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1 Introduction

1.1 Scope

This document describes a LEON3 template design customized for the GR-XC3S-1500 FPGA devel-
opment board. The template design is intended to familiarize users with the LEON3 processor and the
GRLIP IP library. 

1.2 Requirements

The following hardware and software components are required in order to use and implement the GR-
XC3S-1500 LEON3 template design:

• GRLIB IP Library 1.0.8

• PC work station with Linux or Windows 2000/XP with Cygwin

• GR-XC3S-1500 board with JTAG programming cable

• Xilinx ISE 7.1.04i Development software (WebPack or Regular Edition)

• Synplicity Synplify 8.4 or higher (optional).

For LEON3 software development, the following tools are recommended

• BCC Bare-C LEON Cross-compiler 1.0.24

• RCC RTEMS ERC32/LEON Cross-compiler system 1.0.12

1.3 GR-XC3S-1500 board

The GR-XC3S-1500 board is developed by Pender Electronic Design (CH), and provides a flexible
and low-cost prototype platform for LEON systems. The GR-XC3S-1500 board has the following
features:

• Xilinx Spartan3 XC3S-1500-4 FPGA

• 8 Mbyte flash prom (8Mx8) and 64 Mbyte SDRAM (16Mx32)

• Two RS-232 interfaces

• USB-2.0 PHY

• 10/100 Mbit/s ethernet PHY

• Two PS/2 interfaces

• VGA video DAC and 15-pin connector

• JTAG interface for programming and debug

• 4x20 pin expansion connectors
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1.4 Reference documents

The LEON3 template design is based on GRLIB, and uses the GRLIP AMBA plug&play configura-
tion method. The following manuals should therefore be carefully studied in order to understand the
design concept:

• GRLIB User’s Manual 1.0.8

• AMBA Specification 2.0

• GRLIB IP Core’s Manual

GR-XC3S-1500 Development Board
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2 Architecture

2.1 Overview

The LEON3 GR-XC3S-1500 template design consists of the LEON3 processor and a set of IP cores
connected through the AMBA AHB/APB buses.

The design is centered around the AMBA Advanced High-Speed bus (AHB), to which the LEON3
processor and other high-bandwidth devices are connected. External memory is accessed through a
combined PROM/IO/SRAM/SDRAM memory controller. The on-chip peripheral devices include
three SpaceWire links, ethernet 10/100 Mbit MAC, dual CAN-2.0 interface, serial and JTAG debug
interfaces, two UARTs, interrupt controller, timers and an I/O port. The design is highly configurable,
and the various features can be suppressed if desired.

Most parts of the design is provided in source code under the GNU GPL license. The exception is the
floating-point unit (GRFPU-Lite) and the SpaceWire core, which are only available under a commer-
cial license. For evaluation and prototyping, suitable netlists for the GR-XC3S-1500 board are pro-
vided. The netlists will automatically be included in the design during place&route.

The LEON3 processors and associated IP cores also exist in a fault-tolerant (FT) version. The FT
cores detects and removes SEU errors due to cosmic radiation, and are particularly suitable for sys-
tems that operate in the space environment. The FT version of LEON3 and GRLIB is only licensed
commercially, please contact Gaisler Research for further details.

Figure 1.  LEON3 template design block diagram
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2.2 LEON3 SPARC V8 processor

The template design is based the LEON3 SPARC V8 processor. The processor core can be extensively
configured through the xconfig graphical configuration program. In the default configuration, the
cache system consists or 8 + 4 Kbyte I/D cache with cache snooping enabled. The LEON3 debug sup-
port unit (DSU3) is also enabled by default, allowing downloading and debugging of programs
through a serial port or JTAG.

2.3 Memory interfaces

The external memory is interfaced through a combined PROM/IO/SRAM/SDRAM memory control-
ler core (MCTRL). The GR-XC3S-1500 board provides 8 Mbyte flash PROM and 64 Mbyte
SDRAM, and the SRAM and I/O signals are available on the extension connectors.

2.4 AHB status register

The AHB status register captures error responses on the AHB bus, and lock the failed address and
active master. These values allows the software to recover from error events in the system.
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Figure 2.  LEON3 processor core block diagram
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2.5 SpaceWire links

The template design can be configured with up to three SpaceWire links. Each link is controlled sepa-
rately through the APB bus, and transfers received and transmitted data through DMA transfer on
AHB. The SpaceWire links can also optionally be configured with RMAP support in hardware.

2.6 Timer unit

The timer unit consists of a common scaler and up to 7 individual timers. The timers can work in peri-
odical or on-shot mode. One of the timers can optionally be configured as a watchdog.

2.7 Interrupt controller

The interrupt controller handles up to 15 interrupts in two priority levels. The interrupt are automati-
cally assigned and routed to the controller through the use of the GRLIB plug&play system.

2.8 UART

One or two UARTs can be configured in the design. The UART have configurable FIFO sizes, and
have separate baud rate generators.

2.9 General purpose I/O port

A general purpose I/O port (GPIO) is provided in the design. The port can be 1 - 32 bits wide, and
each bit can be dynamically configured as input or output. The GPIO can also generate interrupts
from external devices.

2.10 Ethernet

An ethernet MAC can be enabled. The MAC supports 10/100 Mbit operation is half-or full duplex.
An ethernet based debug interface (EDCL) can optionally also be enabled.

2.11 CAN-2.0

One or two CAN-2.0 interfaces can be enabled. This interface is based on the CAN core from Open-
cores, with some additional improvements.

2.12 VGA controller

A text-based video controller can optionally be enabled. The controller can display a 80x48 character
screen on a 640x480 monitor.

2.13 PS/2 keyboard interface

A PS/2 keyboard interface can optionally be enabled. It provides the scan codes from a regular key-
board, and has a 16 byte FIFO.

2.14 Clock generator

The portable clock generator core is used to generate the processor and synchronized SDRAM clock.
The clock generator can generate an arbitrary frequency by multiplying and dividing the 50 MHz
board clock. The clock scaling factor is configurable through the xconfig tool.
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2.15 GRLIB IP Cores

The design is based on the IP cores from the GRLIB IP library shown in table 1.

2.16 Interrupts

The following table indicates the interrupt assignment:

See the manual of the respective core for how and when the interrupts are raised. All interrupts are
forwarded to the LEON3 processor, through the IRQMP interrupt controller.

Table 1. Used IP cores

Core Function Vendor Device

LEON3 LEON3 SPARC V8 32-bit processor 0x01 0x003

DSU3 LEON3 Debug support unit 0x01 0x004

IRQMP LEON3 Interrupt controller 0x01 0x00D

APBCTRL AHB/APB Bridge 0x01 0x006

MCTRL 32-bit PROM/SRAM/SDRAM controller 0x04 0x00F

AHBSTAT AHB failing address register 0x01 0x052

AHBUART Serial/AHB debug interface 0x01 0x007

AHBJTAG JTAG/AHB debug interface 0x01 0x01C

APBUART 8-bit UART with FIFO 0x01 0x00C

GPTIMER Modular timer unit with watchdog 0x01 0x011

GRGPIO General purpose I/O port 0x01 0x01A

GRSPW SpaceWire link 0x01 0x01F

ETH_OC 10/100 Mbit/s Ethernet MAC 0x01 0x01D

CAN_MC Multi-core CAN 2.0 interface 0x01 0x019

APBPS2 PS/2 Mouse/Keyboard interface 0x01 0x060

APBVGA Text-based VGA controller 0x01 0x061

Table 2. Interrupt assignment

Core Interrupt

APBUART1 2

APBUART2 3

APBPS2 5

AHBSTAT 7

GPTIMER 8, 9

GRSPW 1, 2, 3 10, 11, 12

ETH_OC 12

CAN 13, 14
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2.17 Memory map

The memory map of the AHB bus can be seen below:

Access to addresses outside the ranges described above will return an AHB error response. The
detailed register layout is defined in the manual for each IP core. The control registers of most on-chip
peripherals are accessible via the AHB/APB bridge, which is mapped at address 0x80000000.

The address of the on-chip peripherals is defined through the AMBA plug&play configuration, and
can be changed by editing the top level design (leon3mp.vhd). 

2.18 Signals

The template design has the following external signals.

Table 3. AHB address range and bus indexes

Core Address range Bus Index

MCTRL 0x00000000 - 0x20000000 : PROM area

0x20000000 - 0x40000000 : I/O area

0x40000000 - 0x80000000 : SRAM/SDRAM area

0

APBCTRL 0x80000000 - 0x81000000 : APB bridge 1

DSU3 0x90000000 - 0xA0000000 : Registers 2

ETH_OC 0xFFFB0000 - 0xFFFB1000 : Registers 5

CAN_MC 0xFFFC0000 - 0xFFFC1000 : Registers 4

AHB plug&play 0xFFFFF000 - 0xFFFFFFFF : Registers -

Table 4. APB address range and bus indexes

Core Address range Bus Index

MCTRL 0x80000000 - 0x80000100 0

APBUART 0x80000100 - 0x80000200 1

IRQMP 0x80000200 - 0x80000300 2

GPTIMER 0x80000300 - 0x80000400 3

APBPS2 0x80000500 - 0x80000600 5

APBVGA 0x80000600 - 0x80000700 6

AHBUART 0x80000700 - 0x80000800 7

GRGPIO 0x80000800 - 0x80000900 8

GRSPW 1 0x80000A00 - 0x80000B00 12

GRSPW 2 0x80000B00 - 0x80000C00 13

GRSPW 3 0x80000D00 - 0x80000E00 14

AHBSTAT 0x80000F00 - 0x80001000 15

APB plug&play 0x800FF000 - 0x80100000 -

Table 5. Signals

Name Usage Direction Polarity

CLK Main system clock (50 MHz) In -

CLK3 Ethernet clock (25 MHz) In -
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RESETN System reset In Low

PLLREF Feedback for SDRAM clock generation In -

ERRORN Processor error mode indicator Out Low

ADDRESS[21:2] Memory word address Out High

DATA[31:0] Memory data bus BiDir High

RAMSN[3:0] SRAM chip selects Out Low

RAMOEN[3:0] SRAM output enable Out Low

RWEN[3:0] SRAM write enable strobe Out Low

OEN Output enable Out Low

WRITEN Write strobe Out Low

BRDYN Bus ready In Low

ROMSN[1:0] PROM chip select Out Low

IOSN I/O area chip select Out Low

READ Read cycle indicator Out High

SDCLK SDRAM Clock Out -

SDCSN[1:0] SDRAM chip select Out Low

SDWEN SDRAM write enable Out Low

SDRASN SDRAM row address select Out Low

SDCASN SDRAM column address select Out Low

SDDQM[3:0] SDRAM Data qualifier Out Low

DSUEN DSU Enable In High

DSUBRE DSU Break In High

DSUACT DSU Active Out High

TXD1 UART transmit data Out Low

RXD1 UART 1 receive data In Low

RTSN1 UART 1 ready to send Out Low

CTSN1 UART 1 clear to send In Low

TXD2 UART 2 transmit data Out Low

RXD2 UART 2 receive data In Low

RTSN2 UART 2 ready to send Out Low

CTSN2 UART 2 clear to send In Low

PIO[15:0] General purpose I/O port BiDir High

TCK JTAG clock In High

TMS JTAG strobe In High

TDI JTAG data in In High

TDO JTAG data out Out High

Table 5. Signals

Name Usage Direction Polarity
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The mapping of the signals to the FPGA pins is provided in the leon3mp.ucf file. The .ucf file also
includes placement constraints for the SDRAM clock manager (DCM) and the SpaceWire clock re-
generation logic. The SpaceWire signals are mapped on the J13 connector, using balanced PCB traces
to minimize skew. See the GR-XC3S-1500 manual and schematics for details.

2.19 CAN signals

The CAN interface signals are mapped on the 16-bit GPIO port (PIO[15:0]). When one or more CAN
interfaces are enabled in the configuration, the CAN signal will replace certain PIO signals, as defined
in the table below.

Table 6. SpaceWire signals

Name Usage Direction Polarity

SPW_RXDP[0:2]

SPW_RXDN[0:2]

SpaceWire receiver data LVDS pair In -

SPW_RXSP[0:2]

SPW_RXSN[0:2]

SpaceWire receiver strobe LVDS pair In -

SPW_TXDP[0:2]

SPW_RXDN[0:2]

SpaceWire transmitter data LVDS pair Out -

SPW_TXSP[0:2]

SPW_RXSN[0:2]

SpaceWire transmitter strobe LVDS pair Out -

Table 7. CAN signals

Name Usage Direction PIO

CAN_TXD1 CAN core 1 transmit Out PIO[5]

CAN_RXD1 CAN core 1 receive In PIO[4]

CAN_TXD2 CAN core 2 transmit Out PIO[2]

CAN_RXD2 CAN core 2 receive In PIO[1]
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3 Simulation and synthesis

3.1 Design flow

Configuring and implementing the LEON3 template design on the GR-XC3S-1500 board is done in
three basic steps:

• Configuration of the design using xconfig

• Simulation of design and test bench (optional)

• Synthesis and place&route

The template design is based on the GRLIB IP library, and all implementation step are described in
detailed in the ‘GRLIB IP Library User’s Manual’. The following sections will summarize these steps,
but will not provide a exhaustive description.

3.2 Installation

The template design is distributed together with the GRLIP IP library. The library is provided as a
gzipped tar file, which should be extracted as follows:

tar xzf grlib-eval-1.0.8.tar.gz

The will create a directory called grlib-eval-1.0.4, containing all IP cores an template designs. On
windows hosts, the extraction and all further steps should be made inside a Cygwin shell.

3.3 Template design overview

The template design is located in grlib-1.0.8/designs/leon3-gr-xc3s-1500, and is based on three files:

• config.vhd - a VHDL package containing design configuration parameters. Automatically gener-
ated by the xconfig GUI tool.

• leon3mp.vhd - contains the top level entity and instantiates all on-chip IP cores. It uses con-
fig.vhd to configure the instantiated IP cores.

• testbench.vhd - test bench with external memory, emulating the GR-XC3S-1500 board.

Each core in the template design is configurable using VHDL generics. The value of these generics is
assigned from the constants declared in config.vhd, created with the xconfig GUI tool.

3.4 Configuration

Configuration of the template design is done by issuing the ‘make xconfig’ command in the design
directory. This will launch the xconfig GUI tool. When the configuration is saved and xconfig is
exited, the config.vhd is automatically updated with the selected configuration:

Figure 4.  Xconfig GUI
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3.5 Simulation

The template design can be simulated in a test bench that emulates the prototype board. The test bench
includes external PROM and SDRAM which are pre-loaded with a test program. The test program
will execute on the LEON3 processor, and test various functionality in the design. The test program
will print diagnostics on the simulator console during the execution.

The following command should be give to compile and simulate the template design and test bench:

make vsim
vsim testbench

A typical simulation log can be seen below.

