic;
tns : in std_ulogic;
tdi : in std_ul ogic;
tdo : out std_ulogic

)

end;

architecture rtl of ahbjtag_ex is

-- AMBA signal s
signal ahbm : ahb_mst_in_type;
signal ahbnmo : ahb_nst_out_vector := (others => ahbm none);

signal gnd : std_ul ogic;
begi n
gnd <= ‘0";
-- AMBA Conponents are instantiated here
-- AHB JTAG
ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
port map(rstn, clkm tck, tckn, tnms, tdi, tdo, ahbmi, ahbmo(1),

open, open, open, open, open, open, open, gnd);

end;

113

114

19

191

19.2

GRETH - Ethernet M edia Access Controller (MAC) with EDCL support

Overview

Gaider Research’s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MIl and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the M1l Management interface which
is used to configure the PHY.

Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. Thisisan UDP/IP based protocol used for remote debugging.

APB
AHB
Ethernet MAC
» MDIO_OE
» MDIO_O
> Registers < 14 MDIO < MDIO_ |
L » MDC
y

> » TX_EN

Transmitter > TX_ER

[FIFO ¥ > .
<p DMAEngine © Transmitter || TXD(3:0)
N TX_CLK
EDCL < RX_CRS
4— |——>»|| AHB Master < < RX_COL

Interface
EDCL

4— RX DV

< RX_ER
P Receiver ‘L "| Receiver 1« RXD(3:0)
.» DMA Engine [4—| FIFO [RX_CLK

Figure 86. Block diagram of the internal structure of the GRETH.

Operation

19.2.1 System overview

The GRETH consists 3 functional units: The DMA channels, MDIO interface and the optional Ether-
net Debug Communication Link (EDCL).

The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

The MDIO interface is used for accessing configuration and status registersin one or more PHY s con-
nected to the MAC. The operation of thisinterface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. 1t uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and aways runsin paralel with the DMA channels.

19.3

115

The Media Independent Interface (MI1) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the MI1 interface. Corre-
spondingly, thereis an Ethernet receiver which stores all datafrom the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMI|
which uses a subset of the M1 signals.

The EDCL and the DMA channels share the Ethernet receiver and transmitter.

19.2.2 Protocol support

The GRETH is implemented according to |EEE standard 802.3-2002. There is no support for the
optional control sublayer and no multicast addresses can be assigned to the MAC. This means that
packets with type 0x8808 (the only currently defined ctrl packets) are discarded.

19.2.3 Hardware requirements

The GRETH is synthesisable with most Synthesis tools. There are three clock domains. The AHB
clock, Ethernet Receiver clock and the Ethernet transmitter clock. Both full-duplex and half-duplex
operating modes are supported and both can be run in either 10 or 100 Mbit. The system frequency
requirement (AHB clock) for 10 Mbit operation is 2.5 MHz and 18 Mhz for 100 Mbit. The 18 Mhz
limit was tested on a Xilinx board with a DCM that did not support lower frequencies so it might be
possibleto run it on lower frequencies. It might also be possible to run the 10 Mbit mode on lower fre-
guencies.

Tx DMA interface

The transmitter DMA interfaceis used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

19.3.1 Setting up a descriptor.

A single descriptor is shown in figure 87. The number of bytes to be sent should be set in the length
field and the address field should point to the data. The address must be word-aligned. If the interrupt
enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this requires that
the transmitter interrupt bit in the control register is also set). The interrupt will be generated regard-

116

less of whether the packet was transmitted successfully or not. The Wrap (WR) bit is also a control bit
that should be set before transmission and it will be explained later in this section.

31 15 14 13 12 11 10 0
0x0 ‘ RESERVED |AL|UE |IE \WREN| LENGTH ‘
31 21 0
Ox4] ADDRESS RESERVED ‘

10- 0: LENGTH - The number of bytesto be transmitted.

11: Enable (EN) - Set to one to enable the descriptor. Should always be set last of al the descriptor fields.

12: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to
zero when the 1 kB boundary of the descriptor table is reached.

13: Interrupt Enable (1E) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been sent provided that the transmitter interrupt enable bit in the control register
is set. The interrupt is generated regardless if the packet was transmitted successfully or if it
terminated with an error.

14: Underrun Error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.

15: Attempt Limit Error (AL) - The packet was not transmitted because the maximum number of
attempts was reached.

31 - 2: Address - Pointer to the buffer areafrom where the packet datawill be loaded.

Figure 87. Transmitter descriptor. Memory offsets are shown in the left margin.

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH.

19.3.2 Sartingtransmissions

Enabling a descriptor is not enough to start atransmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH. Thisis done in the transmitter descriptor pointer register.
The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field isincremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are aready active. The descriptors
must always be enabled before the transmit enable bit is set.

19.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the packet was completely
transmitted while the Alignment Error bit is set if more collisions occurred than allowed. The packet
was successfully transmitted only if both of these bits are zero. The other bits in the first descriptor
word are set to zero after transmission while the second word is left untouched.

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH. There are three bits in the GRETH status register that hold transmis-
sion status. The Transmitter Error (TE) bit is set each time an transmission ended with an error (when

194

117

at least one of the two status bits in the transmit descriptor has been set). The Transmitter Interrupt
(T1) is set each time a transmission ended successfully.

The transmitter AHB error (TA) bit is set when an AHB error was encountered either when reading a
descriptor or when reading packet data. Any active transmissions were aborted and the transmitter
was disabled. The transmitter can be activated again by setting the transmit enable register.

19.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH does not add the Ethernet address and type fields so they must also be stored in the
data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet. Each descrip-
tor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than 1514 B, the
packet will not be sent.

Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

19.4.1 Setting up descriptors

A single descriptor is shown in figure 88. The address field should point to a word-aligned buffer
where the received data should be stored. The GRETH will never store more than 1514 B to the
buffer. If the interrupt enable (I1E) bit is set, an interrupt will be generated when a packet has been
received to this buffer (this requires that the receiver interrupt bit in the control register is aso set).
Theinterrupt will be generated regardless of whether the packet was received successfully or not. The
Wrap (WR) bit is also a control bit that should be set before the descriptor is enabled and it will be
explained later in this section.

31 17 16 15 14 13 12 11 10 0
0x0] RESERVED ‘OE‘CE’I—‘F’AE‘IE ’WR‘ EN’ LENGTH ‘

31 21 0
Ox4 \ ADDRESS RESERVED \

10 - 0: LENGTH - The number of bytes received to this descriptor.

11: Enable (EN) - Set to one to enable the descriptor. Should always be set |ast of al the descriptor fields.

12: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to
zero when the 1 kB boundary of the descriptor table is reached.

13: Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been
received to this descriptor provided that the receiver interrupt enable bit in the control register
is set. The interrupt is generated regardless if the packet was received successfully or if it
terminated with an error.

14: Alignment error (AE) - An odd number of nibbles were received.

15: Frame Too Long (FT) - A frame larger than the maximum size was received. The excessive part was
truncated.

16: CRC Error (CE) - A CRC error was detected in this frame.

17: Overrum Error (OE) - The frame was incorrectly received due to a FIFO overrun.

31 - 2: Address - Pointer to the buffer areafrom where the packet data will be loaded.

Figure 88. Receive descriptor. Memory offsets are shown in the left margin.

19.4.2 Sarting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set inthe GRETH. Thisis donein the receiver descriptor pointer register. The

118

19.5

address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field isincremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH read the first descriptor and wait for an incoming packet.

19.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, |E) are also cleared. The number of received bytesis shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 17-14
in the first descriptor word are status bits indicating different receive errors. All four bits are zero after
areception without errors. The status bits are described in figure 88.

Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If apacket is received with an address not accepted by the MAC, the |A status register bit will be set.

Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH.

19.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH provided full support for the MDIO
interface. If it isnot needed in adesign it can be removed with a VHDL generic.

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation isindicated by the Linkfail bit being set. The datafield is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.

119

19.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ agorithm to provide reliable AHB instruction transfers. Through thislink, aread or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
ageneric.

19.6.1 Operation

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DM A-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DM A-engine but has higher priority.

19.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions.

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 84 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature.

Table 84. The | P packet expected by the EDCL.

Ethernet P UDP 2B 4B 4B DataO - 242 Ethernet
Header Header Header Offset Control word Address 4B Words CRC

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the |P-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only I P fields changed for

the reply.
The EDCL only provides one service at the moment and it is therefore not required to check the UDP

port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies.

The UDP data field contains the EDCL application protocol fields. Table 85 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

Table 85. The EDCL application layer fieldsin received frames.

16-bit Offset | 14-bit Sequence number | 1-bitRW | 10-bitLength | 7-bitUnused |

field contains the number of bytesto be read or written. If R/W is one the datafield shown in table 84
contains the data to be written. If R/W is zero the data field is empty in the received packets. Table 86
shows the application layer fields of the replies from the EDCL. The length field is always zero for

120

19.7

19.8

repliesto write requests. For read requestsit contains the number of bytes of data contained in the data
field.

Table 86. The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field isset to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK fieldissetto Ointhereply. Thelength field isalways set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extraidentifier bitsif needed.

Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The GRETH
supports two of them: The Media Independent Interface (MIl) and the Reduced Media Independent
Interface (RMII).

The MII was defined in the 802.3 standard and is most commonly supported. The ethernet interface
have been implemented according to this specification. It uses 16 signals.

The RMII was developed to meet the need for an interface allowing Ethernet controllers with smaller
pin counts. It uses 6 (7) signals which are a subset of the MII signals. Table 87 shows the mapping
betweem the RMII signals and the GRLIB M| interface.

Table 87. Signal mappings between RMII and the GRLIB MII interface.

RMII Mil
txd[1:0] txd[1:0]
tx_en tx_en
crs_dv rx_crs
rxd[1:0] rxd[1:0]
ref_clk rmii_clk
rx_er not used

Softwaredrivers

Drivers for the GRETH MAC is provided for the following operating systems. RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Gaisler Research’s web site (http://gaisler.com/).

121

199 Registers

The coreis programmed through registers mapped into APB address space.

Table 88. GRETH registers

APB address offset Register
0x0 Control register
0x4 Status/Interrupt-source register
0x8 MAC Address MSB
0xC MAC AddressLSB
0x10 MDIO Control/Status
Ox14 Transmit descriptor pointer
0x18 Receiver descriptor pointer
0x1C EDCL IP
31 30 28 7 6 54 3 2 10
D BS | RESERVED 'SP |RSPR FD RI|TI |RETE
Figure 89. GRETH control register.

0: Transmit Enable (TE) - Should be written with a one each time new descriptors are enabled. Aslong as this bit is
one the GRETH will read new descriptors and as soon as it encounters a disabled descriptor it will stop until TE is
set again. This bit should be written with a one after the new descriptors have been enabled. Reset value: ‘0'.

1 Receive Enable (RE) - Should be written with a one each time new descriptors are enabled. Aslong as this bit is
one the GRETH will read new descriptors and as soon as it encounters a disabled descriptor it will stop until TE is
set again. This bit should be written with a one after the new descriptors have been enabled. Reset value: ‘0.

2 Transmitter Interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a packet is
transmitted when this bit is set. The interrupt is generated regardlessif the packet was transmitted successfully or if
it terminated with an error. Not Reset.

3 Receiver Interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a packet is received
when this bit is set. The interrupt is generated regardless if the packet was received successfully or if it terminated
with an error. Not Reset.