$ vsim testbench

VSIM 1> run -a
# LEON3 GR-XC3S-1500 Demonstration design
# GRLIB Version 1.0.4
# Target technology: spartan3,  memory library: spartan3
# ahbctrl: mst0: Gaisler Research        Leon3 SPARC V8 Processor
# ahbctrl: mst1: Gaisler Research        AHB Debug UART
# ahbctrl: mst2: Gaisler Research        JTAG Debug Link
# ahbctrl: slv0: European Space Agency   Leon2 Memory Controller
# ahbctrl:       memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mbyte
# ahbctrl:       memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv2: Gaisler Research        Leon3 Debug Support Unit
# ahbctrl:       memory at 0x90000000, size 256 Mbyte
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area at 0xfff00000, 1 Mbyte
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memory Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research        Generic UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research        Multi-processor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research        Modular Timer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv7: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000700, size 256 byte
# apbctrl: slv8: Gaisler Research        General Purpose I/O port
# apbctrl:       I/O ports at 0x80000800, size 256 byte
# apbctrl: slv15: Gaisler Research        AHB Status Register
# apbctrl:       I/O ports at 0x80000f00, size 256 byte
# ahbstat15: AHB status unit rev 0, irq 7
# grgpio8: 18-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
# apbuart1: Generic UART rev 1, fifo 8, irq 2
# ahbjtag AHB Debug JTAG rev 0
# ahbuart7: AHB Debug UART rev 0
# dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte
# clkgen_virtex2: virtex-2 sdram/pci clock generator, version 1
# clkgen_virtex2: Frequency 50000 KHz, DCM divisor 4/5
#
# **** GRLIB system test starting ****
# Leon3 SPARC V8 Processor
#   register file
#   multiplier
#   cache system
# Multi-processor Interrupt Ctrl.
# Generic UART
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# Modular Timer Unit
# Test passed, halting with IU error mode
#
# ** Failure: *** IU in error mode, simulation halted ***
#    Time: 1009488500 ps  Iteration: 0  Process: /testbench/iuerr File: testbench.vhd
# Break at testbench.vhd line 264
# Stopped at testbench.vhd line 264
VSIM 2> 

The test program executed by the test bench consists of two parts, a simple prom boot loader (prom.S)
and the test program itself (systest.c). Both parts can be re-compiled using the ‘make soft’ command.
This requires that the BCC tool-chain is installed on the host computer.

NOTE: the design cannot be simulated when spacewire or GRFPU-Lite are enabled, as these two
block are only provided as netlist. These blocks should therefore only be enabled for synthesis.

3.6 Synthesis and place&route

The template design can be synthesized with either Synplify-8.2.1 or ISE-7.1.04i. Synthesis can be
done in batch or interactively. To use synplify in batch mode, use the command:

make synplify 

To use synplify interactively, use:

make scripts
synplify leon3mp_synplify.prj

The corresponding command for ISE are:

make ise-map

or 

make scripts
ise leon3mp.ise

To perform place&route for a netlist generated with synplify, use:

make ise-synp

For a netlist generated with XST, use:

make ise

In both cases, the final programming file will be called ‘leon3mp.bit’. See the GRLIB User’s Manual
chapter 3 for details on simulation and synthesis script files.

3.7 Board re-programming

The GR-XC3S-1500 FPGA configuration PROMs can be programmed from the shell window with
the following command:

make ise-prog-prom

For interactive programming, use Xilinx Impact software. See the GR-XC3S-1500 Manual for details
on which configuration PROMs to specify.

A pre-compiled FPGA bit file is provided in the bitfiles directory, and the board can be re-pro-
grammed with this bit file using:

make ise-prog-prom-ref
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4 Software development

4.1 Tool chains

The LEON3 processor is supported by several software tool chains:

• Bare-C cross-compiler system (BCC)

• RTEMS cross-compiler system (RCC)

• Snapgear embedded linux

• eCos real-time kernel

All these tool chains and associated documentation can be downloaded from www.gaisler.com.

4.2 Downloading software to the target system

LEON3 has an on-chip debug support unit (DSU) which greatly simplifies the debugging of software
on a target system. The DSU provides full access to all processor registers and system memory, and
also includes instruction and data trace buffers. Downloading and debugging of software is done
using the GRMON debug monitor, a tool that runs on the host computer and communicates with the
target through either serial or JTAG interfaces.

Please refer to the GRMON User’s Manual for a description of the GRMON operations.

4.3 Flash PROM programming

The GR-XC3S-1500 board has a 64 Mbit (8Mx8) Intel flash PROM for LEON3 application software.
A PROM image is typically created with the sparc-elf-mkprom utility provided with the BCC tool
chain. The suitable mkprom parameters for the GR-XC3S-1500 board are:

sparc-elf-mkprom -romws 4 -freq 40 -col 9 -nosram -sdram 64 -msoft-float -baud 38400

Note that the -freq option should reflect the selected processor frequency, which depends on the clock
generator settings. If the processor includes an FPU, the -msoft-float switch can be omitted.

Once the PROM image has been created, the on-board flash PROM can be programmed through
GRMON. The procedure is described in the GRMON manual, below is the required GRMON com-
mand sequence:

flash erase all
flash load prom.out

4.4 RTEMS spacewire driver and demo program

The RTEMS tool chain (RCC) contains a driver for the spacewire core in the LEON3 template design.
The operation of the driver is described in the RTEMS SPARC BSP Manual. A sample spacewire
application is provided with the template design in software/rtems-sendback.c. The sample applica-
tion receives spacewire data using node address 1, and sends all received data back on the spacewire
transmitter to node address 2. On selected GR-XC3S-1500 boards, this sample application is already
programmed into the flash PROM. It is then possible to perform a loop-back test using an external
spacewire test equipment (such as GRESB from Gaisler Research).
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5 LEON3 - High-performance SPARC V8 32-bit Processor

5.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption. 

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions. 

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

5.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

5.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch
pad ram can be added to both the instruction and data cache controllers to allow 0-waitstates access
memory without data write back.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 5.  LEON3 processor core block diagram

SRMMU DTLBITLB



16
5.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU (available from Gaisler
Research) and one for the Meiko FPU core (available from Sun Microsystems). The floating-point
processors and co-processor execute in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

5.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and 36-bit physical memory. A three-level hardware table-walk is
implemented, and the MMU can be configured to up to 64 fully associative TLB entries.

5.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

5.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

5.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are gener-
ated to optimise the data transfer.

5.1.8 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the application
is idle, and does not require tool-specific support in form of clock gating.

5.1.9 Multi-processor support

LEON3 is designed to be use in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.

5.1.10 Performance

Using 8K + 8K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,500 iteration/s/
MHz using the gcc-3.4.4 compiler (-O2). This translates to 0.85 dhrystone MIPS/MHz using the VAX
11/780 value a reference for one MIPS.
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5.2 LEON3 integer unit

5.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON3 integer unit has the following
main features:

• 7-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator

• Radix-2 divider (non-restoring)

• Single-vector trapping for reduced code size

Figure 6 shows a block diagram of the integer unit.

Figure 6.  LEON3 integer unit datapath diagram
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5.2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the
instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction is valid
at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are gener-
ated.

3. RA (Register access): Operands are read from the register file or from internal data bypasses.

4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g.,
LD) and for JMPL/RETT, the address is generated.

5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the
data cache at this time.

6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appro-
priate.

7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the
register file.

Table 8 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 5 clocks when the multiplier is configured to be pipelined.

5.2.3 SPARC Implementor’s ID

Gaisler Research is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %psr.

5.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

Table 8. Instruction timing

Instruction Cycles

JMPL, RETT 3

Double load 2

Single store 2

Double store 3

SMUL/UMUL 4*

SDIV/UDIV 35

Taken Trap 5

Atomic load/store 3

All other instructions 1
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5.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 16x16 signed hardware multiplier, which is iterated four times. To
improve the timing, the 16x16 multiplier can optionally be provided with a pipeline stage.

5.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umacrs1, reg_imm, rd
smacrs1, reg_imm, rd

Operation: 

prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

5.2.7 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/30 and %asr30/31)
registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap 0x0B is gener-
ated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 7.  Watch-point registers

IF
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5.2.8 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode

• Instruction result

• Load/store data and address

• Trap information

• 30-bit time tag

The operation and control of the trace buffer is further described in section 8.4. Note that in multi-pro-
cessor systems, each processor has its own trace buffer allowing simultaneous tracing of all instruc-
tion streams.

5.2.9 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The
value in this field is identical to the hindex generic parameter in the VHDL model.

[14]: Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero after reset.
[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not

implemented. Set to zero after reset.
[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from

the lddel generic parameter in the VHDL model.
[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU, “11” = GRFPU-Lite
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 4)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.

04831

RESERVED%asr17

Figure 8.  LEON3 configuration register (%asr17)
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5.2.10 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority.

5.2.11 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

Table 9. Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)
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5.2.12 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, alternative address spaces can be accessed. The table shows the ASI usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation. 

5.2.13 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:

wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.

5.2.14 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is however always aligned on a 4 kbyte
boundary.

5.2.15 Multi-processor support

The LEON3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the first processor will
start. All other processors will remain halted in power-down mode. After the system has been initial-
ized, the remaining processors can be started by writing to the ‘MP status register’, located in the
multi-processor interrupt controller. The halted processors start executing from the reset address (0 or
RSTADDR generic). Enabling SMP is done by setting the smp generic to 1 or higher. Cache snooping

Table 10. ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache

0x11 Flush data cache

Table 11. Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
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should always be enabled in SMP systems to maintain data cache coherency between the processor
nodes.

5.2.16 Cache sub-system

The LEON3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativity
of 2 - 4. The set size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-set configurations, one of three replacement policies can be selected: least-recently-
used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm can only be
used when the cache is 2-way associative. A cache line can be locked in the instruction or data cache
preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU algo-
rithm needs extra flip-flops per cache line to store access history. The random replacement algorithm
is implemented through modulo-N counter that selects which line to evict on cache miss. 

Cachability for both caches is controlled through the AHB plug&play address information. The mem-
ory mapping for each AHB slave indicates whether the area is cachable, and this information is used
to (statically) determine which access will be treated as cacheable. This approach means that the cach-
ability mapping is always coherent with the current AHB configuration.

The detailed operation of the instruction and data caches is described in the following sections.

5.3 Instruction cache

5.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On an instruction
cache miss to a cachable location, the instruction is fetched and the corresponding tag and data line
updated. In a multi-set configuration a line to be replaced is chosen according to the replacement pol-
icy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed instructions due
to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is completed. If
the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) during the line fill,
the line fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction
streaming is enabled even when the cache is disabled. In this case, the fetched instructions are only
forwarded to the IU and the cache is not updated. During cache line refill, incremental burst are gener-
ated on the AHB bus.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in the
cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache miss
will occur, triggering a new access to the failed address. If the error remains, an instruction access
error trap (tt=0x1) will be generated.
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5.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 9:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history, otherwise 0.
[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits is set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. A FLUSH instruction will clear all valid bits. V[0] corresponds to address 0 in the cache line, V[1] to
address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits and 20
tag bits. The cache rams are sized automatically by the ram generators in the model.

5.4 Data cache

5.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a data cache
read-miss to a cachable location 4 bytes of data are loaded into the cache from main memory. The
write policy for stores is write-through with no-allocate on write-miss. In a multi-set configuration a
line to be replaced on read-miss is chosen according to the replacement policy. If a memory access
error occurs during a data load, the corresponding valid bit in the cache tag will not be set. and a data
access error trap (tt=0x9) will be generated.

5.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being read
in to the data cache. 

Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b.

Figure 9.  Instruction cache tag layout examples
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Tag for 4 Kbyte set, 16bytes/line

00 0000
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Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

5.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 10:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if LRR is not used.
[8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the configuration.
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits is set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. V[0] corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits and 21
tag bits. The cache rams are sized automatically by the ram generators in the model.

5.5 Additional cache functionality

5.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, or by writing to any location
with ASI=0x15. The data cache is also flushed by setting the FD bit in the cache control register, or by
writing to any location with ASI=0x16. Cache flushing takes one cycle per cache line, during which
the IU will not be halted, but during which the caches are disabled. When the flush operation is com-
pleted, the cache will resume the state (disabled, enabled or frozen) indicated in the cache control reg-
ister. Diagnostic access to the cache is not possible during a FLUSH operation and will cause a data
exception (trap=0x09) if attempted.

5.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC, 0xD,
0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache offset will be
used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set. 

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the address tag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG filed (see above) and the valid bits are written with the D[7:0] of

Figure 10.  Data cache tag layout
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VALIDATAG LRR LOCK
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the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written into the lock bit (if
enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

5.5.3 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with optional
lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the replacement
algorithm. A cache line is locked by performing a diagnostic write to the instruction tag on the cache
offset of the line to be locked setting the Address Tag field to the address tag of the line to be locked,
setting the lock bit and clearing the valid bits. The locked cache line will be updated on a read-miss
and will remain in the cache until the line is unlocked. The first cache line on certain cache offset is
locked in the set 0. If several lines on the same cache offset are to be locked the locking is performed
on the same cache offset and in sets in ascending order starting with set 0. The last set can not be
locked and is always replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line locking
was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking was
enabled otherwise it will be 0.

5.5.4 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of the
local instruction is configurable from 1-64 kB. The local instruction ram can be mapped to any 16
Mbyte block of the address space. When executing in the local instruction ram all instruction fetches
are performed from the local instruction ram and will never cause IU pipeline stall or generate an
instruction fetch on the AHB bus. Local instruction ram can be accessed through load/store integer
word instructions (LD/ST). Only word accesses are allowed, byte, halfword or double word access to
the local instruction ram will generate data exception.

5.5.5 Local scratch pad ram

Local scratch pad ram can optionally be attached to both instruction and data cache controllers. The
scratch pad ram provides fast 0-waitstates ram memories for both instructions and data. The ram can
be between 1 - 512 kbyte, and mapped on any 16 Mbyte block in the address space. Accessed per-
formed to the scratch pad ram are not cached, and will not appear on the AHB bus. The scratch pads
rams do not appear on the AHB bus, and can only be read or written by the processor. The instruction
ram must be initialized by software (through store instructions) before it can be used. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000. See section 5.10 for
additional configuration details. Note: local scratch pad ram can only be enabled when the MMU is
disabled.

5.5.6 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 11). Each cache can be in one of three modes: disabled, enabled and frozen. If dis-
abled, no cache operation is performed and load and store requests are passed directly to the memory
controller. If enabled, the cache operates as described above. In the frozen state, the cache is accessed
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and kept in sync with the main memory as if it was enabled, but no new lines are allocated on read
misses.

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation 

is in progress.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the 

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

5.5.7 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches.

[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least recently used

(LRU), 10 - least recently replaced (LRR), 11 - random
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (SETS). Number of sets in the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-way

associative, 011 - 4-way associative
[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 2SIZE

[19]: Local ram (LR). Set if local scratch pad ram is implemented.
[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[15:12]: Local ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad ram. Local ram size =
2LRSZ

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.

Figure 11.  Cache control register
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[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

5.5.8 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:

flush
set 0x81000f, %g1
sta%g1, [%g0] 2

5.6 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can optionally
be configured. For details on operation, see the SPARC V8 manual.

5.6.1 ASI mappings

When the MMU is used, the following ASI mappings are added: 

5.6.2 Cache operation

When the MMU is disabled, the caches operate as normal with physical address mapping. When the
MMU is enabled, the caches tags store the virtual address and also include an 8-bit context field. AHB
cache snooping is not available when the MMU is enabled.

Table 12. ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register

Table 13. MMU ASI usage

ASI Usage

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access



29
5.6.3 MMU registers

The following MMU registers are implemented:

The definition of the registers can be found in the SPARC V8 manual.

5.6.4 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries can be set to 2 - 32 in the configuration record. The organisation of the TLB
and number of entries is not visible to the software and does thus not require any modification to the
operating system.

5.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. The LEON3 pipeline provides an interface port for both of these units.
Two different FPU’s can be interfaced: Gaisler Research’s GRFPU, and the Meiko FPU from Sun.
Selection of which FPU to use is done through the VHDL model’s generic map. The characteristics of
the FPU’s are described in the next sections.