4: Full Duplex (FD) - If set, the GRETH operatesin full-duplex mode otherwise it operatesin half-duplex. Not Reset.

5: Promiscuous Mode (PM) - If set, the GRETH operatesin promiscuous mode which meansit will receive all packets
regardless of the destination address. Not Reset.

6: Reset (RS) - A one written to this bit resets the GRETH core. Self clearing.

7: Speed (SP) - Setsthe current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Only used in RMI1 mode (rmii = 1). A default
valueis automatically read from the PHY after reset.

30-28: EDCL Buffer Size (BS) - Shows the amount of memory used for EDCL buffers.0=1kB, 1=2kB,, 6 =64 kB.

31 EDCL Available (ED) - Set to oneif the EDCL isavailable.

31 76 54 3210
IA TS TA[RA TI [RI | TE|RE]
Figure 90. GRETH status register

0: Receiver Error (RE) - A packet has been received which terminated with an error. Cleared when written with aone.
Not Reset.

1 Transmitter Error (TE) - A packet was transmitted which terminated with an error. Cleared when written with aone.
Not Reset.

2: Receiver Interrupt (RI) - A packet was received without errors. Cleared when written with aone. Not Reset.

3 Transmitter Interrupt (T1) - A packet was transmitted without errors. Cleared when written with a one. Not Reset.

122

4: Receiver AHB Error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when written with a
one. Not Reset.
5: Transmitter AHB Error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared when written
with aone. Not Reset.
6: Too Small (TS) - A packet smaller than the minimum size was received. Cleared when written with a one. Reset
value: ‘0.
7: Invalid Address (1A) - A packet with an address not accepted by the MAC was received. Cleared when written with
aone. Reset value: ‘0.
31 16 15 0
RESERVED Bit 47 downto 32 of the MAC Address
Figure91. MAC Address MSB.
31-16: Thetwo most significant bytes of the MAC Address. Not Reset.
31 0
Bit 31 downto O of the MAC Address
Figure 92. MAC AddressLSB.
31-0: The4least significant bytes of the MAC Address. Not Reset.
31 16 15 11 10 6 4 3 2 1 0
DATA PHY ADDRESS REGISTER ADDRESS NV/BU| LF| RD WR
Figure 93. GRETH MDIO ctrl/status register.
0: Write (WR) - Start a write operation on the management interface. Data is taken from the Data field. Reset value:
‘0.
1 Read (RD) - Start aread operation on the management interface. Datais stored in the data field. Reset value: ‘0'.
2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management link was not
detected. Not Reset.
3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is finished and the
management link isidle thisbit is cleared. Reset value: ‘0.
4: Not valid (NV) - When an operation isfinished (BUSY = 0) this bit indicates whether valid data has been received
that is, the data field contains correct data. Not Reset.
10-6: Register Address - This field contains the address of the register that should be accessed during a write or read
operation. Not Reset.
15-11: PHY Address- Thisfield contains the address of the PHY that should be accessed during awrite or read operation.
Not Reset.
31-16: Data- Contains dataread during aread operation and data that is transmitted is taken from this field. Not Reset.
31 10 9 3 2 0
TRANSMITTER DESCRIPTOR TABLE BASE ADDRESS DESCRIPTOR POINTER RESERVED
Figure 94. GRETH transmitter descriptor table base address register.
31-10: Base addressto the transmitter descriptor table.Not Reset.
9-3: Pointer to individual descriptors. Automatically incremented by the Ethernet MAC.

2-0:

Reserved. Reads as zeroes.

123

31 10 9 3 2 0
RECEIVER DESCRIPTOR TABLE BASE ADDRESS DESCRIPTOR POINTER RESERVED

Figure 95. GRETH receiver descriptor table base address register.

31-10: Base addressto the receiver descriptor table.Not Reset.
9-3: Pointer to individual descriptors. Automatically incremented by the Ethernet MAC.
2-0: Reserved. Reads as zeroes.

31 0
EDCL |IP ADDRESS

Figure 96. GRETH EDCL IP register.
31-0: EDCL IP address. Reset valueis set with the ipaddrh and ipaddrl generics.

19.10 Vendor and deviceidentifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier Ox1D. For description of
vendor and device identifiers see GRLIB IP Library User’'s Manual.

124

19.11 Configuration options

Table 89 shows the configuration options of the core (VHDL generics).

Table 89. Configuration options

Generic Function Allowed range Default
hindex AHB master index. 0- NAHBMST-1 0
pindex APB daveindex 0- NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0- 16#FFF# 16#FFF#
pirq Interrupt line used by the GRETH. 0- NAHBIRQ-1 0
memtech Memory technology used for the FIFOs. 0-NTECH inferred
ifg_gap Number of ethernet clock cycles used for oneinterframe | 1 - 255 24
gap. Default value as required by the standard. Do not
change unless you know what your doing.
attempt_limit Maximum number of transmission attempts for one 1-255 16
packet. Default value as required by the standard.
backoff_limit Limit on the backoff size of the backoff time. Default 1-10 10
value asrequired by the standard. Setsthe number of bits
used for the random value. Do not change unless you
know what your doing.
dot_time Number of ethernet clock cycles used for one slot- time. | 1- 255 128
Default value as required by the ethernet standard. Do
not change unless you know what you are doing.
mdcscaler Sets the divisor value use to generate the mdio clock 0-255 25
(mdc). The mdc frequency will be clk/(2* (mdcs-
caer+l)).
enable_mdio Enable the Management interface, 0-1
fifosize Setsthe sizein 32-bit words of the receiver and transmit- | 4 - 32
ter FIFOs.
nsync Number of synchronization registers used. 1-2 2
edcl Enable EDCL. 0-1 0
edclbufsize Select the size of the EDCL buffer in kB. 1-64 1
macaddrh Sets the upper 24 bits of the EDCL MAC address.*) 0 - 16#FFFFFF# 16#00005E#
macaddrl Sets the lower 24 bits of the EDCL MAC address. *) 0 - 16#FFFFFF# 16#000000#
ipaddrh Sets the upper 16 bits of the EDCL |IP address reset 0 - 16#FFFF# 16#COA8#
vaue.
ipaddrl Setsthe lower 16 bits of the EDCL | P address reset 0 - 16#FFFF# 16#0035#
value.
phyrstadr Sets the reset value of the PHY addressfield in the 0-31 0
MDIO register.
rmii Selectsthe desired PHY interface. 0 = MlIl, 1 = RMII. 0-1 0

*) Not all addresses are allowed and most NICs and protocol implementations will discard frames

with illegal addresses silently. Consult network literature if unsure about the addresses.

19.12 Signal descriptions

125

Table 90 shows the interface signal's of the core (VHDL ports).

Table 90. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
APBI * Input APB daveinput signals -
APBO * Output APB dlave output signals -

ETHI * Input Ethernet M1 input signals. -
ETHO * Output Ethernet M1 output signals. -

* see GRLIB IP Library User's Manual

19.13 Library dependencies

19.14

Table 91 shows libraries used when instantiating the core (VHDL libraries).

Table 91. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER ETHERNET_MAC Signals, component GRETH component declarations, GRETH sig-
nals
GAISLER NET Signals Ethernet signals
I nstantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_| ogi

library grlib;
use grlib.anba. al
use grlib.tech.al
library gaisler;
use gai sl er. et her

entity greth_ex i

port (
clk in std
rstn : in std
-- ethernet s
ethi :: in e
etho : in e
)

end;

architecture rtl

-- AMBA signal s
si gnal apbi
signal apbo

si gnal ahbm

c_1164.al l;
I

I3

net _nmac. al | ;
s

_ul ogi c;
_ul ogi c;

ignals
th_i n_type;
th_out _type

of greth_ex is

apb_slv_in_type;

apb_sl v_out _vector

ahb_nst _in_type;

:= (others => apb_none);

signal ahbno :
begin

AMBA Conponent s

ahb_|

nmst _out _vect or

are instantiated here

-- GRETH
el : greth
generic map(
hi ndex = 0,
pi ndex => 12,
paddr => 12,
pirq => 12,
ment ech => inferred,
nmdcscal er => 50,
enable_ndio => 1,
fifosize => 32,
nsync = 1,
edcl => 1,
edcl buf sz => 8,
macaddr h => 16#00005E%#,
macaddr | => 16#00005D#,
i paddr h => 16#c0a8#,
i paddr | => 16#0035%#)
port map(
rst => rstn,
cl k => cl k,
ahbm => ahbmi ,
ahbmo => ahbnmo(0),
apbi => apbi,
apbo => apbo(12),
et hi => ethi,
et ho => et ho

)

end;

:= (others => ahbm none);

20

20.1

20.2

20.3

127
GRLIB wrapper for OpenCores CAN I nterface core

Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Coreregisters. The AHB dave interface is mapped in the AHB 1/0 space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through the irq generic. The FIFO RAM in the CAN core isimplemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies.

This CAN interface implements the CAN 20.A and 2.0B protocolos. It is based on the Philips
SJA 1000 and has a compatible register map with afew exceptions.

CAN_OC Wrapper

CAN Core Syncram_2p

v 1 i

AHB slave interface

|

|

|

| IRQ

L - - 1 1 - _— __ __ __ __ __ __ |
AMBA AHB

Figure 97. Block diagram

Opencores CAN controller overview

This CAN controller is based on the Philips SJIA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA 1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the coreisin
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as L SB.

128

20.4 BasicCAN mode

20.4.1 BasicCAN register map

Table 92. BasicCAN address allocation

Address Operating mode Reset mode
Read Write Read Write
0 Control Control Control Control
1 (OxFF) Command (OxFF) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 (OxFF) - Acceptance code Acceptance code
5 (OXFF) - Acceptance mask Acceptance mask
6 (OxFF) - Bustiming O Bustiming O
7 (OxFF) - Bustiming 1 Bustiming 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 TX idl TXidl (OxFF) -
11 TX id2, rtr, dic TX id2, rtr, dic (OXFF) -
12 TX databyte 1 TX databyte 1 (OxFF) -
13 TX data byte 2 TX databyte 2 (OXFF) -
14 TX databyte 3 TX databyte 3 (OxFF) -
15 TX databyte 4 TX databyte 4 (OxFF) -
16 TX databyte 5 TX databyte 5 (OxFF) -
17 TX databyte 6 TX databyte 6 (OxFF) -
18 TX databyte 7 TX databyte 7 (OxFF) -
19 TX databyte 8 TX databyte 8 (OxFF) -
20 RX idl - RX idl -
21 RX id2, rtr, dic - RX id2, rtr, dic -
22 RX databyte 1 - RX data byte 1 -
23 RX databyte 2 - RX data byte 2 -
24 RX databyte 3 - RX data byte 3 -
25 RX databyte 4 - RX data byte 4 -
26 RX databyte 5 - RX databyte 5 -
27 RX databyte 6 - RX data byte 6 -
28 RX databyte 7 - RX databyte 7 -
29 RX databyte 8 - RX data byte 8 -
30 (0x00) - (0x00) -
31 Clock divider Clock divider Clock divider Clock divider

20.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

129

Table 93. Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR5 - reserved

CRA4 Overrun Interrupt Enable 1 - enabled, 0 - disabled

CR.3 Error Interrupt Enable 1 - enabled, O - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled

CR1 Receive Interrupt Enable 1 - enabled, O - disabled

CR.O Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-

ing O returns to operating mode.