5.7.1 Gaisler Research’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements all
SPARC V8 FPU instructions. The FPU is interfaced to the LEON3 pipeline using a LEON3-specific
FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with integer
instructions. Only in case of a data or resource dependency is the integer pipeline held. The GRFPU is
fully pipelined and allows the start of one instruction each clock cycle, with the exception is FDIV
and FSQRT which can only be executed one at a time. The FDIV and FSQRT are however executed
in a separate divide unit and do not block the FPU from performing all other operations in parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

Table 14. MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

Table 15. GRFPU instruction timing with GRFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD, 
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25
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The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to three queued instructions when an FPU exception is taken. When the GRFPU is enabled
in the model, the version field in %fsr has the value of 2.

5.7.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

When the GRFPU-Lite is enabled in the model, the version field in %fsr has the value of 3.

5.7.3 The Meiko FPU

The Meiko floating-point core operates on both single- and double-precision operands, and imple-
ments all SPARC V8 FPU instructions. The Meiko FPU is interfaced through the Meiko FPU control-
ler (MFC), which allows one FPU instruction to execute in parallel with IU operation. The MFC
implements the SPARC deferred trap model, and the FPU trap queue (FQ) can contain up to one
queued instruction when an FPU exception is taken.

When the Meiko FPU is enabled in the model, the version field in %fsr has the value of 1.

The Meiko FPU is not distributed with the open-source LEON3 model, and must be obtained sepa-
rately from Sun.

5.7.4 Generic co-processor

LEON can be configured to provide a generic interface to a user-defined co-processor. The interface
allows an execution unit to operate in parallel to increase performance. One co-processor instruction
can be started each cycle as long as there are no data dependencies. When finished, the result is writ-
ten back to the co-processor register file.

5.8 Vendor and device identifers

The core has vendor identifers 0x01 (Gaisler Research) and device identifers 0x003. For description
of vendor and device identiferss see GRLIB IP Library User’s Manual.

Table 16. GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD, 
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65
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5.9 Synthesis and hardware

5.9.1 Area and timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations. 

5.9.2 Technology mapping

LEON3 has two technology mapping generics, fabtech and memtech. The fabtech generic controls the
implementation of some pipeline features, while memtech selects which memory blocks will be used
to implement cache memories and the IU/FPU register file. Fabtech can be set to any of the provided
technologies (0 - NTECH) as defined in the GRPIB.TECH package. The memtech generic can only be
set to one of the following technologies:

The table above also indicates the maximum cache set size and number of register windows for each
of the supported memtech technologies. Exceeding these limits or choosing an unsupported memtech
will generate an error report during simulation.

5.9.3 Double clocking

The LEON3 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
quency. The two clocks have to be synchronous and a multicycle path between the two clock domains
has to be defined at synthesis tool level. A separate component (leon3s2x) is provided for the double
clocked core. 

Table 17. Area and timing

Configuration

Actel AX2000 ASIC (0.13 um)

Cells RAM64 MHz Gates MHz

LEON3, 8 + 8 Kbyte cache 6,500 40 30 20,000 400

LEON3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 25,000 400

Table 18. MEMTECH generic supported technologies

Tech name Technology Max cache set size Max windows

inferred Behavioral description unlimited unlimited

axcel Actel AX, RTAX 16 Kbyte unlimited

proasic Actel Proasic 64 Kbyte unlimited

proasic3 Actel Proasic3 16 Kbyte unlimited
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5.10 Configuration options

Table 19 shows the configuration options of the core (VHDL generics).

Table 19. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be 
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit. 

0 - no FPU, 1 - GRFPU, 2 - Meiko, 3- GRFPU-Lite

0 - 3 0

v8 Generate SPARC V8 MUL and DIV instructions 0 - 2 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually 
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Currently not used - -

nwp Number of watchpoints 0 - 4 0

icen Enable instrcution cache 0 - 1 1
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irepl Instruction cache replacement policy. 

0 - least recently used (LRU), 1 - least recently replaced (LRR), 
2 - random

0 - 1 0

isets Number of instruction cache sets 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache set in kByte 1 - 256 1

isetlock Enable instruction cache line locking 0 - 1 0

dcen Data cache enable 0 - 1 1

drepl Data cache replacement policy. 

0 - least recently used (LRU), 1 - least recently replaced (LRR), 
2 - random

0 - 1 0

dsets Number of data cache sets 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4

dsetsize Size of each data cache set in kByte 1 - 256 1

dsetlock Enable instruction cache line locking 0 - 1 0

dsnoop Enable data cache snooping

0: disable, 1: slow, 2: fast (see text)

0 - 2 0

ilram Enable local instruction RAM 0 - 1 0

ilramsize Local instruction RAM size in kB 1 - 512 1

ilramstart 8 MSB bits used to decode local instruction RAM area 0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0

dlramsize Local data RAM size in kB 1 - 512 1

dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type Separate (0) or shared TLB (1) 0 - 1 1

tlb_rep Random (0) or LRU (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but might create a 
critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance 
with about 5%. 

1 - 2 2

disas Print instruction disassembly in VHDL simulator console. 0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address 0 - (2**20-1) 0

smp Enable multi-processor support 0 - 15 0

Table 19. Configuration options

Generic Function Allowed range Default
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5.11 Signal descriptions

Table 20 shows the interface signals of the core (VHDL ports).

5.12 Library dependencies

Table 21 shows the libraries used when instantiating the core (VHDL libraries).

5.13 Component declaration 

The core has the following component declaration.

entity leon3s is
  generic (
    hindex    : integer               := 0;
    fabtech   : integer range 0 to NTECH  := 0;
    memtech   : integer range 0 to NTECH  := 0;
    nwindows  : integer range 2 to 32 := 8;
    dsu       : integer range 0 to 1  := 0;
    fpu       : integer range 0 to 3  := 0;
    v8        : integer range 0 to 2  := 0;
    cp        : integer range 0 to 1  := 0;
    mac       : integer range 0 to 1  := 0;
    pclow     : integer range 0 to 2  := 2;
    notag     : integer range 0 to 1  := 0;
    nwp       : integer range 0 to 4  := 0;
    icen      : integer range 0 to 1  := 0;
    irepl     : integer range 0 to 2  := 2;
    isets     : integer range 1 to 4  := 1;
    ilinesize : integer range 4 to 8  := 4;
    isetsize  : integer range 1 to 256 := 1;
    isetlock  : integer range 0 to 1  := 0;
    dcen      : integer range 0 to 1  := 0;
    drepl     : integer range 0 to 2  := 2;

Table 20. Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Reset power-down and error mode High

RUN Input Start after reset (SMP system only)

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

* see GRLIB IP Library User’s Manual

Table 21. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals LEON3 component declaration, interrupt and 
debug signals declaration
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    dsets     : integer range 1 to 4  := 1;
    dlinesize : integer range 4 to 8  := 4;
    dsetsize  : integer range 1 to 256 := 1;
    dsetlock  : integer range 0 to 1  := 0;
    dsnoop    : integer range 0 to 2  := 0;
    ilram      : integer range 0 to 1 := 0;
    ilramsize  : integer range 1 to 512 := 1;
    ilramstart : integer range 0 to 255 := 16#8e#;
    dlram      : integer range 0 to 1 := 0;
    dlramsize  : integer range 1 to 512 := 1;
    dlramstart : integer range 0 to 255 := 16#8f#;
    mmuen     : integer range 0 to 1  := 0;
    itlbnum   : integer range 2 to 64 := 8;
    dtlbnum   : integer range 2 to 64 := 8;
    tlb_type  : integer range 0 to 1 := 1;
    tlb_rep   : integer range 0 to 1 := 0;
    lddel     : integer range 1 to 2  := 2;
    disas     : integer range 0 to 1  := 0;
    tbuf      : integer range 0 to 64 := 0;
    pwd       : integer range 0 to 2  := 2;     -- power-down
    svt       : integer range 0 to 1  := 1;     -- single vector trapping
    rstaddr   : integer               := 0;
    smp : integer range 0 to 15 := 0);
  port (
    clk    : in  std_ulogic;
    rstn   : in  std_ulogic;
    ahbi   : in  ahb_mst_in_type;
    ahbo   : out ahb_mst_out_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : in  ahb_slv_out_vector;    
    irqi   : in  l3_irq_in_type;
    irqo   : out l3_irq_out_type;
    dbgi   : in  l3_debug_in_type;
    dbgo   : out l3_debug_out_type
  );

end;
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6 GRFPU - High-performance IEEE-754 Floating-point unit

6.1 Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in IEEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754). Sup-
ported formats are single and double precision floating-point numbers. The advanced design
combines two execution units, a fully pipelined unit for execution of the most common FP operations
and a non-blocking unit for execution of divide and square-root operations. 

The logical view of the GRFPU is shown in figure 13.        

 

Figure 13.  1: GRFPU Logical View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU implementation of the IEEE-754 standard including FP formats, opera-
tions, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For imple-
mentation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-Point
Unit” (available at www.gaisler.com).    

6.2 Functional description

6.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in IEEE-754
standard with exception for denormalized numbers. See section 6.2.5 for more information on denor-
malized numbers. 

6.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move. The
operations implement all FP instructions specified by SPARC V8 instruction set, and most of the
operations defined in IEEE-754. All operations are summarized in table 22, with their opcodes, oper-
ands, results and exception codes. Throughputs and latencies and are shown in table 22.

operand1

opid

opcode

operand2

start

 9

 6

64

64

round

flushid

 2

 6

flush

result

resid

allow

except

ready

 3

 6

64

 6
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nonstd

Pipelined execution 
unit

 

Iteration unit 

GRFPU
clk

reset
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Arithmetic operations include addition, subtraction, multiplication, division and square-root. Each
arithmetic operation can be performed in single or double precision formats. Arithmetic operations
have one clock cycle throughput and latency of three clock cycles, except for divide and square-root
operations, which have a throughput of 14 - 23 clock cycles and latency of 15 - 25 clock cycles (see

Table 22. : GRFPU operations

Operation OpCode[8:0] Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD 

001000001

001000010

SP
DP

SP
 DP

SP
DP 

UNF, NV, 
OF, UF, NX

Addition 

FSUBS
FSUBD

001000101

001000110

SP
DP

SP
DP

SP
DP

UNF, NV, 
OF, UF, NX

Subtraction

FMULS
FMULD
FSMULD

001001001

001001010

001101001

SP
DP
SP

SP
DP
SP

SP
DP
DP

UNF, NV, 
OF, UF, NX 

UNF, NV, 
OF, UF, NX
UNF, NV, 
OF, UF

Multiplication, FSMULD gives 
exact double-precision product of 
two single-precision operands.

FDIVS
FDIVD

001001101

001001110

SP
DP

SP
DP

SP
DP

UNF, NV, 
OF, UF, NX

Division

FSQRTS
FSQRTD

000101001

000101010

-
-

SP
DP

SP
DP

UNF, NV, 
NX

Square-root

Conversion operations

FITOS
FITOD

011000100

011001000

- INT SP
DP

NX
- 

Integer to floating-point conversion

FSTOI
FDTOI

011010001

011010010

- SP
DP

INT  UNF, NV, 
NX

Floating-point to integer conversion. 
The result is rounded in round-to-
zero mode.

FSTOI_RND
FDTOI_RND

111010001

111010010

- SP
DP

INT  UNF, NV, 
NX

Floating-point to integer conversion. 
Rounding according to RND input.

FSTOD
FDTOS

011001001

011000110

- SP
DP

DP
SP

UNF, NV
UNF, NV, 
OF, UF, NX

Conversion between floating-point 
formats

Comparison operations

FCMPS
FCMPD

001010001

001010010

SP
DP

SP
DP

CC NV Floating-point compare. Invalid 
exception is generated if either oper-
and is a signaling NaN.

FCMPES
FCMPED

001010101

001010110

SP
DP

SP
DP

CC NV Floating point compare. Invalid 
exception is generated if either oper-
and is a NaN (quiet or signaling).

Negate, Absolute value and Move

FABSS 000001001 - SP SP - Absolute value.

FNEGS 000000101 - SP SP - Negate.

FMOVS 000000001 SP SP - Move. Copies operand to result out-
put.

SP - single precision floating-point number

DP - double precision floating-point number

INT - 32 bit integer 

CC - condition codes, see table 25

UNF, NV, OF, UF, NX - floating-point exceptions, see section 6.2.3
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table 23). Add, sub and multiply can be started on every clock cycle providing very high throughput
for these common operations. Divide and square-root operations have lower throughput and higher
latency due to complexity of the algorithms, but are executed parallelly with all other FP operations in
a non-blocking iteration unit. Out-of-order execution of operations with different latencies is easily
handled through the GRFPU interface by assigning an id to every operation which appears with the
result on the output once the operation is completed (see section 3.2). 

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of three clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.

Comparison functions offering two different types of quiet Not-a-numbers (QNaNs) handling are pro-
vided. Move, negate and absolute value are also provided. These operations do not ever generate
unfinished exception (unfinished exception is never signaled since compare, negate, absolute value
and move handle denormalized numbers). 

6.2.3 Exceptions

GRFPU detects all exceptions defined by the IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) excep-
tion conditions. Generation of special results such as NaNs and infinity is also implemented. Over-
flow (OF) and underflow (UF) are detected before rounding. When an underflow is signaled the result
is rounded (flushed) to zero (this variation is allowed by the IEEE-754 standard and is implementa-
tion-dependent). A special Unfinished exception (UNF) is signaled when one of the operands is a
denormalized number which are not handled by the arithmetic and conversion operations.

6.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

6.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A sys-
tem (microprocessor) with the GRFPU could emulate rare cases of operations on denormals in soft-
ware using non-FPU operations. A special Unfinished exception (UNF) is used to signal an arithmetic
or conversion operation on the denormalized numbers. Compare, move, negate and absolute value
operations can handle denormalized numbers and don’t raise unfinished exception. GRFPU does not
generate any denormalized numbers during arithmetic and conversion operations on normalized num-
bers since the result of an underflowed operation is flushed (rounded) to zero (see section 6.2.3).

Table 23. : Throughput and latency

Operation Throughput Latency

FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 3

FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD, 
FDTOS

1 3

FCMPS, FCMPD, FCMPES, FCMPED 1 3

FDIVS 15 15

FDIVD 16.5 (15/18)* 16.5 (15/18)*

FSQRTS 23 23

FSQRTD  24.5 (23/26)* 24.5 (23/26)*

* Throughput and latency are data dependant with two possible cases with equal statistical possibility. 
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6.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic and con-
version operations are treated as (correctly signed) zeroes. Calculations are performed on zero oper-
ands instead of the denormalized numbers obeying all rules of the floating-point arithmetics including
rounding of the results and detecting exceptions.

6.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard. Opera-
tions on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate Invalid exception and
deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for FCMPES and
FCMPED, do not raise any exceptions and propagate QNaNs through the FP operations by delivering
NaN-results according to table 24. QNaN_GEN is 0x7fffe00000000000 for double precision results
and 0x7fff0000 for single precision results.

Table 24. : Operations on NaNs 

Operand 2

Operand 1

FP QNaN2 SNaN2

none FP QNaN2 QNaN_GEN

FP FP QNaN2 QNaN_GEN

QNaN1 QNaN1 QNaN2 QNaN_GEN

SNaN1 QNaN_GEN QNaN_GEN QNaN_GEN
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6.3 Signal descriptions

Table 25 shows the interface signals of the core (VHDL ports). All signals are active high except for
RST which is active low. 

6.4 Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before a rising edge while all other signals
are latched on rising edge.