20.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 94. Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR4 - not used (go to sleep in SJA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts anot yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.O0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

20.4.4 Satusregister
The status register is read only and reflects the current status of the core.

Table 95. Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the coreisin bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning
limit (96).

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1if amessage was lost because no space in fifo.

SR.0 Receive buffer status 1if messages available in the receive fifo.

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first
when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer islocked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

20.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register.

Table 96. Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved

IR.6 - reserved

IR.5 - reserved

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when SR.1 goesfrom O to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.

IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)
IR.0 Receive interrupt This bit is set while there are more messages in the fifo.

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all hits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 readsas 1 but IR.4 is 0.

131

20.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

Table 97. Transmit buffer layout

Addr | Name Bits
7 6 5 4 3 2 1 0
10 ID byte 1 ID.10 ID.9 1D.8 ID.7 ID.6 ID.5 ID.4 ID.3
1 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0
12 TX datal TX byte 1
13 TX data2 TX byte2
14 TX data3 TX byte3
15 TX data4d TX byte4
16 TX data5 TX byte5
17 TX data 6 TX byte 6
18 TX data7 TX byte7
19 TX data8 TX byte 8

If the RTR hit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

20.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Itslayout is
identical to that of the transmit buffer.

20.4.8 Acceptancefilter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to thefifo.

132

205 PdiCAN mode

20.5.1 PeliCAN register map

Table 98. PeliCAN address allocation

Operating mode Reset mode
Read Write Read Write
0 Mode Mode Mode Mode
1 | (Ox00) Command (0x00) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 | Interrupt enable Interrupt enable Interrupt enable Interrupt enable
5 reserved (0x00) - reserved (0x00) -
6 Bustiming O - Bustiming O Bustiming O
7 Bustiming 1 - Bustiming 1 Bustiming 1
8 | (0x00) - (0x00) -
9 | (0x00) - (0x00) -
10 | reserved (0x00) - reserved (0x00) -
11 | Arbitration lost capture - Arbitration lost capture | -
12 | Error code capture - Error code capture -
13 | Error warning limit - Error warning limit Error warning limit
14 | RX error counter - RX error counter RX error counter
15 | TX error counter - TX error counter TX error counter
16 | RX Fl SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0
17 |RXID1 RXID 1 TXID1 TXID1 Acceptance code 1 Acceptance code 1
18 |RXID2 RX ID 2 TXID 2 TXID 2 Acceptance code 2 Acceptance code 2
19 |RX datal RX 1D 3 TX datal TXID3 Acceptance code 3 Acceptance code 3
20 | RX data2 RX ID 4 TX data?2 TXID 4 Acceptance mask 0 Acceptance mask 0
21 | RX data3 RX data 1l TX data3 TX datal Acceptance mask 1 Acceptance mask 1
22 | RX data4 RX data?2 TX datad TX data2 Acceptance mask 2 Acceptance mask 2
23 | RX data5 RX data3 TX data5 TX data3 Acceptance mask 3 Acceptance mask 3
24 | RX data6 RX data4 TX data6 TX data4 reserved (0x00) -
25 |RX data7 RX data5 TX data7 TX data5 reserved (0x00) -
26 | RX data8 RX data6 TX data8 TX data6 reserved (0x00) -
27 | FIFO RX data7 - TX data7 reserved (0x00) -
28 | FIFO RX data8 - TX data8 reserved (0x00) -
29 | RX message counter - RX msg counter -
30 | (0x00) - (0x00) -
31 | Clock divider Clock divider Clock divider Clock divider

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below.

133

20.5.2 Moderegister

Table 99. Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJIA1000)

MOD.3 Acceptance filter mode 1 - singlefilter mode, O - dual filter mode

MOD.2 Self test mode If set the controller isin self test mode

MOD.1 Listen only mode If set the controller isin listen only mode

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing O returns to operating mode

Writing to MOD.1-3 can only be done when reset mode has been entered previously.

In Listen only mode the core will not send any acknowledgements. Note that unlike the SJIA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

20.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 100.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMRA4 Self reception request Transmits and simultaneously receives a message
CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts anot yet started transmission.

CMR.0 Transmission request Startsthe transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.O0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

134

20.5.4 Satusregister

The status register is read only and reflects the current status of the core.

Table 101.Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the coreisin bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error warning
limit.

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1if amessage was lost because no space in fifo.

SR.0 Receive buffer status 1if messages available in the receive fifo.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJIA1000 behavior and is set first when the fifo has been read

out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer islocked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

20.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

Table 102.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.5 Error passive interrupt Set when the core goes between error active and error passive
IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while thefifo is not empty.

Thisregister isreset on read with the exception of IR.0 which isreset when the fifo has been emptied.

135

20.5.6 Interrupt enableregister

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

Table 103.Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description

IR.7 Bus error interrupt 1 - enabled, 0 - disabled

IR.6 Arbitration lost interrupt 1- enabled, O - disabled

IR.5 Error passive interrupt 1- enabled, 0 - disabled

IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data overrun interrupt 1 - enabled, 0 - disabled

IR.2 Error warning interrupt 1 - enabled, 0 - disabled.

IR.1 Transmit interrupt 1 - enabled, O - disabled

IR.0 Receive interrupt 1 - enabled, 0 - disabled

20.5.7 Arbitration lost capture register

Table 104.Bit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description
ALC.7-5 - reserved
ALC.4-0 Bit number Bit where arbitrationis lost

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

20.5.8 Error code captureregister

Table 105.Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0 - transmission error
ECC.4-0 Segment Where in the frame the error occurred

When a bus error occursthe error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. Aswith the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 106.Error code interpretation

ECC.7-6 | Description
0 Bit error

1 Form error
2 Stuff error
3 Other

136

Bit 4 downto O of the ECC register isinterpreted as below

Table 107.Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame
0x02 ID.28-1D.21
0x06 ID.20-1D.18
0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 - 1D.13
OxOF ID.12-1D.5
OxOE ID.4-1D.0

0x0C Bit RTR

0x0D Reserved hit 1
0x09 Reserved bit 0
0x0B Data length code
O0x0A Datafield

0x08 CRC sequence
0x18 CRC delimiter
0x19 Acknowledge slot
0x1B Acknowledge delimiter
Ox1A End of frame
0x12 Intermission

0x11 Active error flag
0x16 Passive error flag
0x13 Tolerate dominant bits
0x17 Error delimiter
0x1C Overload flag

20.5.9 Error warning limit register

Thisregisters allowsfor setting the CPU error warning limit. It defaultsto 96. Note that thisregister is
only writable in reset mode.

20.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event
resets this counter to 0.

20.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occursthisregister isinitialized asto count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

20.5.12 Transmit buffer

137

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this areais mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
astandard frame (SFF) or an extended frame (EFF) isto be sent as seen below.

Table 108.
| Write (SFF) Write(EFF)
16 | TX frameinformation TX frame information
17 | TXID1 TXID1
18 |TXID2 TXID 2
19 | TX datal TXID3
20 | TX data2 TXID4
21 | TX data3 TX datal
22 | TX data4 TX data?2
23 | TX data5 TX data3
24 | TX data6 TX data4
25 | TX data7 TX data5
26 | TX data8 TX data6
27 TX data7
28 TX data8

TX frame information

Thisfield has the same layout for both SFF and EFF frames.

Table 109.TX frame information address 16

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

FF

RTR

DLC.3

DLC.2

DLC.1

DLC.0

Bit 7 - FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard
frame. 1 = EFF, 0 = SFF.

Bit 6 - RTR should be set to 1 for an remote transmission request frame.
Bit 5:4 - aredon’t care.

Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value
greater than 8 is used 8 bytes will be transmitted.

TX identifier 1
Thisfield isthe same for both SFF and EFF frames.

Table 110.TX identifier 1 address 17

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1D.28

ID.27

1D.26

ID.25

1D.24

1D.23

ID.22

ID.21

Bit 7:0 - The top eight bits of the identifier.

138

TX identifier 2, SFF frame

Table 111.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 - -
Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4:0 - Don’t care.
TX identifier 2, EFF frame
Table 112.TX identifier 2 address 18
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13
Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.
TX identifier 3, EFF frame
Table 113.TX identifier 3 address 19
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5
Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.
TX identifier 4, EFF frame
Table 114.TX identifier 4 address 20
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 ID.3 ID.2 ID.1 ID.0

Bit 7:3 - Bit 4 downto O of 29 bit EFF identifier
Bit 2:0 - Don’'t care

Datafield

For SFF framesthe datafield is located at address 19 to 26 and for EFF frames at 21 to 28. The datais
transmitted starting from the MSB at the lowest address.

139

20.5.13 Receive buffer

Table 115.
| Read (SFF) Read (EFF)
16 | RX frameinformation RX frame information
17 |RXID1 RXID 1
18 |RXID2 RX ID 2
19 |RX datal RXID 3
20 | RX data2 RXID 4
21 |RX data3 RX datal
22 | RX data4 RX data 2
23 | RX data5 RX data3
24 | RX data6 RX data4
25 |RX data7 RX data5
26 | RX data8 RX data6
27 | RX Fl of next messagein fifo RX data7
28 | RX ID1 of next messagein fifo RX data 8

RX frame information
Thisfield has the same layout for both SFF and EFF frames.

Table 116.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0
Bit 7 - Frame format of received message. 1 = EFF, 0 = SFF.
Bit6- 1if RTR frame.
Bit 5:4 - Always 0.
Bit 3:0 - DLC specifies the Data Length Code.
RX identifier 1
Thisfield isthe same for both SFF and EFF frames.
Table 117.RX identifier 1 address 17
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21
Bit 7:0 - The top eight bits of the identifier.
RX identifier 2, SFF frame
Table 118.RX identifier 2 address 18
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 RTR 0 0 0 0

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit4- 1if RTR frame.

140

Bit 3:0 - AlwaysO.

RX identifier 2, EFF frame

Table 119.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1D.20 I1D.19 1D.18 ID.17 1D.16 1D.15 ID.14 1D.13

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Table 120.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.12 ID.11 1D.10 ID.9 ID.8 ID.7 ID.6 ID.5

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Table 121.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0

Bit 7:3 - Bit 4 downto O of 29 bit EFF identifier
Bit 2- 1if RTR frame
Bit 1:0 - Don't care

Datafield
For received SFF frames the datafield is located at address 19 to 26 and for EFF frames at 21 to 28.

20.5.14 Acceptancefilter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal withiit.

There are two different filtering modes, single and dual filter. Which oneis used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller fil-
tersare used and if either of these signals a match the message is accepted. Each filter consists of two
parts the acceptance code and the acceptance mask. The code registers are used for specifying the pat-

141

tern to match and the mask registers specify don’t care bits. In total eight registers are used for the
acceptance filter as shown in the table below. Note that they are only read/writable in reset mode.

Table 122.Acceptance filter registers

Address Description

16 Acceptance code 0 (ACRO)
17 Acceptance code 1 (ACR1)
18 Acceptance code 2 (ACR2)
19 Acceptance code 3 (ACR3)
20 Acceptance mask 0 (AMRO)
21 Acceptance mask 1 (AMR1)
22 Acceptance mask 2 (AMR2)
23 Acceptance mask 3 (AMR3)

Singlefilter mode, standard frame

When receiving a standard frame in single filter mode the registers ACRO-3 are compared against the
incoming message in the following way:

ACRO0.7-0 & ACRL1.7-5 are compared to 1D.28-18
ACR1.4 is compared to the RTR bit.

ACR1.3-0 are unused.

ACR2 & ACR3 are compared to databyte 1 & 2.

The corresponding bitsin the AMR registers selectsif the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACRO0-3 are compared against
the incoming message in the following way:

ACRO0.7-0 & ACRL1.7-0 are compared to 1D.28-13
ACR2.7-0 & ACR3.7-3 are compared to 1D.12-0
ACR3.2 are compared to the RTR bit

ACR3.1-0 are unused.

The corresponding bitsin the AMR registers selectsif the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACRO0-3 are compared against the
incoming message in the following way:

Filter 1

ACRO0.7-0 & ACRL1.7-5 are compared to 1D.28-18

ACR1.4 is compared to the RTR hit.

ACR1.3-0 are compared against upper nibble of data byte 1

142

ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2
ACR2.7-0 & ACR3.7-5 are compared to 1D.28-18
ACR3.4 is compared to the RTR hit.

The corresponding bitsin the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don't care.

Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACRO-3 are compared against the
incoming message in the following way:

Filter 1
ACRO0.7-0 & ACRL1.7-0 are compared to 1D.28-13

Filter 2
ACR2.7-0 & ACRS3.7-0 are compared to 1D.28-13

The corresponding bitsin the AMR registers selectsif the results of the comparison doesn’t matter. A
set bit in the mask register means don't care.

20.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

20.6 Common registers

There are three common registers that are at the same addresses and have the same functionality in
both BasiCAN and PeliCAN mode. These are the Clock divider register and bus timing register 0 and
1

143

20.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN coreis not connected and it
isits frequency that can be controlled with this register.

Table 123.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1- PeliCAN, 0 - BasiCAN
CDR.6 - unused (cbp bit of SJA1000)
CDRS5 - unused (rxinten bit of SJA1000)
CDR.4 - reserved

CDR.3 Clock off Disable the clkout output
CDR.2-0 Clock divisor Frequency selector

20.6.2 Bustiming 0

Table 124.Bit interpretation of bustiming O register (BTRO) (address 6)

Bit Name Description
BTRO0.7-6 | SIW Synchronization jump width
BTR0.5-0 | BRP Baud rate prescaler

The CAN core system clock is calculated as:
tSCl = Z*tclk* (BRP+1)
where tgy) is the system clock.

The sync jump width defines how many clock cycles (ty) a bit period may be adjusted with by one
re-synchronization.

20.6.3 Bustiming 1

Table 125.Bit interpretation of bustiming 1 register (BTR1) (address 7)

Bit Name Description

BTR1.7 SAM 1- Thebusis sampled three times, O - single sample point
BTR1.6-4 | TSEG2 Time segment 2

BTR1.3-0 | TSEG1 Time segment 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

tisegr = ty * (TSEG1+1)
tisegz = ty * (TSEG2+1)

thit = tiseg1 * trseg2 * tscl

The additional tyy term comes from the initial sync segment.

144
Sampling is done between TSEG1 and TSEG2 in the bit period.

20.7 Design considerations

This chapter will list known differences between this CAN controller and the SJA1000 on which isit
based.

e All bitsrelated to sleep mode areunavailable

e Output control and test registers do not exist (reads 0x00)

* Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented
e Overrunirg and status not set until fifoisread out

BasicCAN specific differences:
* Thereceiveirg bit isnot reset on read, works like in PeliCAN mode
* Bit CR.6 alwaysreads 0 and is not aflip flop with no effect asin SJA1000

PeliCAN specific differences:

* Writing 256 to tx error counter gives immediate bus-off when still in reset mode
* Read Buffer Start Address register does not exist

e Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)

* The coretransmits active error framesin Listen only mode

20.8 Vendor and deviceidentifiers

The core has vendor identifier 0xO1 (Gaisler Research) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

20.9 Configuration options

Table 126 shows the configuration options of the core (VHDL generics).

Table 126.Configuration options

Generic Function Allowed range Default

slvndx AHB dlave busindex 0- NAHBSLV-1 0

ioaddr The AHB I/O area base address. Compared with bit 19-8 | 0 - 16#FFF# 16#FFF#
of the 32-bit AHB address.

iomask The 1/O area address mask. Setsthe size of thel/O area | O - 16#FFF# 16#FFO#
and the start address together with ioaddr.

irq Interrupt number 0- NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0-NTECH

20.10 Signal descriptions

Table 127 shows the interface signals of the core (VHDL ports).

Table 127.Signal descriptions

145

Signal name Field Type Function Active
CLK Input AHB clock

RESETN Input Reset Low
AHBSI * Input AMBA AHB daveinputs -
AHBSO * Input AMBA AHB slave outputs

CAN_RXI Input CAN receiver input High
CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

20.11 Library dependencies

20.12

Table 128 shows libraries that should be used when instantiating the core.

Table 128.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER CAN Component Component declaration
Component declaration
library grlib;
use grlib.anba.all;
use gaisler.can.all;
conmponent can_oc
generic (
sl vndx integer := 0;
i oaddr integer := 16#000#;
i omask i nteger := 16#FFO0#;
irq integer := 0;
ment ech integer := 0);
port (
resetn in std_|ogic;
cl k in std_logic;
ahbsi in ahb_slv_in_type;
ahbso out ahb_slv_out _type;
can_rxi in std_logic;
can_txo : out std_logic

end conponent;

146

Table of contents

INEFOTUCTION ...t n bbbt e e e r e n e nenreanis 2
11 RS ol oL TSP P UPT PPN 2
12 S o =107 1 £SO PRPRRSPRSN 2
13 GR-XC3S-1500 DOBIM.......c.ocveviuierieieieseres ettt et 2
14 REFENENCE QOCUMEBNTS ...ttt ettt eb et bbbt et e bt s e bt se bt seebe et e e eb e ebeneene s 3
ATCNITECTUNt b et h b et b e et nr et e e 4
21 OVEIVIBIV ...ttt e et e s bRt b e Rt e b e Rt n e e R e e e e et e e et e Rt s e e e eb e n e et e e r e e rnannns 4
2.2 LEONS SPARC V8 DIOCESSOLc.veviaresreseeeesesiesiessessesreseessessesseseesessessessearessesssssessessensessessssesnessessensessens 5
2.3 IMBIMONY TNMEEITACES.ttt ettt bbbt b ettt ettt et et e st ek e ne et e ne et e neebeneene s 5
24 E N S e (] (=0 = TR 5
25 SPACEWITE TINKS......eceeeeeet ettt bbbkt b bbb bttt b e b b ees 6
2.6 JLILL 1= S0 0T SO 6
2.7 INEEITUPE CONEIOITEE ...ttt ettt b et bbb e e e et et e b e s e b s b e e et eneenes 6
2.8 LU L 3 TSRS 6
29 GeNEral PUIMNPOSE [/O POMT......eeeeiieiirieiiriei sttt sttt ettt eb st ene bt e e b eneenan 6
2.10 EELNEITIEL ..ot r et R et r e e R e R n e ere e 6
211 (@7 N AL TS 6
P Y £ €7 oo 1 (0] = OSSO S 6
213 PS/2 KEYDOArd INLEITACE.c.ei ittt sttt b e be e be b e 6
214 ClOCK QENEIBIONveeivereetereetereete sttt sttt et se et e bt se e st seeae e ebe s e ebeee et se e st s b e st s b e bt b e bt s b e st e b e st s b e bt abebeeee e sae e sbenees 6
215 GRLIB IP COMES....cutiiirieeeitresieteienesesee e sesesteseseesessssenesesessesanesessesesesesessesasensssssesensssssesesenssessesesenssensesenes 7
2.16 110 £ 1] £ TSP UU PR OU PPN 7
217 MEIMOIY MBI ... e e r e s r e s e e s e e s anesne s 8
2.18 IS o 0= TSR 8
219 CAN SIONAIS .ttt ettt e e e b bt £ e bR £ e Rk R bbb Rt bbbt e b ne s 10
SIMUIELioN @Nd SYNTNESIS......coueiiiee et nre s 11
31 (D= | 1 o OSSPSR 11
32 INSEBITBLION ...ttt bbb b e bbbt b e n s 11
33 TEMPIALE AESIGN OVEIVIEW ...ttt bbb bbb e e b e b e s 1
34 L@Ce] 01 1T U1 = o] o FHN OSSP SROTSPTRPN 11
35 SIMUIBLTON ..ttt et E et b et E et bR st b st b et bt b et b et b e e bt b et r s 12
3.6 SYNENESIS AN PlACEGK FOULE........cvieeiieete ettt bbbt s b e ek e b e b sn b nnerea 13
37 [Tdo W= ol goTo =T 411 011 oo PR 13
SOftWAre AEVE OPIMENT ... bbbt nr e 14
4.1 TOOI CRAINS ...ttt bbbt b e bbbt e b e bbbt e st b et b e b eb e b et b e e e b e e nn 14
4.2 Downloading software to the target SYSIEIM ..o e 14
4.3 Flash PROM PFOQIaIMIMINGcveeeieeeeieetere st stesteseessessesaeseeseeessessessessesaessessessessensessenssnsssessessessessensenes 14
4.4 RTEMS spacewire driver and demO PrOOraMc.oereerieerieieriee ettt st 14
LEONS - High-performance SPARC V8 32-hit PrOCESSONccceieerueieeirieieeeesieeee e 15
51 OVEIVIBIV ...ttt et h et bt h et bt e R Ae bt e e b e e b e eeeh e 1o eb e se e bt e e eb e neeb e reeb e seebene b e nnebennenea 15

511 INEEOEN UNIT...eiiieiieiiteiiiteert ettt b e e b st b et eb e b se b e b e nr b e nn b e nnene 15

512 CAChE SUD-SYSIEIM.. ..ottt ettt bbb et b e 15

5.1.3 Floating-point unit @nd CO-PIrOCESSONc.erverereerereerereeresesressereseereseeresesressesessesesesresessesssseneas 16

514 Memory Management UNIT........cccourieeerirereniesenieseeseeesesessessessesaesbesbeseesee e eee e e e ssessesseseens 16