The FPU is fully pipelined and a new operation can be started every clock cycle. The only exceptions
are divide and square-root operations which require 15 to 26 clock cycles to complete, and which are
not pipelined. Division and square-root are implemented through iterative series expansion algorithm.

Table 25. : Signal descriptions

Signal I/O Description

CLK I Clock

RST I Reset

START I Start an FP operation on the next rising clock edge

NONSTD I Nonstandard mode. Denormalized operands are converted to zero.

OPCODE[8:0] I FP operation. For codes see table 22.

OPID[5:0] I FP operation id. Every operation is associated with an id which will appear on the RESID 
output when the FP operation is completed. This value shall be incremented by 1 (with wrap-
around) for every started FP operation. 

OPERAND1[63:0]

OPERAND2[63:0]

I FP operation operands are provided on these one or both of these inputs. All 64 bits are used 
for IEEE-754 double precision floating-point numbers, bits [63:32] are used for IEEE-754 
single precision floating-point numbers and 32-bit integers.

ROUND[1:0] I Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 - round-
to--inf.

FLUSH I Flush FP operation with FLUSHID.

FLUSHID[5:0] I Id of the FP operation to be flushed.

READY O The result of a FP operation will be available at the end of the next clock cycle.

ALLOW[2:0] O Indicates allowed FP operations during the next clock cycle. 
ALLOW[0] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed

ALLOW[1] - FMULS, FMULD, FSMULD allowed

ALLOW[2] - all other FP operations allowed

RESID[5:0] O Id of the FP operation whose result appears at the end of the next clock cycle.

RESULT[63:0] O Result of an FP operation. If the result is double precision floating-point number all 64 bits 
are used, otherwise single precision or integer result appears on RESULT[63:32].

EXCEPT[5:0] O Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with 
denormalized input(s).

EXC[4] - Invalid exception.

EXC[3] - Overflow.

EXC[2] - Underflow.

EXC[1] - Division by zero.

EXC[0] - Inexact.

CC[1:0] O Result (condition code) of an FP compare operation.
00 - equal, 
01 - operand1 < operand2
10 - operand1 > operand2
11 - unordered
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Since the algorithms basic step is multiplication the floating-point multiplier is shared between multi-
plication, division and square-root. Division and square-root do not occupy multiplier during the
whole operation and allow multiplication to be interleaved and executed parallelly with division or
square-root.    

One clock cycle before an operation is completed, the output signal RDY is asserted to indicate that
the result of an FPU operation will appear on the output signals at the end of the next cycle. The id of
the operation to be completed and allowed operations are reported on signals RESID and ALLOW.
During the next clock cycle the result appears on RES, EXCEPT and CC outputs. 

Table 14 shows signal timing during four arithmetic operations on GRFPU.
 

Figure 14.  Signal timing
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7 GRFPC - GRFPU Control Unit 

GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU). GRFPC
performs scheduling, decoding and dispatching of the FP operations to the GRFPU as well as manag-
ing the floating-point register file, the floating-point state register (FSR) and the floating-point
deferred-trap queue (FQ). Floating-point operations are executed in parallel with other integer instruc-
tions, the LEON integer pipeline is only stalled in case of operand or resource conflicts. 

In the FT-version, all registers are protected with TMR and the floating-point register file is protected
using (39,7) BCH coding. Correctable errors in the register file are detected and corrected using the
instruction restart function in the IU. 

7.1 Floating-Point register file

GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The regis-
ter file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and float-
ing-point operate instructions (FPop).

7.2 Floating-Point State Register (FSR)

GRFPC manages the floating-point state register (FSR) containing FPU mode and status information.
All fields of the FSR register as defined in SPARC V8 specification are implemented and managed by
the GRFPU conforming to SPARC V8 specification and IEEE-754 standard. Implementation-specific
parts of the FSR managing are the NS (non-standard) bit and ftt field. 

If the NS (non-standard) bit of the FSR register is set, all floating-point operation will be performed in
non-standard mode as described in section 6.2.6. When NS bit is cleared all operations are performed
in standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented

- hardware_error: non-resumable hardware error
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

GRFPU implements the qne bit of the FSR register which reads 0 if the floating-point deferred-queue
(FQ) is empty and 1 otherwise.

The FSR is accessed using LDFSR and STFSR instructions.

7.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by a floating-point instruction performing an operation resulting in
one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• an operation on denormalized floating-point numbers (in standard IEEE-mode) raises
unfinished_FPop floating-point exception

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

The trap is deferred to one of the floating-point instruction (FPop, FP load/store, FP branch) following
the trap-inducing instruction (note that this may not be next floating-point instruction in the program
order due to exception-detecting mechanism and out-of-order instruction execution in the GRFPC).
When the trap is taken the floating-point deferred-queue (FQ) contains trap-inducing instruction and
up to two FPop instructions that where dispatched in the GRFPC but did not complete.
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After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied. STDFQ
instruction reads a double-word from the floating-point deferred queue, the first word is the address of
the instruction and the second word is the instruction code. All instructions in the FQ are FPop type
instructions. First access to the FQ gives double-word with trap-inducing instruction, following dou-
ble-words contain pending floating-point instructions. Supervisor software should emulate FPops
from the FQ in the same order as they were read from the FQ.

Note that instructions in the FQ may not appear in the same order as the program order since GRFPU
executes floating-point instructions out-of-order. A floating-point trap is never deferred past an
instruction specifying source registers, destination registers or condition codes that could be modified
by the trap-inducing instruction. Execution or emulation of instructions in the FQ by the supervisor
software gives therefore the same FPU state as if the instructions where executed in the program
order. 
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8 DSU3 - LEON3 Hardware Debug Support Unit

8.1 Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON3 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces.

Such an interface can be a serial UART (RS232), JTAG, PCI or ethernet. The DSU supports multi-
processor systems and can handle up to 16 processors.

8.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

• executing a breakpoint instruction (ta 1)

• integer unit hardware breakpoint/watchpoint hit (trap 0xb)

• rising edge of the external break signal (DSUBRE)

• setting the break-now (BN) bit in the DSU control register

• a trap that would cause the processor to enter error mode

• occurrence of any, or a selection of traps as defined in the DSU control register

• after a single-step operation

Processor(s)
LEON3Processor(s)
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AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 15.  LEON3/DSU Connection
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• one of the processors in a multiprocessor system has entered the debug mode

• DSU breakpoint hit

The debug mode can only be entered when the debug support unit is enabled through an external pin
(DSUEN). When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)

• an output signal (DSUACT) is asserted to indicate the debug state

• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

8.3 AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace. 

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-
ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily

Table 26. AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR
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suspended when the processor enters debug mode. Note that neither the trace buffer memory nor the
breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.

8.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [63:32] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the loaded data.
Multiply and divide instructions are entered twice, but only the last entry contains the result. Bit 126
is set for the second entry. For FPU operation producing a double-precision result, the first entry puts
the MSB 32 bits of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed.

Table 27. Instruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle instruc-
tion (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode
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8.5 DSU memory map

The DSU memory map can be seen in table 28 below. In a multiprocessor systems, the register map is
duplicated and address bits 27 - 24 are used to index the processor.

The addresses of the IU registers depends on how many register windows has been implemented:

• %on : 0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))

• %ln : 0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))

• %in : 0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))

Table 28. DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Intruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x300FFC IU register file

0x301000 - 0x30107C FPU register file

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])

ASI = 0x9 : Local instruction RAM

ASI = 0xB : Local data RAM

ASI = 0xC : Instruction cache tags

ASI = 0xD : Instruction cache data

ASI = 0xE : Data cache tags

ASI = 0xF : Instruction cache data
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• %gn : 0x300000 + (NWINDOWS*64)

• %fn : 0x301000 + n*4

8.6 DSU registers

8.6.1 DSU control register

The DSU is controlled by the DSU control register:

.

[0]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the trace buffer. Remains set
when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error
condition (trap in trap).

[2]: Break on IU watchpoint (BW)- if set, debug mode will be forced on a IU watchpoint (trap 0xb).
[3]: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed.
[4]: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
[5]: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the following traps:

priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.
[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
[7]: EE - value of the external DSUEN signal (read-only)
[8]: EB - value of the external DSUBRE signal (read-only)
[9]: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written with ‘1’, it will

clear the error and halt mode.
[10]: Processor halt (HL). Returns ‘1’ on read when processor is halted. If the processor is in debug mode, setting this bit

will put the processor in halt mode.
[11]: Power down (PW). Returns ‘1’ when processor in in power-down mode.

8.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on S/W breakpoint (BS) bit in the processors
DSU control register is set. If cleared, the processor x will resume execution.

[31:16] : Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The bit remains set
after the processor goes into the debug mode.

8.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

Figure 16.  DSU control register

012345731

TE

8910

BEBWBSBXBZEEEBPE

6

DMHL

11

PW

Figure 17.  DSU Break and Single Step register

031

BN0

1

BN1

2

BN2

15

BN15

16

SS0

17

SS1

18

SS2SS15 . . .. . .



49
[15:0] : Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiprocessor system enters
the debug mode. If 0, the processor x will not enter the debug mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running processors into debug mode
even if it enters debug mode.

8.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

8.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is resumed.

The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

8.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

[7:0]: ASI to be used on diagnostic ASI access

Figure 18.  DSU Debug Mode Mask register
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8.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

[0]: Trace enable (EN). Enables the trace buffer.
[1]: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the

trace buffer.

8.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

8.6.9 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)
[1]: LD - break on data load address
[0]: ST - beak on data store address

Figure 22.  AHB trace buffer control register
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8.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the size of the trace buffer.

8.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

8.8 Configuration options

Table 29 shows the configuration options of the core (VHDL generics). 

8.9 Signal descriptions

Table 30 shows the interface signals of the core (VHDL ports).

Table 29. Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00#

ncpu Number of attached processors 1 - 16 1

tbits Number of bits in the time tag counter 2 - 30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in Kbytes. A value of 0 
will disable the trace buffer function.

0 - 64 0 (disabled)

Table 30. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

DBGI - Input Debug signals from LEON3 -

DBGO - Output Debug signals to LEON3 -

DSUI ENABLE Input DSU enable High

BREAK Input DSU break High

DSUO ACTIVE Output Debug mode High

* see GRLIB IP Library User’s Manual

Figure 25.  Instruction trace control register

031

RESERVED IT POINTER

16



52
8.10 Library dependencies

Table 31 shows libraries used when instantiating the core (VHDL libraries). 

8.11 Component declaration

The core has the following component declaration.

component dsu3 
  generic (
    hindex : integer := 0;
    haddr : integer := 16#900#;
    hmask : integer := 16#f00#;
    ncpu    : integer := 1;
    tbits   : integer := 30; 
    tech    : integer := 0; 
    irq     : integer := 0; 
    kbytes  : integer := 0
  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type;
    dbgi   : in l3_debug_out_vector(0 to NCPU-1);
    dbgo   : out l3_debug_in_vector(0 to NCPU-1);
    dsui   : in dsu_in_type;
    dsuo   : out dsu_out_type
  );
  end component;

8.12 Instantiation

This examples shows how the core can be instantiated. 

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

.

.
constant NCPU : integer := 1; -- select number of processors

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi   : irq_in_vector(0 to NCPU-1);
signal irqo   : irq_out_vector(0 to NCPU-1);

signal dbgi : l3_debug_in_vector(0 to NCPU-1);
signal dbgo : l3_debug_out_vector(0 to NCPU-1);

Table 31. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals Component declaration, signals declaration
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signal dsui   : dsu_in_type;
signal dsuo   : dsu_out_type; 

.

.

begin

cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s-- LEON3 processor
    generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
    port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
    irqi(i) <= leon3o(i).irq; leon3i(i).irq <= irqo(i);
end generate;

dsu0 : dsu3-- LEON3 Debug Support Unit
    generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
    port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
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9 IRQMP - Multiprocessor Interrupt Controller

9.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to AMBA bus as an APB slave, and monitors the combined
interrupt signals.

The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority to the processor. In
multiprocessor systems, the interrupts are propagated to all processors.

 

9.2 Operation

9.2.1 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus. Each interrupt can be assigned
to one of two levels (0 or 1) as programmed in the interrupt level register. Level 1 has higher priority
than level 0. The interrupts are prioritised within each level, with interrupt 15 having the highest pri-
ority and interrupt 1 the lowest. The highest interrupt from level 1 will be forwarded to the processor.
If no unmasked pending interrupt exists on level 1, then the highest unmasked interrupt from level 0
will be forwarded.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

MP IRQ 
Processor 0 Processor 1

BUS 
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 26.  LEON3 multiprocessor system with Multiprocessor Interrupt controller
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When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the pro-
cessor acknowledgement will clear the force bit rather than the pending bit. After reset, the interrupt
mask register is set to all zeros while the remaining control registers are undefined. Note that interrupt
15 cannot be maskable by the LEON3 processor and should be used with care - most operating sys-
tems do not safely handle this interrupt.

9.2.2 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is halted (‘1’) or running (‘0’). A halted processor can be reset
and restarted by writing a ‘1’ to its status field. After reset, all processors except processor 0 are
halted. When the system is properly initialized, processor 0 can start the remaining processors by
writing to their STATUS bits.

Figure 27.  Interrupt controller block diagram
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9.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depend on number of processor in the multiprocessor system. 

9.3.1 Interrupt level register

[31:16] Reserved.
[15:1] Interrupt Level n (IL[n]): Interrupt level for interrupt n.
[0] Reserved.

9.3.2 Interrupt pending register

[31:17] Reserved.
[16:1] Interrupt Pending n (IP[n]): Interrupt pending for interrupt n.
[0] Reserved

Table 32. Interrupt Controller registers

APB address offset Register

0x00 Interrupt level register

0x04 Interrupt pending register

0x08 Interrupt force register (NCPU = 0)

0x0C Interrupt clear register

0x10 Multiprocessor status register

0x40 Processor interrupt mask register

0x44 Processor 1 interrupt mask register

0x40 + 4 * n Processor n interrupt mask register

0x80 Processor interrupt force register

0x84 Processor 1 interrupt force register

0x80 + 4 * n Processor n interrupt force register

Figure 28.  Interrupt level register
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9.3.3 Interrupt force register (NCPU = 0)

[31:16] Reserved.
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.

9.3.4 Interrupt clear register

[31:16] Reserved.
[15:1] Interrupt Clear n (IC[n]): Writing ‘1’ to ICn will clear interrupt n.
[0] Reserved.

9.3.5 Multiprocessor status register

[31:28] NCPU. Number of CPU’s in the system -1 .
[27:16] Reserved.
[15:1] Power-down status of CPU [n]: ‘1’ = power-down, ‘0’ = running. Write with ‘1’ to force processor n out of power-

down.

9.3.6 Processor interrupt mask register

[31:16] Reserved.
[15:1] Interrupt Mask n (IM[n]): If IMn = 0 the interrupt n is masked, otherwise it is enabled.
[0] Reserved.

Figure 30.  Interrupt force register
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Figure 32.  Multiprocessor status register
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9.3.7 Processor interrupt force register (NCPU > 0)

[31:17] Interrupt force clear n (IFC[n]).
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.

9.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00D. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

9.5 Configuration options

Table 33 shows the configuration options of the core (VHDL generics).

9.6 Signal descriptions

Table 34 shows the interface signals of the core (VHDL ports).

Table 33. Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

ncpu Number of processors in mulitprocessor system 1 to 16 1

Table 34. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI[n] INTACK Input Processor n Interrupt acknowledge High

IRL[3:0] Processor n interrupt level High

IRQO[n] IRL[3:0] Output Processor n Input interrupt level High

RST Reset power-down and error mode of processor n High

RUN Start processor n after reset (SMP systems only) High

* see GRLIB IP Library User’s Manual

Figure 34.  Processor interrupt force register
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9.7 Library dependencies

Table 35 shows libraries that should be used when instantiating the core.

9.8 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqmp_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

architecture rtl of irqmp_ex is
  constant NCPU : integer := 4;
  
  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  signal ahbsi : ahb_slv_in_type;
  
  -- GP Timer Unit input signals
  signal irqi   : irq_in_vector(0 to NCPU-1);
  signal irqo   : irq_out_vector(0 to NCPU-1);  

  -- LEON3 signals
  signal leon3i : l3_in_vector(0 to NCPU-1);
  signal leon3o : l3_out_vector(0 to NCPU-1);  
  
begin

  -- 4 LEON3 processors are instantiated here
  cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s generic map (hindex => i)
    port map (clk, rstn, ahbmi, ahbmo(i), ahbsi, 
irqi(i), irqo(i), dbgi(i), dbgo(i));
  end generate;

  -- MP IRQ controller
  irqctrl0 : irqmp
  generic map (pindex => 2, paddr => 2, ncpu => NCPU)
  port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end

Table 35. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals, component Signals and component declaration
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10 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller

10.1 Overview

The memory controller handles a memory bus hosting PROM, memory mapped I/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a slave
on the AHB bus. The function of the memory controller is programmed through memory configura-
tion registers 1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus. The memory bus supports
four types of devices: prom, sram, sdram and local I/O. The memory bus can also be configured in 8-
or 16-bit mode for applications with low memory and performance demands. 

Chip-select decoding is done for two PROM banks, one I/O bank, five SRAM banks and two
SDRAM banks. 

The controller decodes three address spaces (PROM, I/O and RAM) whose mapping is determined
through VHDL-generics.

Figure 35 shows how the connection to the different device types is made.

Figure 35.  Memory controller conected to AMBA bus and different 
types of memory devices
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10.2 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM cycles
can have up to 15 waitstates.

Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSN[0] is asserted
when the lower half of the PROM area as addressed while MEMO.ROMSN[1] is asserted for the
upper half. When the VHDL model is configured to boot from internal prom, MEMO.ROMSN[0] is
never asserted and all accesses to the lower half of the PROM area are mapped on the internal prom. 

10.3 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a additional
waitstates can be inserted by de-asserting the MEMI.BRDYN signal. The I/O select signal
(MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is asserted.

10.4 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (MEMO.RAMSN[4]) decodes the upper 512
Mbyte. A read access to SRAM consists of two data cycles and between zero and three waitstates.
Accesses to MEMO.RAMSN[4] can further be stretched by de-asserting MEMI.BRDYN until the
data is available. On non-consecutive accesses, a lead-out cycle is added after a read cycle to prevent

Figure 36.  Prom read cycle
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bus contention due to slow turn-off time of memories or I/O devices. Figure 38 shows the basic read
cycle waveform (zero waitstate).

For read accesses to MEMO.RAMSN[4:0], a separate output enable signal (MEMO.RAMOEN[n]) is
provided for each RAM bank and only asserted when that bank is selected. A write access is similar to
the read access but takes a minimum of three cycles:

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be driven
until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow efficient
byte and half-word writes. If the memory uses a common write strobe for the full 16- or 32-bit data,
the read-modify-write bit in the MCFG2 register should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

10.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not neces-
sary to always have full 32-bit memory banks. The SRAM and PROM areas can be individually con-
figured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory
configuration registers. Since read access to memory is always done on 32-bit word basis, read access
to 8-bit memory will be transformed in a burst of four read cycles while access to 16-bit memory will
generate a burst of two 16-bits reads. During writes, only the necessary bytes will be writen. Figure 40
shows an interface example with 8-bit PROM and 8-bit SRAM. Figure 41 shows an example of a 16-
bit memory interface.
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Figure 38.  Static ram read cycle (0-waitstate)
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10.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer. 

10.7 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bits mode. However,
the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but only

Figure 40.  8-bit memory interface example
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Figure 41.  16-bit memory interface example
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with one single access just as in 32-bit mode. To accesses an I/O device on a 16-bit bus, LDUH/STH
instructions should be used while LDUB/STB should be used with an 8-bit bus.

10.8 SDRAM access

10.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Gaisler Research, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

10.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is
enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is not set. If the
SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are mapped into the
lower half of the RAM area.

10.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use page burst on read and single location access on
write.

10.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2) The pro-
grammable SDRAM parameters can be seen in tabel 36.

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

10.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

Table 36. SDRAM programmable timing parameters

Function Parameter Range Unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks
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10.9.1 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in MCFG2 will be used, remaining fields are fixed: page
read burst, single location write, sequential burst. The command field will be cleared after a command
has been executed. Note that when changing the value of the CAS delay, a LOAD-MODE-REGIS-
TER command should be generated at the same time.

10.9.2 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

10.9.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

10.9.4 Address bus connection

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

10.9.5 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used. SDRAM bus signals are
described in section 10.13, for configuration options refer to section 10.15. 

10.9.6 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Xilinx and Altera
device, the GR Clock Generator can be configured to produce a properly synchronised SDRAM
clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

10.10 Using bus ready signalling

The MEMI.BRDYN signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at least the pre-programmed number
of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched until
MEMI.BRDYN is asserted. MEMI.BRDYN should be asserted in the cycle preceding the last one.
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The use of MEMI.BRDYN can be enabled separately for the I/O and RAM areas.

10.11 Access errors

An access error can be signalled by asserting the MEMI.BEXCN signal, which is sampled together
with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register 1, an error
response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled or disabled
through memory configuration register 1, and is active for all areas (PROM, I/O an RAM).

10.12 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it allows the cycle
time to vary through the use of MEMI.BRDYN. In this way, delays can be inserted as required for
opening of banks and refresh.

Figure 42.  RAM read cycle with one BRDYN controlled waitstate
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10.13 Registers

The memory controller is programmed through registers mapped into APB address space.

10.13.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0, “0001”=1,...
“1111”=15).

[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (“0000”=0, “0001”=1,...
“1111”=15).

[9:8]: Prom width. Defines the data with of the prom area (“00”=8, “01”=16, “10”=32).
[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0, “0001”=1, “0010”=2,...,

“1111”=15).
[25]: Bus error (BEXCN) enable.
[26]: Bus ready (BRDYN) enable.
[28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16, “10”=32).

During power-up, the prom width (bits [9:8]) are set with value on MEMI.BWIDTH inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All other
fields are undefined.

Table 37. Memory controller registers

APB address offset Register

0x0 MCFG1

0x4 MCFG2

0x8 MCFG3

I/O enable

Prom write enable
Prom width

Figure 44.  Memory configuration register 1
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10.13.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

[1:0]: Ram read waitstates. Defines the number of waitstates during ram read cycles (“00”=0, “01”=1, “10”=2, “11”=3).
[3:2]: Ram write waitstates. Defines the number of waitstates during ram write cycles (“00”=0, “01”=1, “10”=2, “11”=3).
[5:4]: Ram with. Defines the data with of the ram area (“00”=8, “01”=16, “1X”= 32).
[6]: Read-modify-write. Enable read-modify-write cycles on sub-word writes to 16- and 32-bit areas with common write

strobe (no byte write strobe).
[7]: Bus ready enable. If set, will enable BRDYN for ram area
[12:9]: Ram bank size. Defines the size of each ram bank (“0000”=8 Kbyte, “0001”=16 Kbyte... “1111”=256 Mbyte).
[13]:  SI - SRAM disable. If set together with bit 14 (SDRAM enable), the static ram access will be disabled.
[14]: SE - SDRAM enable. If set, the SDRAM controller will be enabled.
[18]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise ‘0’. Read-only.
[20:19] SDRAM command. Writing a non-zero value will generate an SDRAM command: “01”=PRECHARGE,

“10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is reset after command has been
executed.

[22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048 otherwise.
[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte, “001”=8 Mbyte, “010”=16

Mbyte .... “111”=512 Mbyte.
[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER

command must be issued at the same time. Also sets RAS/CAS delay (tRCD).
[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

10.13.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

10.14 Vendor and device identifiers

The core has vendor identifier 0x04 (ESA) and device identifier 0x00F. For description of vendor and
device identifier see GRLIB IP Library User’s Manual.
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Figure 45.  Memory configuration register 2
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10.15 Configuration options

Table 38 shows the configuration options of the core (VHDL generics).

Table 38. Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR filed of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0x1FFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK filed of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#E00#

ioaddr ADDR filed of the AHB BAR1 defining I/O address space. 
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK filed of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#

ramaddr ADDR filed of the AHB BAR2 defining RAM address space. 
Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK filed of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR filed of the APB BAR configuration registers address 
space.

0 - 16#FFF# 0

pmask MASK filed of the APB BAR configuration registers address 
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

romasel log2(PROM address space size) - 1. E.g. if size of the PROM 
area is 0x20000000 romasel is log2(2^29)-1 = 28.

0 - 31 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM 
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM and SRAM access. 0 - 1 0

ram16 Enable 16-bit PROM and SRAM access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

oepol Select polarity of drive signals for data pads. 0 = active low, 1 = 
active high.

0 - 1 0
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10.16 Signal descriptions

Table 39 shows the interface signals of the core (VHDL ports).

Table 39. Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width 
field in the MCFG1 register

High

SD[31:0] Input SDRAM separate data bus High

MEMO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable Low

MBEN[3:0] Output Byte enable Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory 
bus.

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate 
sdram bus. 

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual
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10.17 Library dependencies

Table 40 shows libraries used when instantiating the core (VHDL libraries).

10.18 Instantiation

This examples shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. 

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
library esa;
use esa.memoryctrl.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    
    -- memory bus
    address  : out   std_logic_vector(27 downto 0); -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data

Table 40. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

SDMCTRL component

ESA MEMORYCTRL Component Memory controller component declaration
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    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdram_out_type;  

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;
  
begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1, 
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;
  
  -- Memory controller
  mctrl0 : mctrl generic map (srbanks => 1, sden => 1)
    port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

  -- memory controller inputs not used in this configuration  
  memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
  memi.sd <= sd;
  
  -- prom width at reset
  memi.bwidth <= "10";
  
  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

  -- connect memory controller outputs to entity output signals
  address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn; 
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
  sa <= memo.sa;  
  writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;  
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn; 
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
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11 AHBSTAT - AHB Status Registers

11.1 Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tol-
erant core. 

The status register and the failing address register are accessed from the AMBA APB bus.

11.2 Operation

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01”) is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated.

The interrupt is generated on the line selected by the pirq VHDL generic. 

The interrupt is usually connected to the interrupt controller to inform the processor of the error con-
dition. The normal procedure is that an interrupt routine handles the error with the aid of the informa-
tion in the status registers. When it is finished it resets the NE bit and the monitoring becomes active
again. 

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a single error is detected. When
such an error is detected, the effect will be the same as for an AHB error response, The only difference
is that the Correctable Error (CE) bit in the status register is set to one when a single error is detected.
When the CE bit is set the interrupt routine can acquire the address containing the single error from
the failing address register and correct it. When it is finished it resets the CE bit and the monitoring
becomes active again.

The correctable error signals from the fault tolerant units should be connected to the stati.cerror input
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response. 

11.3 Registers

The core is programmed through registers mapped into APB address space.

Table 41. AHB Status registers

APB address offset Registers

0x0 AHB Status register

0x4 AHB Failing address register

Table 42.  AHB Status register
31 10 9 8 7 6 3 2 0

RESERVED CE NE HWRITE HMASTER HSIZE

31: 10 RESERVED

9 CE: Correctable Error. Set if the detected error was caused by a single error and zero otherwise.

8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by 
writing a zero to it.
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11.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11.5 Configuration options

Table 44 shows the configuration options of the core (VHDL generics).

11.6 Signal descriptions

Table 45 shows the interface signals of the core (VHDL ports).

11.7 Library dependencies

Table 46 shows libraries used when instantiating the core (VHDL libraries).

7 The HWRITE signal of the AHB transaction that caused the error.

6: 3 The HMASTER signal of the AHB transaction that caused the error.

2: 0 The HSIZE signal of the AHB transaction that caused the error

Table 43.  AHB Failing address register
31 0

AHB FAILING ADDRESS

31: 0 The HADDR signal of the AHB transaction that caused the error.

Table 44. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAHBSLV-1 0

paddr APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by the core 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3

Table 45. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB slave input signals -

AHBSI * Input AHB slave output signals -

STATI CERROR Input Correctable Error Signals High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

Table 46. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component  Component declaration

Table 42.  AHB Status register
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11.8 Instantiation

This examples shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
register cerror vector. The connection of the different memory controllers to external memory is not
shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all; 

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
  --other signals
  ....
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo, sdo2: sdctrl_out_type; 

  signal sdi : sdctrl_in_type; 
  
-- correctable error vector
  signal stati : ahbstat_in_type; 
  signal aramo : ahbram_out_type; 
  
begin
  
  -- AMBA Components are defined here ... 
  
-- AHB Status Register
  astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
    nftslv => 3)
    port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
    stati.cerror(3 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
  a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred, 
    kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
    errcnt => 1, cntbits => 4)
    port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);
    stati.cerror(0) <= aramo.ce; 
-- SDRAM controller
  sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#, 
    ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
    cntbits => 4)
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    port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);
    stati.cerror(1) <= sdo.ce;    

-- Memory controller
  mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10, 
    edacen => 1, errcnt => 1, cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);
    stati.cerror(2) <= memo.ce; 
end;
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12 APBUART - AMBA APB UART Serial Interface

12.1 Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-
bit clock divider. Optional hardware flow-control is supported through the RTSN/CTSN hand-shake
signals. Two configurable FIFOs are used for data transfer between the bus and UART. 

12.2 Operation

12.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO by writing to the data register (see section 5) . This FIFO is configurable
to different sizes (see table 1). When the size is 1, only a single holding register is used but in the fol-
lowing discussion both will be referred to as FIFOs. When ready to transmit, data is transferred from
the transmitter FIFO to the transmitter shift register and converted to a serial stream on the transmitter
serial output pin (TXD). It automatically sends a start bit followed by eight data bits, an optional par-
ity bit, and one stop bit (figure 48). The least significant bit of the data is sent first.

Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register (see section 5). Transmission resumes and the TS is cleared when a

Figure 47.  Block diagram
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Figure 48.  UART data frames
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new character is loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the sta-
tus register. If the transmitter is disabled, it will immediately stop any active transmissions including
the character currently being shifted out from the transmitter shift register. The transmitter holding
register may not be loaded when the transmitter is disabled or when the FIFO (or holding register) is
full. If this is done, data might be overwritten and one or more frames are lost. 

The discussion above applies to any FIFO configurations including the special case with a holding
register (fifosize = 1). If FIFOs are used (fifosize > 1) some additional status and control bits are
available. The TF status bit (not to be confused with the TF control bit) is set if the transmitter FIFO is
currently full and the TH bit is set as long as the FIFO is less than half-full (less than half of entries in
the FIFO contain data). The TF control bit enables FIFO interrupts when set. The status register also
contains a counter (TCNT) showing the current number of data entries in the FIFO.

If flow control is enabled, the CTSN input must be low in order for the character to be transmitted. If
it is deasserted in the middle of a transmission, the character in the shift register is transmitted and the
transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is connected
to a receivers RTSN, overrun can effectively be prevented.

12.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO. 