515 ON-Chip deUQY SUPPOIT.....coeeiiereeterieieitet ettt s b e bbb e b sn e nnene 16

516 INEITUPL INTEITACE. ... o it ettt b e 16

T A AN (Y 1 2 Y N 141 (< - oL SR 16

52

5.3

54

55

5.6

5.7

58
59

5.10
511
5.12
5.13

5.1.8 POWEr-UOWN MOUEcueiiiiiitiieitiiete ettt ettt eb e e be et se bt se bt seebe s e e be e sbenennenea 16
5.1.9 MUIti-PrOCESSOr SUPPOITcueiveueeteerterestesesteseete st et se et seeie e b e s st s e bbbt bttt sbe e b e b 16
5.1.10 PO OMANCE.......eiitiiecteieete ettt sttt re bt et se et b ekt b bbbt b et b b e b nnere 16
LEONSB INEEOEN UNIT.....eiuiieierieirieirieie ettt sttt sttt st s b et b e ettt b et bt bttt st st 17
L R @Y= V= OSSOSO 17
522 INSUCHION PIPEIINE ...ttt bbb 18
523 SPARC IMPIEMENIOI'S ID ..ottt 18
5.24 DIVIOEINSIIUCLIONS.....c.eieitiiitiietirisieiete sttt b et s et aeenan 18
525 MUILIPIY INSLUCHIONS. ...c.civiiitiieteesteeete sttt bbbt 19
526 Multiply and accumulate INSIIUCLIONS.c.covruirieirieiereeenieeriee e 19
527 Hardware breakpointS.........coooiiiiiieeirsiereienses sttt nas 19
528 INSrUCHION traCe DUFFENcvieiieic e 20
529 Processor coONfiguration FEJISIENcovirrirriereereteree et 20
D210 EXCEPLIONS. .. .ottt ettt b et b e bt b s bt b e n e s 21
5211 Single vector trapPing (SVT) ..ottt s e neenan 21
5212 Address space identifierS (AS]) ..o 22
LT T = o V1< o (o 1 o ISR 22
5.2.14 ProCessOr rESEL OPEIAHIONc..cuerieuirieeereete sttt sttt et b et e bbb s b be e saeenan 22
5.2.15 MUIti-PrOCESSON SUPPON ...eueiteeetereetereetereetestesesteteseesestesestesessesesbesessesesseseebeseeseseeseseesesessessesesens 22
5216 CaChe SUD-SYSIEIM. ..ottt 23
[NSLIUCTION CACKIE. ...ttt b bbbt nn e ene e 23
SN R @ o 1= - 1 o o OSSR 23
5.3.2 INSLIUCHION CACNE LAY ... veveieiteieie ettt ettt bbbt et et e e 24
DELACACKE ... bbb 24
BUAL OPEIEHION.cuieetereeiesteierteie ettt sttt ettt b et b et b et b e e b et b et eb e sesbeseebe e e bt e eb e ne b e ne e bt ne b e b e b 24
542 WHE DUFTEN ..ot e e b ettt 24
5.4.3 DaBCACNE A ...cvieeveeiteriete ettt b et b b 25
Additional cache FUNCHONAIITYcciuiiiieie e 25
551 CaChefIUSNING ..ottt 25
552 DiagnOStiC CBCNE GECESS.cuiivitireetiriete ittt sttt sttt ettt ettt se et et et e seebesaenenea 25
553 CaCheliNEIOCKING. . ..civeuirieterieteriet ettt ettt et b e 26
554 LOCEl INSEIUCTION FAIM ..ottt ettt sttt et st sttt st s sbene e 26
555 LOCal SCratCh PAO FAIMceeuiieeiieierieie ettt ettt st s sbe e 26
556 Cache CONrOl REJISIEc.eiieiirieiirieterie ettt ettt st st 26
557 Cache configuration rEQISLErScoci ittt st 27
558 SOftWare CONSIAEIELION.c.eviviiereietereete ettt et st s bbb e e srene e 28
MEMOrY MANAGEMENT UNIT........iiueierieieieere ettt sttt e et ebe st b e e b e b e e e e eneebeeaesaesbesbeseeneenseneenes 28
oI 0 N 1= o o] o SRS 28
X N O o o T X! o < = 1 (o o BRSO 28
5.6.3 IMMU FEOISIEIS. ... eiteie ettt ettt b bbb b e e et e e et e aeeae s aesbe st e e e e e ens 29
56.4 Trangdation |00k-aside BUFfer (TLB)ccoiiiiirireieeeee e 29
Floating-point unit and cuStom CO-ProCesSOr INEITACEcooii e 29
571 Gaisler Research’sfloating-point unit (GRFPU)cccoiireiieninenesenese e 29
B5.7.2 GRIFPU-LITE. ..ottt bbb st b bbbttt 30
5.7.3 ThEMEKO FPU......coiiiiiiee ettt e sttt 30
5.7.4 GENENIC CO-PIOCESSONvuereeteeerereeteseeuessesessestssesessesessesessesessesessesessestssesessesessessssenessesessesensasens 30
Vendor and deViCe IAENLITEISc.ii i 30
SYNhESIS ANA NAIAWEIE......c.eeeeiee ettt a et bbb e b e e e 31
S N R N == =0 o I 1] 01 oo TR SRRSO 31
5.9.2 TechNOlOgY MEPPING. .. . coeeerererierterie sttt seere e eae et ere b sbe et b beseeseeee e e e e e eaesaesaesaesbeseeseeneens 31
5.9.3 DOUDIE CIOCKINGc.viuteieieiiriet ettt ettt b bbbt b e e b b et e e e 31
CONFIGUIALTON OPLIONS.ve.eeveieete sttt et sttt ettt sttt b e bt b e st b e st bt b etk e st bt s be et ne b e e b 32
SIGNEAL HESCITPLIONS ...ttt et b e e et b et b et s a et be sttt e et 34
LiDrary EPENAENCIESociiiiiierie ettt sttt b e b b et b e e e e e ae e b e eae e bt e b e b e e e e e neens 34
COMPONENE AECIAIALTON.cveieeie ettt et b etk e bt et et b b 34

GRFPU - High-performance | EEE-754 Floating-point UNit............cccooceveeveieeseceee e, 36

148

6.1 OVEIVIBIV ...ttt bbbt b e b b e e b £eeh e 12 b e A e b e e eb e seeb e se e bt s e eb e reeb e se ek e seebeneebenbebennebens 36
6.2 FUNCEION@] AESCIIPLION ...ttt ettt sttt sttt 36
6.2.1 Floating-point NUMDEr FOMMELSccovueviriiirieireeriee ettt seere 36
B.2.2 FP OPEIELIONSeeveeeieieteeet ettt sttt et sttt b e e b e e e bt et ek e ne b e reneerea 36
2 B = Coi= o 1o = TSROSO 38
372 = (o 0o (1 oo SRS 38
6.25 Denormalized NUMDENSc.oouiiiiire ettt 38
6.2.6 NON-StANAAIA MOUEcoiiiieitiiete ettt et reene 39
ST A N 3SR 39
6.3 00T o L= o T 0] o] TSR 40
6.4 LT 0010 TSRO 40
GRFPC - GRFPU CONtrol UNItccoiiiiiisiiseseseseeeeesie st 42
7.1 FlOating-POINt FEGISLEN FIl.... o e b e e b 42
7.2 Floating-Point State REGISIEr (FSR)c.eiveerieirieiirieie ettt 42
7.3 Floating-Point Exceptions and Floating-Point Deferred-QUEUE.............covererrennenesenreeeeeee e 42
DSU3 - LEON3 Hardware Debug SUpPPOrt UNitccceoieeiiriiieiie e 44
8.1 OVEIVIBIV ...ttt ettt bbbt bbb e h e Seeh e 12 e b e A e b e eeeb e 4o eh e se e bt s e eb e neeb e neebeseebeneebenbebennebeas 44
8.2 (@] 07 = 1o SRS STOSRPSPN 44
8.3 AHB TTACE BUITEN ...ttt ettt r e 45
8.4 INSLIUCETION TraCE DUFTEN ...t bbb 46
85 DSU MEMIOIY MBI ...ttt sttt sr e s et ss e e e et he e st sseeb e eb e sbese e s e s e s e e es e ese e st eneab e b e snenrene s 47
8.6 DS W =oK< £ SRR 48
8.6.1 DSU CONIOl FEHISIEN ..ottt eren e snene 48
8.6.2 DSU Break and SiNgIe StEP FEOISLENc..evuerieeereeienierie et s 48
8.6.3 DSU Debug Mode Mask REJISLEScciriiriiiiirieierieeeirer et s sbesae e 48
8.6.4 DSU tra FEOISENccvieetirietireetere et st sttt ettt eb et r et b et b et r et n et r e e nn b nnene s 49
8.6.5 Trace buffer timetag COUNLEN ..ot s 49
8.6.6 DSU ASI FEOISIEN ..ottt ettt st b bbb 49
8.6.7 AHB Trace buffer CONrol FEgISLEN ..o e 50
8.6.8 AHB trace DUffer iNdEX rEQISIENot bbb e 50
8.6.9 AHB trace buffer breakpoint regiStErS..........ccoviiiierieeiee e 50
8.6.10 INStruction trace CONIOl FEJISLENeiuereeeeierieee ettt 51
8.7 Vendor and deViCe IdENTITIEIS.... ..o bbb 51
8.8 CONfIGUIALTON OPLIONS.veueeviieete ettt se b e st e et b bbbt st ebeseebeseebeseebenenren 51
8.9 SIGNAl AESCITPLIONS ...ttt ettt ettt sttt sttt et b e b e bt s ae s b et e see b et e e e e enesbesbesbesaenbasbeneens 51
8.10 Library depENAENCIES ..ottt e bbb ettt bbb 52
8.11 COmMPONENE AECIAIALTON.cve ettt ettt b et b b sa b e b e seebeseeren 52
8.12 INSEBINEIGETON ...ttt bbb et bbbt bbbt r et e 52
IRQMP - Multiprocessor Interrupt CONrOIENccviiereeeeeere e 54
9.1 OVEIVIBIV ...ttt ettt bbb et e b se b s ek e ek e s e ek e se ekt se e bt s e eb e s e ebene ek e seebeseebeneebenenrens 54
9.2 (@] 01 = 1o o BTSSP TP PP P STURTSTPRRPRPIN 54
0.2.1 INEITUPL PrIOMTIZEHON.e ittt ettt b bbb b e 54
90.2.2 Processor StatUS MOMITOMINGccoveuereeerrirteriesiesiesie e ese st ae st b et ee e et e e e sbesbeseeseens 55
9.3 RTINS ettt E e R R bR e R e bbbt bbbt bt 56
0.3.1 INEITUPL [EVEl FEOISIENttt sn e snene 56
9.3.2 INterrupt PENAING FEOISLENcuirieterieeerieie sttt snene 56
9.3.3 Interrupt force register (NCPU = 0)coiiiiiinieerieenieerieesie sttt sre s snenen 57
0.3.4 INEITUPL ClEAIN TEOISIEN ...ttt sttt ettt ettt b e eb et b e sn b snene 57
9.35 MUItiproCESSOr SLALUS FEUISIEN .. .veeeteieetirietireei ettt ettt sttt s eb e s be e b snenesnenen 57
9.3.6 Processor interrupt MasK FEJISEYccceirieirieiriee ettt sttt 57
9.3.7 Processor interrupt force register (NCPU > 0)oovciriieniiinieie et seene e 58
9.4 Vendor and deViCe IENTITIEIS........oocirirce e 58
9.5 CONfIQUIALTION OPLIONS.citiiteie ettt ettt e s b et ae b et see b et e e e e et enesbesbesbeseesbeseens 58