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set. The data frame is not stored in the FIFO if an error is
detected. Also, the new error status bits are or:ed with the old values before they are stored into the
status register. Thus, they are not cleared until written to with zeros from the AMBA APB bus. If both
the receiver FIFO and shift registers are full when a new start bit is detected, then the character held in
the receiver shift register will be lost and the overrun bit will be set in the UART status register. If
flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and the
receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When fifosize > 1, which means that holding registers are not considered here, some additional status
and control bits are available. The RF status bit (not to be confused with the RF control bit) is set
when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is half-full (at least
half of the entries in the FIFO contain data frames). The RF control bit enables receiver FIFO inter-
rupts when set. A RCNT field is also available showing the current number of data frames in the
FIFO. 

12.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. It is reloaded with
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the value of the UART scaler reload register after each underflow. The resulting UART tick frequency
should be 8 times the desired baud-rate. If the EC bit is set, the scaler will be clocked by the
UARTI.EXTCLK input rather than the system clock. In this case, the frequency of UARTI.EXTCL
must be less than half the frequency of the system clock.

12.3.1 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

12.3.2 Interrupt generation

Interrupts are generated differently when a holding register is used (fifosize = 1) and when FIFOs are
used (fifosize > 1). When holding registers are used, the UART will generate an interrupt under the
following conditions: when the transmitter is enabled, the transmitter interrupt is enabled and the
transmitter holding register moves from full to empty; when the receiver is enabled, the receiver inter-
rupt is enabled and the receiver holding register moves from empty to full; when the receiver is
enabled, the receiver interrupt is enabled and a character with either parity, framing or overrun error is
received.

For FIFOs two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames). 

12.4 Registers

The core is controlled through registers mapped into APB address space.

12.4.1 UART Data Register

[7:0]: Receiver holding register or FIFO (read access)
[7:0]: Transmitter holding register or FIFO (write access)

Table 47. UART registers

APB address offset Register

0x0 UART Data register

0x4 UART Status register

0x8 UART Control register

0xC UART Scaler register

Figure 49.  UART data register

07831

RESERVED DATA
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12.4.2 UART Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty.
3: Break received (BR) - indicates that a BREAK has been received.
4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
5:  Parity error (PE) - indicates that a parity error was detected.
6: Framing error (FE) - indicates that a framing error was detected.
7: Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full.
8: Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data.
9: Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full.
10:  Receiver FIFO full (RF) - indicates that the Receiver FIFO is full.
[25:20]: Transmitter FIFO count - shows the number of data frames in the transmitter FIFO.
[31:26]: Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO.

12.4.3 UART Control Register

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Receiver interrupt enable (RI) - if set, interrupts are generated when a frame is received
3: Transmitter interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted
4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)
5: Parity enable (PE) - if set, enables parity generation and checking.
6: Flow control (FL) - if set, enables flow control using CTS/RTS.
7: Loop back (LB) - if set, loop back mode will be enabled.
8: External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK
9: Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled. 
10: Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled.

12.4.4 UART Scaler Register

12.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00C. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 50.  UART status register
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Figure 51.  UART control register
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Figure 52.  UART scaler reload register
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12.6 Configuration options

Table 48 shows the configuration options of the core (VHDL generics).

12.7 Signal descriptions

Table 49 shows the interface signals of the core (VHDL ports). 

12.8 Library dependencies

Table 50 shows libraries that should be used when instantiating the core.

12.9 Instantiation

This examples shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;

Table 48. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

console Prints output from the UART on console during VHDL 
simulation and speeds up simulation by always returning 
‘1’ for Data Ready bit of UART Status register. Does not 
effect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

parity Enables parity 0 - 1 1

flow Enables flow control 0 - 1 1

fifosize Selects the size of the Receiver and Transmitter FIFOs 1, 2, 4, 8, 16, 32 1

Table 49. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

UARTI RXD Input UART receiver data -

CTSN Input UART clear-to-send Low

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send Low

TXD Output UART transmit data -

* see GRLIB IP Library User’s Manual

Table 50. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signals, component Signal and component declaration
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use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    
    -- UART signals
    rxd   : in  std_ulogic;
    txd   : out std_ulogic 
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- UART signals
  signal uarti : uart_in_type;
  signal uarto : uart_out_type;
  
begin
  
  -- AMBA Components are instantiated here
   ... 

  -- APB UART
  uart0 : apbuart
  generic map (pindex => 1, paddr => 1,  pirq => 2, 
console => 1, fifosize => 1)
  port map (rstn, clk, apbi, apbo(1), uarti, uarto);

  -- UART input data 
  uarti.rxd <= rxd;  

  -- APB UART inputs not used in this configuration  
  uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

  -- connect APB UART output to entity output signal
  txd <= uarto.txd;

end;
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13 GPTIMER - General Purpose Timer Unit

13.1 Overview

The General Purpose Timer Unit implements one prescaler and one to seven decrementing timers.
Number of timers is configurable through a VHDL-generic. The timer unit acts a slave on AMBA
APB bus. The unit is capable of asserting interrupt on when timer(s) underflow. Interrupt is config-
urable to be common for the whole unit or separate for each timer. 

13.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated. Timers
share the decrementer to save area. On the next timer tick next timer is decremented giving effective
division rate equal to (prescaler reload register value + 1).

The operation of each timers is controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable
bit. 

The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. If configured
to signal interrupt for each timer the timer unit will signal an interrupt on appropriate line when a
timer underflows (if the interrupt enable bit for the current timer is set). The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘0’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the number of
implemented timers.

By setting the chain bit in the control register timer n can be chained with preceding timer n-1. Decre-
menting timer n will start when timer n-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer can also be configured as a watchdog, driving a watch-
dog output signal when expired.

timer n reload

Figure 53.  General Purpose Timer Unit block diagram
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13.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on number of implemented timers.

Figures 54 to 59 show the layout of the general purpose timer unit registers.

[31:10] - Reserved.
[9] - Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT freezes the timer unit.
[8] - Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, otherwise ‘0’. Read-only.
[7:3] - APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ, otherwise timer nwill

drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-only.
[2:0] - Number of implemented timers. Read-only.

Table 51. General Purpose Timer Unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Unused

0x10 Timer 1 counter value register

0x14 Timer 1 reload value register

0x18 Timer 1 control register

0x1C Unused

0xn0 Timer n counter value register

0xn4 Timer n reload value register

0xn8 Timer n control register

Figure 54.  Scaler value

0sbits-1sbits31

“000...0” SCALER Value

Figure 55.  Scaler reload value

0sbits-1sbits31

“000...0” SCALER Reload Value

Figure 56.  GP Timer Unit Configuration register
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[31:nbits] - Reserved. Always reads as ‘000...0’
[nbits-1:0] - Timer Counter value. Decremented by 1 for each n prescaler tick where n is number of implemented timers.

[31:nbits] - Reserved. Always reads as ‘000...0’
[nbits-1:0] - Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to load bit in

the timers control register or when the RS bit is set in the control register and the timer underflows.

[31:7] - Reserved. Always reads as ‘000...0’
[6] - Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a system is in debug mode).

Read-only.
[5] - Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when timer (n-1) underflows.
[4] - Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1’ until cleared by writing ‘0’ to this bit.
[3] - Interrupt Enable (IE): If set the timer signals interrupt when it underflows.
[2] - Load (LD): Load value from the timer reload register to the timer counter value register.
[1] - Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register when the timer

underflows.
[0] - Enable (EN): Enable the timer.

13.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x011. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 57.  Timer counter value registers

0nbits-1nbits31

“000...0” TIMER COUNTER VALUE

Figure 58.  Timer reload value registers
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Figure 59.  Timer control registers
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13.5 Configuration options

Table 52 shows the configuration options of the core (VHDL generics).

13.6 Signal descriptions

Table 53 shows the interface signals of the core (VHDL ports). 

Table 52. Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1 to 32 32

ntimers Defines the number of timers in the unit 1 to 7 1

pirq Defines which APB interrupt the timers will generate 0 to MAXIRQ-1 0

sepirq If set to 1, each timer will drive an individual interrupt 
line, starting with interrupt irq. If set to 0, all timers will 
drive the same interrupt line (irq).

0 to MAXIRQ-1

(note: ntimers + irq must 
be less than MAXIRQ)

0

sbits Defines the number of bits in the scaler 1 to 32 16

wdog Watchdog reset value. When set to a non-zero value, the 
last timer will be enabled and pre-loaded with this value 
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.

0 to 2nbits - 1 0

Table 53. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -

GPTO TICK[0:7] Output Timer ticks. TICK[0] is high for one clock each 
time the scaler underflows. TICK[1-n] are high 
for one clock each time the corrspondning timer 
underflows.

High

WDOG Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

High

WDOGN Output Watchdog output Equivalent to interrupt pending 
bit of last timer.

Low

* see GRLIB IP Library User’s Manual
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13.7 Library dependencies

Table 54 shows libraries used when instantiating the core (VHDL libraries).

13.8 Instantiation

This examples shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity gptimer_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

architecture rtl of gptimer_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- GP Timer Unit input signals
  signal gpti : gptimer_in_type;  
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- General Purpose Timer Unit
  timer0 : gptimer 
  generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
  port map (rstn, clk, apbi, apbo(3), gpti, open);

  gpti.dhalt <= ’0’; gpti.extclk <= ’0’; -- unused inputs

end;

Table 54. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration



88
14 GRGPIO - General Purpose I/O Port

14.1 Overview

The general purpose input output port core is a scalable and provides optional interrupt support. The
port width can be set to 2 - 32 bits through the nbits VHDL generic. Interrupt generation and shaping
is only available for those I/O lines where the corresponding bit in the imask VHDL generic has been
set to 1.

Each bit in the general purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection. 

The figure 60 shows a diagram for one I/O line.

14.2 Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The input
from each buffer is synchronized by two flip-flops in series to remove potential meta-stability. The
synchronized values can be read-out from the I/O port data register. The output enable is controlled by
the I/O port direction register. A ‘1’ in a bit position will enable the output buffer for the correspond-
ing I/O line. The output value driven is taken from the I/O port output register.

Each I/O port can drive a separate interrupt line on the APB interrupt bus. The interrupt number is
equal to the I/O line index (PIO[1] = interrupt 1, etc.). The interrupt generation is controlled by three
registers: interrupt mask, polarity and edge registers. To enable an interrupt, the corresponding bit in
the interrupt mask register must be set. If the edge register is ‘0’, the interrupt is treated as level sensi-
tive. If the polarity register is ‘0’, the interrupt is active low. If the polarity register is ‘1’, the interrupt
is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The polarity register then
selects between rising edge (‘1’) or falling edge (‘0’).

Figure 60.  General Purpose I/O Port diagram
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14.3 Registers

The core is programmed through registers mapped into APB address space.

Figures 61 to 65 show the layout of the General Purpose I/O Port registers. 

Table 55. General Purpose I/O Port registers

APB address offset Register

0x00 I/O port data register

0x04 I/O port output register

0x08 I/O port direction register

0x0C Interrupt mask register

0x10 Interrupt polarity register

0x14 Interrupt edge register

Figure 61.  I/O port data register

0nbits-1nbits31

“000...0” I/O port value

Figure 62.  I/O port data register

0nbits-1nbits31

“000...0” I/O port output register

Figure 63.  I/O port direction register

0nbits-1nbits31

“000...0” I/O port direction register

Figure 64.  Interrupt mask register

0nbits-1nbits31

“000...0” Interrupt mask register

Figure 65.  Interrupt polarity register

0nbits-1nbits31

“000...0” Interrupt polarity register
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14.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01A. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

14.5 Configuration options

Table 56 shows the configuration options of the core (VHDL generics).

14.6 Signal descriptions

Table 57 shows the interface signals of the core (VHDL ports).

Table 56. Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the GPIO unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

nbits Defines the number of bits in the I/O port 1 to 32 8

imask Defines which I/O lines are provided with interrupt gen-
eration and shaping

0 - 16#FFFF# 0

oepol Select polarity of output enable signals. 0 = active low, 1 
= active high. 

0 - 1 0

Table 57. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPIOO OEN[31:0] Output I/O port output enable see oepol

DOUT[31:0] Output I/O port outputs -

GPIOI DIN[31:0] Input I/O port inputs -

* see GRLIB IP Library User’s Manual

Figure 66.  Interrupt edge register

0nbits-1nbits31

“000...0” Interrupt edge register
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14.7 Library dependencies

Table 58 shows libraries used when instantiating the core (VHDL libraries).

14.8 Component declaration

The core has the following component declaration.

library gaisler;
use gaisler.misc.all;

entity grgpio is
  generic (
    pindex   : integer := 0;
    paddr    : integer := 0;
    pmask    : integer := 16#fff#;
    imask    : integer := 16#0000#;
    nbits    : integer := 16-- GPIO bits
  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    apbi   : in  apb_slv_in_type;
    apbo   : out apb_slv_out_type;
    gpioi  : in  gpio_in_type;
    gpioo  : out gpio_out_type
  );
end; 

14.9 Instantiation

This examples shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

signal gpti : gptimer_in_type;  
  
begin

gpio0 : if CFG_GRGPIO_EN /= 0 generate     -- GR GPIO unit
    grgpio0: grgpio
      generic map( pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 8)
      port map( rstn, clkm, apbi, apbo(11), gpioi, gpioo);

      pio_pads : for i in 0 to 7 generate
        pio_pad : iopad generic map (tech => padtech)
            port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i));
      end generate;
end generate;

Table 58. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration
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15 APBPS2 - PS/2 keyboard with APB interface

15.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 67
shows a model of APBPS2 and the electrical interface. 

PS/2 data is sent in a 11 bits frames. The first bit is a start bit followed by eight data bits, one odd par-
ity bit and finally one stop bit. Figure 68 shows a typical PS/2 data frame.

15.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboardor or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the output buffer full (OF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it’s up to
the software to handle any resend operations if the parity bit is wrong. Figure 69 shows a flow chart
for the operations of the receiver state machine.

Figure 67.  APBPS2 electrical interface
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Figure 68.  PS/2 data frame

Start D0 D6D5D4D3D2D1 D7 StopParityData frame with parity:



93
15.3 Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 66. 

If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 70 shows the flow chart for the transmission state machine.

15.4 Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 KHz. To generate the PS/2 clock, APBPS2
divides the APB clock with either a fixed or programmable division factor. The divider consist of a
14-bit down-counter and can divide the APB clock with a factor of 1 - 16383. If the fixed generic is set
to 1, the division rate is set to the fKHz generic divided by 10 in order to generate a 10 KHz clock. If
fixed is 0, the division rate can be programmed through the timer reload register.

Figure 69.  Flow chart for the receiver state machine
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15.5 Registers

The core is controlled through registers mapped into APB address space.

15.5.1 PS/2 Data Register

[7:0]: Receiver holding FIFO (read access)

Table 59. APB PS/2 registers

APB address offset Register

0x00 PS/2 Data register

0x04 PS/2 Status register

0x08 PS/2 Control register

0x0C PS/2 Timer reload register

Waitrequest

Figure 70.  Flow chart for the transmitter state machine
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15.5.2 PS/2 Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register.
1: Parity error (PE) - indicates that a parity error was detected.
2: Framing error (FE) - indicates that a framing error was detected.
3: Keyboard inhibit (KI) - indicates that the keyboard is inhibited.
4: Output buffer full (OF) - indicates that the output buffer (FIFO) is full.
5:  Input buffer full (IF) - indicates that the input buffer (FIFO) is full
[26:22]:  Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO.
[31:27]: Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO.

15.5.3 PS/2 Control Register

0: Receiver enable (RE) - if set, enables the receiver.
1:  Transmitter enable (TE) - if set, enables the transmitter.
2: Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received
3: Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted

15.5.4 PS/2 Timer Reload Register

[11:0]: PS/2 timer reload register

15.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 72.  PS/2 status register
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15.7 Configuration options

Table 60 shows the configuration options of the core (VHDL generics).

15.8 Signal descriptions

Table 61 shows the interface signals of the core (VHDL ports). 

15.9 Library dependencies

Table 62 shows libraries used when instantiating the core (VHDL libraries).

15.10 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.gencomp.all;

Table 60. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

fKHz Frequency of APB clock in KHz. 1 - 163830 50000

fixed Used fixed clock divider to generate PS/2 clock 0 - 1 1

Table 61. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

PS2I PS2_CLK_I Input PS/2 clock input -

PS2_DATA_I Input PS/2 data input -

PS2O PS2_CLK_O Output PS/2 clock output -

PS2_CLK_OE Output PS/2 clock output enable Low

PS2_DATA_O Output PS/2 data output -

PS2_DATA_OE Output PS/2 data output enable Low

* see GRLIB IP Library User’s Manual

Table 62. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component PS/2 signal and component declaration
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library gaisler;
use gaisler.misc.all;

entity apbps2_ex is
 port (
    rstn : in std_ulogic;
    clk : in std_ulogic;
    
    -- PS/2 signals
    ps2clk : inout std_ulogic;
    ps2data : inout std_ulogic 
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- PS/2 signals
  signal kbdi : ps2_in_type;
  signal kbdo : ps2_out_type;
  
begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirq => 4)
      port map(rstn, clkm, apbi, apbo(5), kbdi, kbdo);

kbdclk_pad : iopad generic map (tech => padtech)
      port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk_oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
        port map (ps2data, kbdo.ps2_data_o, kbdo.ps2_data_oe, kbdi.ps2_data_i);

end;
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15.11 Keboard scan codes

Table 63. Scan code set 2, 104-key keyboard

KEY MAKE BREAK
-
- KEY MAKE BREAK

-
- KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [ 54 FO,54

B 32 F0,32 `0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U 
ARROW

E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L 
ARROW

E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D 
ARROW

E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R 
ARROW

E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 5 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 6 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 4 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 1 F0,01 ] 5B F0,5B

3 26 F0,26 F10 9 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 52 F0,52

5 2E F0,2E F12 7 F0,07 , 41 F0,41

6 36 F0,36 PRNT 
SCRN

E0,12, 
E0,7C

E0,F0, 
7C,E0, 
F0,12

. 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE E1,14,77, 
E1,F0,14, 
F0,77

-NONE-
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Table 64. Windows multimedia scan codes

KEY MAKE BREAK

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favor-
ites

E0, 18 E0, F0, 18

Table 65. ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E
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15.12 Keyboard commands

Table 66. Transmit commands:

Command Description

0xED Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an 
argument byte*

0xEE Echo command - expects an echo response

0xF0 Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03 
which determines the scan code set to use. 0x00 returns the current set.

0xF2 Read ID - the keyboard responds by sending a two byte device ID of 0xAB 0x83

0xF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which 
determines the typematic rate.

0xF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an 
acknowledgement.

0xF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-
ment.

0xF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

0xFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte

0xFF Reset - resets the keyboard

* bit 0 controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 67. Receive commands:

Command Description

0xFA Acknowledge

0xAA Power on self test passed (BAT completed)

0xEE Echo respond

0xFE Resend - upon receipt of the resend command the host should retransmit the last byte

0x00 Error or buffer overflow

0xFF Error of buffer overflow

Table 68. The typematic rate/delay argument byte

MSB LSB

0 DELAY DELAY RATE RATE RATE RATE RATE
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Table 69. Typematic repeat rates

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

00h 30 08h 15 10h 7.5 18h 3.7

01h 26.7 09h 13.3 11h 6.7 19h 3.3

02h 24 0Ah 12 12h 6 1Ah 3

03h 21.8 0Bh 10.9 13h 5.5 1Bh 2.7

04h 20.7 0Ch 10 14h 5 1Ch 2.5

05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3

06h 17.1 0Eh 8.6 16h 4.3 1Eh 2.1

07h 16 0Fh 8 17h 4 1Fh 2

Table 70. Typematic delays

Bits 5-6 Delay (seconds)

00b 0.25

01b 0.5

10b 0.75

11b 1
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16 APBVGA - VGA controller with APB interface

16.1 Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer, and
a ROM for character pixel information. The video controller is controlled through an APB interface.

A block diagram for the data path is shown in figure 75.

16.2 Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by
only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

Figure 75.  APBVGA block diagram

APB

Video
Generator

Video memory

Character ROM

HSYNC
VSYNC
COMP_SYNC
BLANK
RED[7:0]
GREEN[7:0]
BLUE[7:0]
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16.3 Registers

The APB VGA is controlled through three registers mapped into APB address space.

16.3.1 VGA Data Register

[19:8]: Video memory address (write access)
[7:0]: Video memory data (write access)

16.3.2 VGA Background Color

[23:16]: Video background color red.
[15:8]: Video background color green.
[7:0]: Video background color blue.

16.3.3 VGA Foreground Color

[23:16]: Video foreground color red.
[15:8]: Video foreground color green.
[7:0]: Video foreground color blue.

16.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 71. APB VGA registers

APB address offset Register

0x0 VGA Data register

0x4 VGA Background color

0x8 VGA Foreground color

Figure 76.  VGA data register

07831

RESERVED DATAADDRESS

19

Figure 77.  PS/2 status register

0716 15 831

RESERVED

24 23

BLUEGREENRED

Figure 78.  PS/2 status register

0716 15 831

RESERVED

24 23

BLUEGREENRED
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16.5 Configuration options

Table 72 shows the configuration options of the core (VHDL generics).

16.6 Signal descriptions

Table 73 shows the interface signals of the core (VHDL ports).

16.7 Library dependencies

Table 74 shows libraries used when instantiating the core (VHDL libraries).

16.8 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

Table 72. Configuration options

Generic Function Allowed range Default

memtech Technology to implement on-chip RAM 0 - NTECH 2

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 73. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

VGACLK N/A Input VGA Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

VGAO HSYNC Output Horizontal synchronization High

VSYNC Vertical synchronization High

COMP_SYNC Composite synchronization Low

BLANK Blanking Low

VIDEO_OUT_R[7:0] Video out, color red -

VIDEO_OUT_G[7:0] Video out, color green -

VIDEO_OUT_B[7:0] Video out, color blue -

* see GRLIB IP Library User’s Manual

Table 74. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component VGA signal and component declaration
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.

.

architecture rtl of apbuart_ex is

signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
signal vgao  : apbvga_out_type;

begin 
  -- AMBA Components are instantiated here
   ... 

  -- APB VGA
  vga0 : apbvga
  generic map (memtech => 2, pindex => 6, paddr => 6)
  port map (rstn, clk, vgaclk, apbi, apbo(6), vgao);

end;
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17 AHBUART- AMBA AHB Serial Debug Interface

17.1 Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
a read or write transfer can be generated to any address on the AMBA AHB bus.

17.2 Operation

17.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

Figure 79.  Block diagram

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

Figure 80.  Data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 81.  Commands

 Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

Receive

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

Read command

Resp. byte (optional)

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16] Resp. byte (optional)

bit 7:3 = 00000

bit 1:0 = AHB HRESP

Response byte encoding

bit 2 = DMODE
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read accesses, the control byte and address is sent once and the corresponding number of data words is
returned.

17.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate. 

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL bit is set in the UART control register. If the BL bit
is reset by software, the baud rate discovery process is restarted. The baud-rate discovery is also
restarted when a ‘break’ or framing error is detected by the receiver, allowing to change to baudrate
from the external transmitter. For proper baudrate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler = (((system_clk*10)/(baudrate*8))-5)/10

17.3 Registers

The core is programmed through registers mapped into APB address space.

0: Receiver enable (RE) - if set, enables both the transmitter and receiver.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked.

0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.

Table 75. AHB UART registers

APB address offset Register

0x4 AHB UART status register

0x8 AHB UART control register

0xC AHB UART scaler register

Figure 82.  AHB UART control register

01231

RESERVED ENBL

Figure 83.  AHB UART status register

0123456731

RESERVED DRTSTHOVFE

Figure 84.  AHB UART scaler reload register

0131431

RESERVED SCALER RELOAD VALUE
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17.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

17.5 Configuration options

Table 76 shows the configuration options of the core (VHDL generics).

17.6 Signal descriptions

Table 77 shows the interface signals of the core (VHDL ports)..

17.7 Library dependencies

Table 78 shows libraries used when instantiating the core (VHDL libraries).

17.8 Instantiation

This examples shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

Table 76. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR filed of the APB BAR. 0 - 16#FFF# 0

pmask MASK filed of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 77. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High

TXD Output UART transmit data High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Table 78. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER UART Signals, component Signals and component declaration
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library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity ahbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    
    -- UART signals
    ahbrxd   : in  std_ulogic;
    ahbtxd   : out std_ulogic 
    );
end;

architecture rtl of ahbuart_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  
  -- UART signals
  signal ahbuarti : uart_in_type;
  signal ahbuarto : uart_out_type;
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- AHB UART
  ahbuart0 : ahbuart
  generic map (hindex => 5, pindex => 7, paddr => 7)
  port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

  -- AHB UART input data 
  ahbuarti.rxd <= ahbrxd;  

  -- connect AHB UART output to entity output signal
  ahbtxd <= ahbuarto.txd;

end;
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18 AHBJTAG - JTAG Debug Link with AHB Master Interface

18.1 Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

18.2 Operation

18.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 79.  JTAG debug link Command/Address register
34 33 32 31 0

W SIZE AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer

33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved

31 30 AHB address

Table 80.  JTAG debug link Data register
32 31 0

SEQ AHB DATA

32 Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out or write 
data shifted in, the subsequent transfer will be to next word address.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

Figure 85.  JTAG Debug link block diagram
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18.3 Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

18.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01C. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

18.5 Configuration options

Table 81 shows the configuration options of the core (VHDL generics).

Table 81. Configuration options

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

hindex AHB master index 0 - NAHBMST-1 0

nsync Number of synchronization registers between clock 
regions

1 - 2 1

idcode JTAG IDCODE instruction code (generic tech only) 0 - 255 9

id_msb JTAG Device indentification code MSB bits (generic 
tech only)

0 - 65536 0

id_lsb JTAG Device indentification code LSB bits (generic tech 
only)

0 - 65536 0

idcode JTAG IDCODE instruction (generic tech only) 0 - 255 9

ainst Code of the JTAG instruction used to access JTAG 
Debug link command/address register

0 - 255 2

dinst Code of the JTAG instruction used to access JTAG 
Debug link data register

0 - 255 3
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18.6 Signal descriptions

Table 82 shows the interface signals of the core (VHDL ports). 

18.7 Library dependencies

Table 83 shows libraries used when instantiating the core (VHDL libraries).

18.8 Instantiation

This examples shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.jtag.all;

Table 82. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TCKN N/A Input Inverted JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

AHBI *** Input AHB Master interface input -

AHBO *** Output AHB Master interface output -

TAPO_TCK N/A Output TAP Controller User interface TCK signal** High

TAPO_TDI N/A Output TAP Controller User interface TDI signal** High

TAPO_INST[7:0] N/A Output TAP Controller User interface INSTsignal** High

TAPO_RST N/A Output TAP Controller User interface RST signal** High

TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High

TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High

TAPO_UPD N/A Output TAP Controller User interface UPD signal** High

TAPI_TDO N/A Input TAP Controller User interface TDO signal** High

*) If the target technology is Xilinx Virtex-II, Virtex-4 or Spartan3 the cores JTAG signals TCK, TCKN, TMS, TDI and 
TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core 
through Xilinx TAP controller instantiation. 

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG 
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG 
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

***) see GRLIB IP Library User’s Manual

Table 83. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER JTAG Signals, component Signals and component declaration
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entity ahbjtag_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- JTAG signals
    tck  : in std_ulogic; 
    tms  : in std_ulogic;
    tdi  : in std_ulogic;
    tdo  : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

  -- AMBA signals
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  
signal gnd : std_ulogic;

begin
  
gnd <= ‘0’;

  -- AMBA Components are instantiated here
  ...

-- AHB JTAG
  ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
 port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
               open, open, open, open, open, open, open, gnd);

end;
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19 GRETH - Ethernet Media Access Controller (MAC) with EDCL support

19.1 Overview

Gaisler Research’s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MII and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the MII Management interface which
is used to configure the PHY. 

Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. This is an UDP/IP based protocol used for remote debugging.

19.2 Operation

19.2.1 System overview

The GRETH consists 3 functional units: The DMA channels, MDIO interface and the optional Ether-
net Debug Communication Link (EDCL). 

The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and always runs in parallel with the DMA channels.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O

MDIO_I

MDC

AHB Master
Interface

Transmitter

Receiver 

Transmitter

Receiver

DMA Engine

DMA Engine

FIFO

FIFO

TX_EN
TX_ER
TXD(3:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(3:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 86.  Block diagram of the internal structure of the GRETH.
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The Media Independent Interface (MII) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the MII interface. Corre-
spondingly, there is an Ethernet receiver which stores all data from the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMII
which uses a subset of the MII signals.

The EDCL and the DMA channels share the Ethernet receiver and transmitter.

19.2.2 Protocol support

The GRETH is implemented according to IEEE standard 802.3-2002. There is no support for the
optional control sublayer and no multicast addresses can be assigned to the MAC. This means that
packets with type 0x8808 (the only currently defined ctrl packets) are discarded. 

19.2.3 Hardware requirements

The GRETH is synthesisable with most Synthesis tools. There are three clock domains: The AHB
clock, Ethernet Receiver clock and the Ethernet transmitter clock. Both full-duplex and half-duplex
operating modes are supported and both can be run in either 10 or 100 Mbit. The system frequency
requirement (AHB clock) for 10 Mbit operation is 2.5 MHz and 18 Mhz for 100 Mbit. The 18 Mhz
limit was tested on a Xilinx board with a DCM that did not support lower frequencies so it might be
possible to run it on lower frequencies. It might also be possible to run the 10 Mbit mode on lower fre-
quencies.

19.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

19.3.1 Setting up a descriptor.

A single descriptor is shown in figure 87. The number of bytes to be sent should be set in the length
field and the address field should point to the data. The address must be word-aligned. If the interrupt
enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this requires that
the transmitter interrupt bit in the control register is also set). The interrupt will be generated regard-
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less of whether the packet was transmitted successfully or not. The Wrap (WR) bit is also a control bit
that should be set before transmission and it will be explained later in this section. 

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH.

19.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the transmitter descriptor pointer register.
The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set. 

19.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the packet was completely
transmitted while the Alignment Error bit is set if more collisions occurred than allowed. The packet
was successfully transmitted only if both of these bits are zero. The other bits in the first descriptor
word are set to zero after transmission while the second word is left untouched. 

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH. There are three bits in the GRETH status register that hold transmis-
sion status. The Transmitter Error (TE) bit is set each time an transmission ended with an error (when

Figure 87.  Transmitter descriptor. Memory offsets are shown in the left margin.
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10 - 0: LENGTH - The number of bytes to be transmitted.
11: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor fields.
12: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to
zero when the 1 kB boundary of the descriptor table is reached.

13: Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been sent provided that the transmitter interrupt enable bit in the control register
is set. The interrupt is generated regardless if the packet was transmitted successfully or if it
terminated with an error.