9.6 SIGNAL DESCITPLIONS ...tttk ettt ettt e b e bbb e st se et s ekt b bt et ebeseebeseebeneebennebea 58
9.7 Library depENAENCIES ..ottt e bbb et sttt sttt 59
9.8 L= g LU= 1Ko o OSSPSR 59
MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controllerccocevveeveeeeenene 60
10.1 OVEIVIBIV ...ttt st b e st b ekt b et b e s e e b s ekt s ekt s e eb e s e e bt se e Rt s b e st et e bt se ek e seebeseebeneebenenben 60
10.2 PROM GCCESSvuiuteeeretereseetesesesessessstsese s eb et se s s st se s b st st bbb eae s e e R b ea e e s s b bt st e s R e b et e e b b et e e r b e e e e 61
10.3 MEMOTY MEPPEA 17O ...t b et bt bbbt bbbt b et b e 61
104 SRAIM @CCESS ...ttt ettt r et e ettt h e a e b e bt e bt e b e Rt e R e R AR e e e s et e e Rt eR e e R e Rt R bR R r e renren 61
105 8-bit and 16-bit PROM and SRAM GCCESScueveuriririeiiirisieiesine s 62
10.6 BUISE CYCIES ...ttt bbb et et bbbt bt bt bbbt bt s 63
10.7 8- 8N 16-DIt 1/O GCCESS. ... ecuieeteieeie ettt sttt st b et b e skt bese et e se et se b e neebenenben 63
10.8 SDRAIM BCCESS.....cutiueeueteirestetesesesestetesesasbebe e se st beseseseseebe st sessebe b et s e e bebeb e ae s s ebeb e see s b bebeneseebebe st se st ebenene e 64
LO.8.1 GENEIAcuiieieeeeere ettt bbb e bkt e R bbbt bbbt b b s 64
10.8.2 AUrESS MEPPING ...veveueeneeieeeiieiere et etesiestestesseseeseeseeeeseeseebesbesbesbessebessensansenesneeseesessessessansenes 64
10.8.3 INITIAHISAIION ..ttt sttt e et et r et r et et r e 64
10.8.4 Configurable SDRAM timing ParamMeELerS.........coerererierieeeeeeereriesie et see e 64
O o= (= TSSOSO TP 64
10.9.1 SDRAM COMMEBNGS.....ccutiueuirieuirieitsteit sttt sttt sb et sbese et st sbe st sbe e et e e sbe st sbe st ebesesbeseebe s ebeneees 65
10.9.2 REA CYCIES ...ttt bbb bbb st b et b et b e 65
10.9.3 WHILE CYCIES.....eeeeecee bbb ettt ettt 65
10.9.4 AdAreSS DUS CONMNECTIONcueiuiiiiiieiiiei ettt sr e 65
10.9.5 DABDUS ..ot bbb bbbttt 65
L0.9.6 CIOCKINGeeeetereeieiieiertei sttt b et b et bt bbbt b et b et b e bbbt 65
10.10 USINg bUS ready SIGNAITTINGc.coviririiiriiirieiee ettt nn 65
JO.I1 ACCESS EITONSecueeiiisieetesr et st sttt s se ettt b e bbbt e b e e R s b s e e e e e e e bt e b e e bR sh e R b se e b e b e et e e 66
10.12 Attaching an external DRAM CONIOIENcooiiiiiiieiceeeee e 66
LO.13 REJISEEIS. . .cuiiieuerteierteirte sttt et et s bt st e sttt se et e st ke st ek e st ek e e eb e seebe s e ebese ek e s e ek e se e ke seebesee ke s e ebeneebeseenesbeneneeneean 67
10.13.1 Memory configuration register 1 (MCFGL)cccocviiriiriinreinessieeee e e 67
10.13.2 Memory configuration register 2 (MCFG2)c.coviirieiriinireniressieeee s 68
10.13.3 Memory configuration register 3 (MCFGS3)cceouiuiirieirierererre e 68
10.14 Vendor and deViCe idENTITIENS.cooiiireiireeiteee et 68
10.15 CoNfigUuIation OPLIONS.c.ciueuereeirieerteereesere et se ettt sb et b st r e bbb e s b st b e e sbe e b eseseebesbenesbenesbenennas 69
10.16 SigNal GESCIIPLIONS ...c.veveeeiirteteree sttt sttt sttt ettt sttt et et et e b et st et sb et e saenesbenesbenenean 70
10.17 Library dePen0enCIESccoeeiiiiriiie ettt sttt sttt a st ae b b e b e et et e e e e e aeebe s b see b e e e nee e ens 71
LO.18 INSEANTIALION ...ttt sttt ettt bbb e bt et b st b e st b e bt b eb e ee et e b et seeb e rbebeebenesbenesbenennas 71
AHBSTAT - AHB STatUS REQISLENS.......ecuiiieiiieiieieie ettt 73
111 OVEIVIBIV ...ttt ettt bttt e et b h e bR ne b2 b e b e eh e 1o eh e ne e Rt s e eb e neeb e neeb e seebeneebennebennene 73
11.2 (@] 01 = 1o o BTSSRSO PSP O TSP PTOTORTSTPRSTPRPIN 73
11.3 L 0 1 1= £ OSSP 73
114 Vendor and deViCe idENTITIENS. ...t 74
115 CONFIGUIALTON OPLIONS.eueeveieete ettt ettt sttt sttt ettt b et e bt e bt se bt se et sb ekt se b e seebeseebeseebeseebennenea 74
11.6 SIGNEAL HESCITPLIONSeuteete sttt ettt b e ettt b st st s e et et e seebeseebeseebenennen 74
11.7 Library EPENAENCIESc.ciiiuiieie ettt b e bbb e b et se et et e e e e besbesbeseenbe b s 74
11.8 INSEBINEIAETON ...ttt h bbb bbbt bbbttt b et bt e 75
APBUART - AMBA APB UART Serial INterface.......ccccvvviieninininieeeeeee e 77
121 OVEIVIBIV ...ttt h e h et b e b e b e e Rt 1o b1 a bt e e b eeeb e s e e bt eeeh e e b eb e e ebeneeb e seebeseebennebennerea 77
122 @] 01 = 1o OSSO O SO SE T T SOU T OTORTSTPTOTORTPTURSRPRPTIN 77
1221 TranSMItter OPEFATIONc.eieeeiieeereeie sttt ettt s e et sttt 77
12.2.2 RECEIVEN OPEIELIONuetieeteeeteeete ettt sttt st b et st b et a et b et bt bbbt b et sbe e es 78
12.3 o0 o T (=0 =0T = o o 78
12.3. 1 LOOP BECK MOUE........ociiriiirerieieee ettt 79

e T2 0 = (0o o 1= 1= o) o S 79

150

13

14

15

16

124 S 0 1 1= £ TSSOSO PP TR TSSOV PR 79

1241 UART Dala REJISIENeeiieieeieieiereeeeteee sttt es e eae e srestesaesaessenseseeneeneeseeneeneseensenes 79

R N A U VAN IS = 1] L o 1 = 80

12.4.3 UART CONLrOl REGISLEN ..ottt 80

1244 UART SCElEf REJISIENcuiiiteieeieieete sttt sttt sttt et st st st b et b et 80
125 Vendor and deviCe IdENtITIErS. . ..ot 80
12.6 (00 la1 110 (U = 1Kol a 1] o]1]0] TS 8l
127 SIGNEAL TESCITPLIONS ...tttk b et a bbb bbbt b st b st b eb e seebeseebenbenennebea 81
12.8 Library depENAENCIEScc.oiiieieieete ettt et st st b e ettt b ettt 81
12.9 INSEBNTIALTON ... e et R et r et n e r e r et r et ne 81
GPTIMER - General Purpose Timer UNit........cccooereririiieieresie e 83
131 OVEIVIBIV ...ttt st b e st b ekt b et b e s e e b s ekt s ekt s e eb e s e e bt se e Rt s b e st et e bt se ek e seebeseebeneebenenben 83
13.2 L@ a7 = (o] o BTSSRSO 83
133 S 0 1 1= £ TSSOSO T TSSOV PRRP 84
134 Vendor and deViCe IdENTIES.....ooiiic bbb 85
135 CONFIQUIALTION OPLIONS.citiiteiie ettt st e e ae st ae b e besbesbebeseese et ebesbesbesbenbesbeseen 86
13.6 SIGNEAL HESCITPLIONS ...ttt b bt bbb b e st et eb e seebeseebennebennerea 86
13.7 Library depENAENCIEScc.oiv ittt et st st b et st b ettt 87
13.8 FgIS: = 1911 F= o] o PR RURUR T 87
GRGPIO - General PUrPOSE [/O POcuoiiiiieiereeeee et e 88
141 OVEIVIBIV ...ttt bttt e bbbt b e e b e s e e b s e bt s e b e seeb e s e e bt se e Rt s b e bt et e bt se ek e seebeseebeneebenenbens 88
14.2 1O a7 = (o] o FO USSR 88
14.3 S 0 1 1= £ TSSOSO T TSSOV PRRP 89
144 Vendor and deviCe IdENTIEIS. . ..ot 20
145 CONfIQUIALTION OPLIONS.citiiteite ettt ettt e et ae b besbesbebesbese et ebesbesaesbesbesbeseens Q0
14.6 SIGNEAL TESCITPLIONS ...ttt a bbb bt e et sb et b e s b e st b eb e seebesbebennebennenea 20
147 Library depENAENCIESc.oiiiiieeeteee ettt et e et b e st sttt bbbt 91
14.8 COMPONENE AECIAIALION.eiiteee ettt ettt ae b be s be b e be e et et enesbesbesbesbesbeseens 91
14.9 INSEBINEIALTON ...ttt bbb bbb bbbt bbbttt b et bt 91
APBPS2 - PS/2 keyboard with APB interface...........ccccevieviiieiicie e 92
151 F gL oo 1 (oo TSR 92
152 RECEIVES OPEIALION. ...ttt ettt et b et b e bt b e et b et b et b et bt bbbt st 92
153 TranSMItLEr OPEIAIONS.c.eiueeiieeireeesteer ettt ettt bbb e e b et et e e bt seebeseebeseene e 93
o R O oo Q0 1< 1= 1o USSR PRI 93
155 REGI SIEIS ettt h b bR bR R R R bt bt bbbt b e 94

1551 PSI2 DAAREGISIEN ...eiietiiecieieee bbb bbbt 94

1552 PS/2 SLBUS REGISIENcuieeiirieeiteesiee sttt ettt sttt ettt b e ettt nb e 95

1553 PS/2 CONLIrOl REGISIENoiiiiiteeiteeiteest ettt et s sttt b et 95

1554 PS2 Timer REIOA0 REJISIEN ..ottt 95
156 Vendor and deviCe idENtITIErS. . ..o 95
15.7 CONFIQUIALTION OPLIONS.citiitiite ettt ettt e et ae b besb e bebeseese et ebesbesbesbeneesbeseens 96
158 SIGNEAL TESCITPLIONS ...ttt ettt b bbbt b et b st b eb e seebeseebenbenennenea 96
159 Library depENAENCIEScc.oiiiieieete ettt et bbbttt b et b ettt 96
TN 1 01 = L= OSSR 96
1511 KEDOAIT SCAN COUBS.......eueuieitireeitieeertei et es et ss ettt b e b e b e b e b e bt s b e e bt se e bt beb e s eb e et e e b e e e ne e enn 98
15.12 Keyboard COMMENGS.cerietirieerieie sttt sttt seet st et sttt s et se et e seebeseebesaebeseebeseebeseenesbeneseenens 100
APBVGA - VGA controller with APB INterface..........covviiiririeieieesee e 102
16.1 INIEFOTUCTION ...ttt ettt bbbt b bbb e bt b e eb e b e enis 102
16.2 L@ o1 =[]0 o 102
16.3 REGISENS ...ttt bt et b b e e et et e et he Rt Rt ehe R e EesE e b en b e e et e Rt eh e e Rt eaeebenbeneeseenean 103

17

18

19

16.3.1 VGA DAAREGISIEN ...ttt bbb 103
16.3.2 VGA BaCKGroUNd COlOrcerueuerieiiriiirieirieisieesieis ettt 103
16.3.3 VGA FOreground COlOrccouireiuirieiirieiirieiis ettt et 103
16.4 Vendor and deviCe IdENtITIErS. . ..ot 103
16.5 (0ol p1 110 (U= Ko1)o]110] = 104
16.6 SIGNEAL TESCITPLIONS ...ttt ettt et b e et e a bbb a bt b et eb et 104
16.7 Library depeNAENCIESc.oovcuirieeiie ettt sttt 104
16.8 Fas = g L (Ko o SRRSO 104
AHBUART- AMBA AHB Seria Debug Interface..........cccvoveveveneeincese e 106
171 OVEIVIBIV ...ttt sttt b bt b et b s b e ekt e ke e ek e s e e b s e e bt e bR e e e bene e b et e be et e e beneees 106
17.2 L@ o1 10 o S 106
17.21 TranSMiSSiON PrOLOCOLeiuiruereerieeeeeeee ettt sttt e e ettt be bbb et e besee e e e e e e e eneseeban 106
17.2.2 BaUd rale QENEIAHONcveieeieieieeeie ettt be bt b see bt e e e e e e e e e s seebesaesaeseenean 107
17.3 LS 0 1 1= £ TSSOSO PRSPPI 107
17.4 Vendor and deviCe IdENtITIErS.t 108
175 CONfIQUIALTION OPLIONS.itiie ettt et eb et bbb se e b e et b e b e bt sbesbesbeseeneebesbesaeseenean 108
17.6 SIGNEAL TESCITPLIONS ...ttt ettt b ettt b e et s b e bbb et e b e et et ee 108
17.7 Library depeNAENCIESc.oovcuirieiiree bbbt sttt 108
17.8 INSEBNEIAETON ...ttt bbb b e b e b e eb e bbb bt e n e 108
AHBJTAG - JTAG Debug Link with AHB Master Interface.........cccoovevivvceeveeieseeseceenns 110
18.1 OVEIVIBIV ...ttt b et b ekt b et b se b e se ekt e b e e ke se e b s e e b e e e b e e e b e st e b e neebene et e et e e es 110
18.2 L@ a7 = (o] o FO TP 110
18.2.1 TranSMiSSiON PrOLOCOLeiuirueriereeeeeeieee ettt sttt e e ettt ebe b besbe st b seesee e e e e e eaesaeeas 110
18.3 LS 0 1 1= £ TSSOSO PR ORI 111
18.4 Vendor and deviCe idENtIfIErS. 111
185 (60101110 01¢= (Lo ale o1 L0] 4NN OO 111
18.6 SIGNEAL TESCITPLIONS ...ttt ettt b e e b e bbbt bbb bt e st be e b e b 112
18.7 Library depeNAENCIESc.oovcuirieiire ettt 112
18.8 INSEBNEIAETON ...ttt b e b e b e b e bt b e bt e bbbt e bt e 112
GRETH - Ethernet Media Access Controller (MAC) with EDCL SUppOrt.........ccoceverennens 114
19.1 (@Y7 V=Y 114
19.2 L@ a7 = Lo] o O TRP 114
19.2. 1 SYSLOIM OVEIVIEW ...ttt sttt e be b e b e e b e e e e e e e ese et e ne et e nbesaeseenbas 114
19.2.2 ProtOCOl SUPPOITcucuiuiiiiiri it e s bbb 115
19.2.3 HardWare FeQUIFEIMENES.ccueuereeeeeeierese st s teseeseeseeseesee e esesbessesaesbesbessessensenee e eneesesnesaesreeas 115
193 TX DMA INEEITAOE ..ottt b e et b e bt e b et b et srene 115
19.3.1 SEtting UP @ AESCIILON. ...cuviueeeieetieeteiet ettt 115
19.3.2 SEArting trANSMISSIONScuieeeeerteerie ittt b et a ettt b b 116
19.3.3 Descriptor handling after tranSMiSSIONcoueerieirieireereese e 116
19.3.4 Setting up the data for tranSMISSION.........c.couciiiirieee e 117
194 [DY VN T 01 (= = = 117
19.4.1 SEtting UP AESCIIPLOIS. ...cuvviieeireeierieicrie ittt 117
RS S v 14 (] 0o (== o o] SOOI 117
19.4.3 Descriptor handling after reCEPioNcoeiieirieirieerr e 118
19.4.4 Reception With AHB EITOISccoueiiiiiiiirie et 118
195 MDIO INEEITACEeceeeitertet ettt bbbttt b bk st e bbbt ettt ne e 118
19.6 Ethernet Debug Communication LinkK (EDCL)cccciririririiniieieiesesesesesis e 119
FO.6. 1 OPEIBIION.ceiueeeuereeirt ettt ettt bbbt b st a et e b et b e e b e e bbb e e bt et e b 119
19.6.2 EDCL PIrOtOCOIScviuitieitieeetiesteest ettt ettt sttt sttt eb et 119
19.7 Media lNdependent INTEITACES........c.ce it re e e sreenee e eeesnean 120
19.8 SOFIWEIE UIVELS ...ttt b bbbt b e e b e b et b e b b 120
19.9 LS 0 1 1= £ TSSOSO PSP OT PP 121

152

20

19.10 Vendor and deViCe IdENTITIENS.cco it 123
19.11 ConfigUuration OPLIONS.ccitiuerieirieristeertees ettt et ettt b et et e e et s bese st e e saebeseesesbenesaenens 124
19.12 SigNal GESCIIPLIONS ...c.vvereiirreeerree ettt r et r e r e r e st r e e r e e e r e nnesenrenenrenens 125
19.13 Library dependenCiesccoeeieirieierieiiieesteie sttt ettt b e b et b e e bbb et r et nnene 125
S | 0 =T (= 1 o] o OO PTSTTRN 125
GRLIB wrapper for OpenCores CAN INterface Core........ooouviereriineenenieneesesee e 127
20.1 L@ oV TSR 127
20.2 Opencores CAN CONIOHEr OVEIVIEWc.ciueirieiirieiriee ettt sttt st s st 127
20.3 AHB INEITACE. ..o et 127
204 BASICCAN IMOOE........ceitieeieieeirt ettt s bbbt b et b et b et b e e bt b et et 128
20.4.1 BaSiCCAN IEgiSIEr MBI ...ceouiieeirietirieerie ettt bbbt 128
20.4.2 CONIOl FEOISIEN ...vieeteeete ettt sttt ettt se st ettt b e s bt e bt b bt se b se bt s b b et es 128
20.4.3 COMMANG FEGISIEN ...ttt sttt ettt b e et e b e b bt s et e bt e b e b 129
20,44 SEBIUS TEOISIEN ...ttt sttt ettt sttt ettt e bbbt et et b st b et bbbt e b et 130
20.4.5 INEEITUPL FEOISLENeieiteieete ettt sttt ettt b e et b e bt e b e b e et e b 130
20.4.6 TranSMIt DUFFENc.oiiieece et 131
20.4.7 RECAIVEDUITEN ...oi ittt bbbt ettt 131
20.4.8 ACCEPLANCE FIITEN ...ttt bbb et 131
20.5 PEIICAN MOOE ...ttt bbbt b et bbbkt skt sttt eee 132
20.5.1 PeliCAN regiSter Macociuieeierietereee ettt sttt et sttt e sae e es 132
20.5.2 MOOE TEQISIEN ..ottt sttt sttt st sttt et s b et bt et es 133
20.5.3 COMMEANA FEGISIEN ... ocuiieieeeteeete ettt sttt et e st e et s b e ettt s 133
AN S = (Y (= o 1 [SO 134
20.5.5 INEITUPDL FEOISLENeeite ettt ettt sttt sttt sttt sttt st st et et es 134
20.5.6 INterrupt eNaAbIE FEQISIENc.eiiiiree ettt 135
20.5.7 Arbitration [0St CAPLUrE FEGISLENcireeeirieierietereete ettt s e 135
20.5.8 Error COe CapLUre FEOISLENccceuiietereeierirterestee sttt ettt sttt st st b 135
20.5.9 Error warning limit FEJISIENcoiiieieeerreree e et 136
20.5.10 RX error counter register (A0AreSS 14)... ..o veireiireinieeriee et e e 136
20.5.11 TX error counter register (BAAreSS 15)covieireririeiinieieree e 136
20.5.12 TranSmMit DUFFEN ..o ettt st 137
20.5.13 RECEIVE DUFFEN ..ottt bbbt ettt 139
20.5.14 ACCEPLANCE FIILEN ..ottt et 140
20.5.15 RX MESSAGE COUMLESveueiueiueetiriestesrissesseseeseeseeseeseesesressesseses e s eseesessesssareabesnese e s enne s enesnenen 142
20.6 1000010070 g L= o T = SRR 142
20.6.1 ClOCK QiVIAEr FEQISLENc.eiieeeeeeierie ettt sttt r ettt sttt a bbb e se et e e e eaeseeean 143
20.6.2 BUSTIMING Ottt ettt ettt et b e s st s b et e b se et e b e e e e enenbesaeseenean 143
20.6.3 BUSTIMING L...ooeiiiiiiieie ettt sttt sttt e et eea e bt b b e bese et et e e e e enenbesaeseenean 143
20.7 DESIGN CONSIABIBLIONS.......eeueeviieteeeteiete ettt es ettt bbb b e b e bbb e et be et beneees 144
20.8 VeNdor and AEVICE IHENEITIEIS.........iceecee ettt esre s et e s sbe s saes et e e sreesneas 144
20.9 160101110 0]¢= (Lo alo o1 L0] o N OSSR 144
20.10 SIgNA OESCIIPLIONScueviueetesieteeetee ettt ettt b e bbb e bt se e bt se bt se b e e eb e e eb e ss e st s e eb e s b e s eb e s en e e enis 145
20.11 Library depenaenCiES ..ottt ettt se ettt b e n e 145
20.12 COMPONENE AECIAIALION. ... ceeeeeeeieeieete ettt ettt sttt ae b e sbe s be b e e e e e et ebesbesaesee e es 145

Information furnished by Gaisler Research is believed to be accurate and reliable.

However, no responsibility is assumed by Gaisler Research for its use, nor for any infringements of patents or
other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of Gaisler Research.

Gaisler Researchtel +46 31 7758650

Forsta Langgatan 19fax +46 31 421407 = L o
L | ____-
413 27 Goteborgsales@gaisler.com :-._E :2 I

SGAISLER RESEARCH

Sweden www.gaisler.com

Copyright © 2006 Gaisler Research AB.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither
implicit nor explicit.

http://www.gaisler.com

	1 Introduction
	1.1 Scope
	1.2 Requirements
	1.3 GR-XC3S-1500 board
	1.4 Reference documents

	2 Architecture
	2.1 Overview
	2.2 LEON3 SPARC V8 processor
	2.3 Memory interfaces
	2.4 AHB status register
	2.5 SpaceWire links
	2.6 Timer unit
	2.7 Interrupt controller
	2.8 UART
	2.9 General purpose I/O port
	2.10 Ethernet
	2.11 CAN-2.0
	2.12 VGA controller
	2.13 PS/2 keyboard interface
	2.14 Clock generator
	2.15 GRLIB IP Cores
	2.16 Interrupts
	2.17 Memory map
	2.18 Signals
	2.19 CAN signals

	3 Simulation and synthesis
	3.1 Design flow
	3.2 Installation
	3.3 Template design overview
	3.4 Configuration
	3.5 Simulation
	3.6 Synthesis and place&route
	3.7 Board re-programming

	4 Software development
	4.1 Tool chains
	4.2 Downloading software to the target system
	4.3 Flash PROM programming
	4.4 RTEMS spacewire driver and demo program

	5 LEON3 - High-performance SPARC V8 32-bit Processor
	5.1 Overview
	5.1.1 Integer unit
	5.1.2 Cache sub-system
	5.1.3 Floating-point unit and co-processor
	5.1.4 Memory management unit
	5.1.5 On-chip debug support
	5.1.6 Interrupt interface
	5.1.7 AMBA interface
	5.1.8 Power-down mode
	5.1.9 Multi-processor support
	5.1.10 Performance

	5.2 LEON3 integer unit
	5.2.1 Overview
	5.2.2 Instruction pipeline
	5.2.3 SPARC Implementor’s ID
	5.2.4 Divide instructions
	5.2.5 Multiply instructions
	5.2.6 Multiply and accumulate instructions
	5.2.7 Hardware breakpoints
	5.2.8 Instruction trace buffer
	5.2.9 Processor configuration register
	5.2.10 Exceptions
	5.2.11 Single vector trapping (SVT)
	5.2.12 Address space identifiers (ASI)
	5.2.13 Power-down
	5.2.14 Processor reset operation
	5.2.15 Multi-processor support
	5.2.16 Cache sub-system

	5.3 Instruction cache
	5.3.1 Operation
	5.3.2 Instruction cache tag

	5.4 Data cache
	5.4.1 Operation
	5.4.2 Write buffer
	5.4.3 Data cache tag

	5.5 Additional cache functionality
	5.5.1 Cache flushing
	5.5.2 Diagnostic cache access
	5.5.3 Cache line locking
	5.5.4 Local instruction ram
	5.5.5 Local scratch pad ram
	5.5.6 Cache Control Register
	5.5.7 Cache configuration registers
	5.5.8 Software consideration

	5.6 Memory management unit
	5.6.1 ASI mappings
	5.6.2 Cache operation
	5.6.3 MMU registers
	5.6.4 Translation look-aside buffer (TLB)

	5.7 Floating-point unit and custom co-processor interface
	5.7.1 Gaisler Research’s floating-point unit (GRFPU)
	5.7.2 GRFPU-Lite
	5.7.3 The Meiko FPU
	5.7.4 Generic co-processor

	5.8 Vendor and device identifers
	5.9 Synthesis and hardware
	5.9.1 Area and timing
	5.9.2 Technology mapping
	5.9.3 Double clocking

	5.10 Configuration options
	5.11 Signal descriptions
	5.12 Library dependencies
	5.13 Component declaration

	6 GRFPU - High-performance IEEE-754 Floating-point unit
	6.1 Overview
	6.2 Functional description
	6.2.1 Floating-point number formats
	6.2.2 FP operations
	6.2.3 Exceptions
	6.2.4 Rounding
	6.2.5 Denormalized numbers
	6.2.6 Non-standard Mode
	6.2.7 NaNs

	6.3 Signal descriptions
	6.4 Timing

	7 GRFPC - GRFPU Control Unit
	7.1 Floating-Point register file
	7.2 Floating-Point State Register (FSR)
	7.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

	8 DSU3 - LEON3 Hardware Debug Support Unit
	8.1 Overview
	8.2 Operation
	8.3 AHB Trace Buffer
	8.4 Instruction trace buffer
	8.5 DSU memory map
	8.6 DSU registers
	8.6.1 DSU control register
	8.6.2 DSU Break and Single Step register
	8.6.3 DSU Debug Mode Mask Register
	8.6.4 DSU trap register
	8.6.5 Trace buffer time tag counter
	8.6.6 DSU ASI register
	8.6.7 AHB Trace buffer control register
	8.6.8 AHB trace buffer index register
	8.6.9 AHB trace buffer breakpoint registers
	8.6.10 Instruction trace control register

	8.7 Vendor and device identifiers
	8.8 Configuration options
	8.9 Signal descriptions
	8.10 Library dependencies
	8.11 Component declaration
	8.12 Instantiation

	9 IRQMP - Multiprocessor Interrupt Controller
	9.1 Overview
	9.2 Operation
	9.2.1 Interrupt prioritization
	9.2.2 Processor status monitoring

	9.3 Registers
	9.3.1 Interrupt level register
	9.3.2 Interrupt pending register
	9.3.3 Interrupt force register (NCPU = 0)
	9.3.4 Interrupt clear register
	9.3.5 Multiprocessor status register
	9.3.6 Processor interrupt mask register
	9.3.7 Processor interrupt force register (NCPU > 0)

	9.4 Vendor and device identifiers
	9.5 Configuration options
	9.6 Signal descriptions
	9.7 Library dependencies
	9.8 Instantiation

	10 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller
	10.1 Overview
	10.2 PROM access
	10.3 Memory mapped I/O
	10.4 SRAM access
	10.5 8-bit and 16-bit PROM and SRAM access
	10.6 Burst cycles
	10.7 8- and 16-bit I/O access
	10.8 SDRAM access
	10.8.1 General
	10.8.2 Address mapping
	10.8.3 Initialisation
	10.8.4 Configurable SDRAM timing parameters

	10.9 Refresh
	10.9.1 SDRAM commands
	10.9.2 Read cycles
	10.9.3 Write cycles
	10.9.4 Address bus connection
	10.9.5 Data bus
	10.9.6 Clocking

	10.10 Using bus ready signalling
	10.11 Access errors
	10.12 Attaching an external DRAM controller
	10.13 Registers
	10.13.1 Memory configuration register 1 (MCFG1)
	10.13.2 Memory configuration register 2 (MCFG2)
	10.13.3 Memory configuration register 3 (MCFG3)

	10.14 Vendor and device identifiers
	10.15 Configuration options
	10.16 Signal descriptions
	10.17 Library dependencies
	10.18 Instantiation

	11 AHBSTAT - AHB Status Registers
	11.1 Overview
	11.2 Operation
	11.3 Registers
	11.4 Vendor and device identifiers
	11.5 Configuration options
	11.6 Signal descriptions
	11.7 Library dependencies
	11.8 Instantiation

	12 APBUART - AMBA APB UART Serial Interface
	12.1 Overview
	12.2 Operation
	12.2.1 Transmitter operation
	12.2.2 Receiver operation

	12.3 Baud-rate generation
	12.3.1 Loop back mode
	12.3.2 Interrupt generation

	12.4 Registers
	12.4.1 UART Data Register
	12.4.2 UART Status Register
	12.4.3 UART Control Register
	12.4.4 UART Scaler Register

	12.5 Vendor and device identifiers
	12.6 Configuration options
	12.7 Signal descriptions
	12.8 Library dependencies
	12.9 Instantiation

	13 GPTIMER - General Purpose Timer Unit
	13.1 Overview
	13.2 Operation
	13.3 Registers
	13.4 Vendor and device identifiers
	13.5 Configuration options
	13.6 Signal descriptions
	13.7 Library dependencies
	13.8 Instantiation

	14 GRGPIO - General Purpose I/O Port
	14.1 Overview
	14.2 Operation
	14.3 Registers
	14.4 Vendor and device identifiers
	14.5 Configuration options
	14.6 Signal descriptions
	14.7 Library dependencies
	14.8 Component declaration
	14.9 Instantiation

	15 APBPS2 - PS/2 keyboard with APB interface
	15.1 Introduction
	15.2 Receiver operation
	15.3 Transmitter operations
	15.4 Clock generation
	15.5 Registers
	15.5.1 PS/2 Data Register
	15.5.2 PS/2 Status Register
	15.5.3 PS/2 Control Register
	15.5.4 PS/2 Timer Reload Register

	15.6 Vendor and device identifiers
	15.7 Configuration options
	15.8 Signal descriptions
	15.9 Library dependencies
	15.10 Instantiation
	15.11 Keboard scan codes
	15.12 Keyboard commands

	16 APBVGA - VGA controller with APB interface
	16.1 Introduction
	16.2 Operation
	16.3 Registers
	16.3.1 VGA Data Register
	16.3.2 VGA Background Color
	16.3.3 VGA Foreground Color

	16.4 Vendor and device identifiers
	16.5 Configuration options
	16.6 Signal descriptions
	16.7 Library dependencies
	16.8 Instantiation

	17 AHBUART- AMBA AHB Serial Debug Interface
	17.1 Overview
	17.2 Operation
	17.2.1 Transmission protocol
	17.2.2 Baud rate generation

	17.3 Registers
	17.4 Vendor and device identifiers
	17.5 Configuration options
	17.6 Signal descriptions
	17.7 Library dependencies
	17.8 Instantiation

	18 AHBJTAG - JTAG Debug Link with AHB Master Interface
	18.1 Overview
	18.2 Operation
	18.2.1 Transmission protocol

	18.3 Registers
	18.4 Vendor and device identifiers
	18.5 Configuration options
	18.6 Signal descriptions
	18.7 Library dependencies
	18.8 Instantiation

	19 GRETH - Ethernet Media Access Controller (MAC) with EDCL support
	19.1 Overview
	19.2 Operation
	19.2.1 System overview
	19.2.2 Protocol support
	19.2.3 Hardware requirements

	19.3 Tx DMA interface
	19.3.1 Setting up a descriptor.
	19.3.2 Starting transmissions
	19.3.3 Descriptor handling after transmission
	19.3.4 Setting up the data for transmission

	19.4 Rx DMA interface
	19.4.1 Setting up descriptors
	19.4.2 Starting reception
	19.4.3 Descriptor handling after reception
	19.4.4 Reception with AHB errors

	19.5 MDIO Interface
	19.6 Ethernet Debug Communication Link (EDCL)
	19.6.1 Operation
	19.6.2 EDCL protocols

	19.7 Media Independent Interfaces
	19.8 Software drivers
	19.9 Registers
	19.10 Vendor and device identifiers
	19.11 Configuration options
	19.12 Signal descriptions
	19.13 Library dependencies
	19.14 Instantiation

	20 GRLIB wrapper for OpenCores CAN Interface core
	20.1 Overview
	20.2 Opencores CAN controller overview
	20.3 AHB interface
	20.4 BasicCAN mode
	20.4.1 BasicCAN register map
	20.4.2 Control register
	20.4.3 Command register
	20.4.4 Status register
	20.4.5 Interrupt register
	20.4.6 Transmit buffer
	20.4.7 Receive buffer
	20.4.8 Acceptance filter

	20.5 PeliCAN mode
	20.5.1 PeliCAN register map
	20.5.2 Mode register
	20.5.3 Command register
	20.5.4 Status register
	20.5.5 Interrupt register
	20.5.6 Interrupt enable register
	20.5.7 Arbitration lost capture register
	20.5.8 Error code capture register
	20.5.9 Error warning limit register
	20.5.10 RX error counter register (address 14)
	20.5.11 TX error counter register (address 15)
	20.5.12 Transmit buffer
	20.5.13 Receive buffer
	20.5.14 Acceptance filter
	20.5.15 RX message counter

	20.6 Common registers
	20.6.1 Clock divider register
	20.6.2 Bus timing 0
	20.6.3 Bus timing 1

	20.7 Design considerations
	20.8 Vendor and device identifiers
	20.9 Configuration options
	20.10 Signal descriptions
	20.11 Library dependencies
	20.12 Component declaration