14: Underrun Error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.
15: Attempt Limit Error (AL) - The packet was not transmitted because the maximum number of

attempts was reached.
31 - 2: Address - Pointer to the buffer area from where the packet data will be loaded.
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at least one of the two status bits in the transmit descriptor has been set). The Transmitter Interrupt
(TI) is set each time a transmission ended successfully. 

The transmitter AHB error (TA) bit is set when an AHB error was encountered either when reading a
descriptor or when reading packet data. Any active transmissions were aborted and the transmitter
was disabled. The transmitter can be activated again by setting the transmit enable register.

19.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH does not add the Ethernet address and type fields so they must also be stored in the
data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet. Each descrip-
tor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than 1514 B, the
packet will not be sent.

19.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

19.4.1 Setting up descriptors

A single descriptor is shown in figure 88. The address field should point to a word-aligned buffer
where the received data should be stored. The GRETH will never store more than 1514 B to the
buffer. If the interrupt enable (IE) bit is set, an interrupt will be generated when a packet has been
received to this buffer (this requires that the receiver interrupt bit in the control register is also set).
The interrupt will be generated regardless of whether the packet was received successfully or not. The
Wrap (WR) bit is also a control bit that should be set before the descriptor is enabled and it will be
explained later in this section.

19.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the receiver descriptor pointer register. The
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10 - 0: LENGTH - The number of bytes received to this descriptor.
11: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor fields.
12: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to
zero when the 1 kB boundary of the descriptor table is reached.

13: Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been
received to this descriptor provided that the receiver interrupt enable bit in the control register
is set. The interrupt is generated regardless if the packet was received successfully or if it
terminated with an error.

14: Alignment error (AE) - An odd number of nibbles were received.
15: Frame Too Long (FT) - A frame larger than the maximum size was received. The excessive part was

truncated.
16: CRC Error (CE) - A CRC error was detected in this frame.
17: Overrum Error (OE) - The frame was incorrectly received due to a FIFO overrun.
31 - 2: Address - Pointer to the buffer area from where the packet data will be loaded.
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Figure 88.  Receive descriptor. Memory offsets are shown in the left margin.
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address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH read the first descriptor and wait for an incoming packet.

19.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 17-14
in the first descriptor word are status bits indicating different receive errors. All four bits are zero after
a reception without errors. The status bits are described in figure 88. 

Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.

Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH. 

19.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

19.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH provided full support for the MDIO
interface. If it is not needed in a design it can be removed with a VHDL generic. 

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.
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19.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.

19.6.1 Operation 

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority. 

19.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions. 

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 84 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature. 

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.

The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies. 

The UDP data field contains the EDCL application protocol fields. Table 85 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in table 84
contains the data to be written. If R/W is zero the data field is empty in the received packets. Table 86
shows the application layer fields of the replies from the EDCL. The length field is always zero for

Table 84. The IP packet expected by the EDCL. 

Ethernet

Header

IP

Header

UDP

Header

2 B 

Offset

4 B 

Control word

4 B

Address

Data 0 - 242 

4B Words

Ethernet

CRC

Table 85. The EDCL application layer fields in received frames. 

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused
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replies to write requests. For read requests it contains the number of bytes of data contained in the data
field. 

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK field is set to 0 in the reply. The length field is always set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extra identifier bits if needed. 

19.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The GRETH
supports two of them: The Media Independent Interface (MII) and the Reduced Media Independent
Interface (RMII). 

The MII was defined in the 802.3 standard and is most commonly supported. The ethernet interface
have been implemented according to this specification. It uses 16 signals. 

The RMII was developed to meet the need for an interface allowing Ethernet controllers with smaller
pin counts. It uses 6 (7) signals which are a subset of the MII signals. Table 87 shows the mapping
betweem the RMII signals and the GRLIB MII interface.

19.8 Software drivers

Drivers for the GRETH MAC is provided for the following operating systems: RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Gaisler Research’s web site (http://gaisler.com/).

Table 86. The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

Table 87. Signal mappings between RMII and the GRLIB MII interface.

RMII MII

txd[1:0] txd[1:0]

tx_en tx_en

crs_dv rx_crs

rxd[1:0] rxd[1:0]

ref_clk rmii_clk

rx_er not used
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19.9 Registers

The core is programmed through registers mapped into APB address space.

0: Transmit Enable (TE) - Should be written with a one each time new descriptors are enabled. As long as this bit is
one the GRETH will read new descriptors and as soon as it encounters a disabled descriptor it will stop until TE is
set again. This bit should be written with a one after the new descriptors have been enabled. Reset value: ‘0’.

1: Receive Enable (RE) - Should be written with a one each time new descriptors are enabled. As long as this bit is
one the GRETH will read new descriptors and as soon as it encounters a disabled descriptor it will stop until TE is
set again. This bit should be written with a one after the new descriptors have been enabled. Reset value: ‘0’.

2: Transmitter Interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a packet is
transmitted when this bit is set. The interrupt is generated regardless if the packet was transmitted successfully or if
it terminated with an error. Not Reset.

3:  Receiver Interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a packet is received
when this bit is set. The interrupt is generated regardless if the packet was received successfully or if it terminated
with an error. Not Reset.

4: Full Duplex (FD) - If set, the GRETH operates in full-duplex mode otherwise it operates in half-duplex. Not Reset.
5: Promiscuous Mode (PM) - If set, the GRETH operates in promiscuous mode which means it will receive all packets

regardless of the destination address. Not Reset.
6: Reset (RS) - A one written to this bit resets the GRETH core. Self clearing.
7: Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Only used in RMII mode (rmii = 1). A default

value is automatically read from the PHY after reset. 
30 - 28:  EDCL Buffer Size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB, ...., 6 = 64 kB. 
31: EDCL Available (ED) - Set to one if the EDCL is available. 

0: Receiver Error (RE) - A packet has been received which terminated with an error. Cleared when written with a one.
Not Reset.

1: Transmitter Error (TE) - A packet was transmitted which terminated with an error. Cleared when written with a one.
Not Reset.

2: Receiver Interrupt (RI) - A packet was received without errors. Cleared when written with a one. Not Reset.
3: Transmitter Interrupt (TI) - A packet was transmitted without errors. Cleared when written with a one. Not Reset.

Table 88. GRETH registers

APB address offset Register

0x0 Control register

0x4 Status/Interrupt-source register

0x8 MAC Address MSB

0xC MAC Address LSB

0x10 MDIO Control/Status

0x14 Transmit descriptor pointer

0x18 Receiver descriptor pointer

0x1C EDCL IP

Figure 89.  GRETH control register.
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Figure 90.  GRETH status register
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4: Receiver AHB Error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when written with a
one. Not Reset.

5: Transmitter AHB Error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared when written
with a one. Not Reset.

6: Too Small (TS) - A packet smaller than the minimum size was received. Cleared when written with a one. Reset
value: ‘0’.

7: Invalid Address (IA) - A packet with an address not accepted by the MAC was received. Cleared when written with
a one. Reset value: ‘0’.

31 - 16: The two most significant bytes of the MAC Address. Not Reset.

31 - 0: The 4 least significant bytes of the MAC Address. Not Reset.

0: Write (WR) - Start a write operation on the management interface. Data is taken from the Data field. Reset value:
‘0’.

1: Read (RD) - Start a read operation on the management interface. Data is stored in the data field. Reset value: ‘0’.
2: Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management link was not

detected. Not Reset.
3: Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is finished and the

management link is idle this bit is cleared. Reset value: ‘0’.
4: Not valid (NV) - When an operation is finished (BUSY = 0) this bit indicates whether valid data has been received

that is, the data field contains correct data. Not Reset.
10 - 6: Register Address - This field contains the address of the register that should be accessed during a write or read

operation. Not Reset.
15 - 11: PHY Address - This field contains the address of the PHY that should be accessed during a write or read operation.

Not Reset.
31 - 16: Data - Contains data read during a read operation and data that is transmitted is taken from this field. Not Reset.

31 - 10: Base address to the transmitter descriptor table.Not Reset.
9 - 3: Pointer to individual descriptors. Automatically incremented by the Ethernet MAC.
2 - 0: Reserved. Reads as zeroes.

Figure 91.  MAC Address MSB.
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Figure 92.  MAC Address LSB.
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Figure 93.  GRETH MDIO ctrl/status register.
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Figure 94.  GRETH transmitter descriptor table base address register.
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31 - 10: Base address to the receiver descriptor table.Not Reset.
9 - 3: Pointer to individual descriptors. Automatically incremented by the Ethernet MAC.
2 - 0: Reserved. Reads as zeroes.

31 - 0: EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

19.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x1D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 95.  GRETH receiver descriptor table base address register.
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Figure 96.  GRETH EDCL IP register.
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19.11 Configuration options

Table 89 shows the configuration options of the core (VHDL generics).

*) Not all addresses are allowed and most NICs and protocol implementations will discard frames
with illegal addresses silently. Consult network literature if unsure about the addresses.

Table 89. Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0

memtech Memory technology used for the FIFOs. 0 - NTECH inferred

ifg_gap Number of ethernet clock cycles used for one interframe 
gap. Default value as required by the standard. Do not 
change unless you know what your doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one 
packet. Default value as required by the standard. 

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default 
value as required by the standard. Sets the number of bits 
used for the random value. Do not change unless you 
know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time. 
Default value as required by the ethernet standard. Do 
not change unless you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock 
(mdc). The mdc frequency will be clk/(2*(mdcs-
caler+1)). 

0 - 255 25

enable_mdio Enable the Management interface, 0 - 1 0

fifosize Sets the size in 32-bit words of the receiver and transmit-
ter FIFOs.

4 - 32 8

nsync Number of synchronization registers used. 1 - 2 2

edcl Enable EDCL. 0 - 1 0

edclbufsize Select the size of the EDCL buffer in kB. 1 - 64 1

macaddrh Sets the upper 24 bits of the EDCL MAC address.*) 0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address. *) 0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset 
value.

0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset 
value.

0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the 
MDIO register.

0 - 31 0

rmii Selects the desired PHY interface. 0 = MII, 1 = RMII. 0 - 1 0
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19.12 Signal descriptions

Table 90 shows the interface signals of the core (VHDL ports).

19.13 Library dependencies

Table 91 shows libraries used when instantiating the core (VHDL libraries).

19.14 Instantiation

This examples shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- ethernet signals
    ethi :: in  eth_in_type;
    etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;

Table 90. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ETHI * Input Ethernet MII input signals. -

ETHO * Output Ethernet MII output signals. -

* see GRLIB IP Library User’s Manual

Table 91. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER ETHERNET_MAC Signals, component GRETH component declarations, GRETH sig-
nals

GAISLER NET Signals Ethernet signals
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  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- GRETH
  e1 : greth 
    generic map(
     hindex       => 0,
     pindex       => 12,
     paddr        => 12,
     pirq         => 12,
     memtech      => inferred,
     mdcscaler    => 50,
     enable_mdio  => 1,
     fifosize     => 32,
     nsync        => 1,
     edcl         => 1,
     edclbufsz    => 8,
     macaddrh     => 16#00005E#,
     macaddrl     => 16#00005D#,
     ipaddrh      => 16#c0a8#,
     ipaddrl      => 16#0035#) 
 port map(
   rst          => rstn,
   clk          => clk,
   ahbmi        => ahbmi,
   ahbmo        => ahbmo(0),
   apbi         => apbi,
   apbo         => apbo(12),
   ethi         => ethi,
   etho         => etho
   );
end;
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20 GRLIB wrapper for OpenCores CAN Interface core

20.1 Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB I/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through the irq generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies. 

This CAN interface implements the CAN 20.A and 2.0B protocolos. It is based on the Philips
SJA1000 and has a compatible register map with a few exceptions.

20.2 Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

20.3 AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.

Figure 97.  Block diagram
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20.4 BasicCAN mode

20.4.1 BasicCAN register map

20.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

Table 92. BasicCAN address allocation

Address Operating mode Reset mode

Read Write Read Write

0 Control Control Control Control

1 (0xFF) Command (0xFF) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 (0xFF) - Acceptance code Acceptance code

5 (0xFF) - Acceptance mask Acceptance mask

6 (0xFF) - Bus timing 0 Bus timing 0

7 (0xFF) - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 TX id1 TX id1 (0xFF) -

11 TX id2, rtr, dlc TX id2, rtr, dlc (0xFF) -

12 TX data byte 1 TX data byte 1 (0xFF) -

13 TX data byte 2 TX data byte 2 (0xFF) -

14 TX data byte 3 TX data byte 3 (0xFF) -

15 TX data byte 4 TX data byte 4 (0xFF) -

16 TX data byte 5 TX data byte 5 (0xFF) -

17 TX data byte 6 TX data byte 6 (0xFF) -

18 TX data byte 7 TX data byte 7 (0xFF) -

19 TX data byte 8 TX data byte 8 (0xFF) -

20 RX id1 - RX id1 -

21 RX id2, rtr, dlc - RX id2, rtr, dlc -

22 RX data byte 1 - RX data byte 1 -

23 RX data byte 2 - RX data byte 2 -

24 RX data byte 3 - RX data byte 3 -

25 RX data byte 4 - RX data byte 4 -

26 RX data byte 5 - RX data byte 5 -

27 RX data byte 6 - RX data byte 6 -

28 RX data byte 7 - RX data byte 7 -

29 RX data byte 8 - RX data byte 8 -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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20.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core. 

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

Table 93. Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR.5 - reserved

CR.4 Overrun Interrupt Enable 1 - enabled, 0 - disabled

CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled

CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled

CR.0 Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode.

Table 94. Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 - not used (go to sleep in SJA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer
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20.4.4 Status register

The status register is read only and reflects the current status of the core. 

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first
when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

20.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register. 

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is 0.

Table 95. Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning 
limit (96). 

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 96. Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved

IR.6 - reserved

IR.5 - reserved

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.

IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)

IR.0 Receive interrupt This bit is set while there are more messages in the fifo.
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20.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

20.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer. 

20.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

Table 97. Transmit buffer layout

Addr Name Bits

7 6 5 4 3 2 1 0

10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

12 TX data 1 TX byte 1

13 TX data 2 TX byte 2

14 TX data 3 TX byte 3

15 TX data 4 TX byte 4

16 TX data 5 TX byte 5

17 TX data 6 TX byte 6

18 TX data 7 TX byte 7

19 TX data 8 TX byte 8
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20.5 PeliCAN mode

20.5.1 PeliCAN register map

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below. 

Table 98. PeliCAN address allocation

#

Operating mode Reset mode

Read Write Read Write

0 Mode Mode Mode Mode

1 (0x00) Command (0x00) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 Interrupt enable Interrupt enable Interrupt enable Interrupt enable

5 reserved (0x00) - reserved (0x00) -

6 Bus timing 0 - Bus timing 0 Bus timing 0

7 Bus timing 1 - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 reserved (0x00) - reserved (0x00) -

11 Arbitration lost capture - Arbitration lost capture -

12 Error code capture - Error code capture -

13 Error warning limit - Error warning limit Error warning limit

14 RX error counter - RX error counter RX error counter

15 TX error counter - TX error counter TX error counter

16 RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0

17 RX ID 1 RX ID 1 TX ID 1 TX ID 1 Acceptance code 1 Acceptance code 1

18 RX ID 2 RX ID 2 TX ID 2 TX ID 2 Acceptance code 2 Acceptance code 2

19 RX data 1 RX ID 3 TX data 1 TX ID 3 Acceptance code 3 Acceptance code 3

20 RX data 2 RX ID 4 TX data 2 TX ID 4 Acceptance mask 0 Acceptance mask 0

21 RX data 3 RX data 1 TX data 3 TX data 1 Acceptance mask 1 Acceptance mask 1

22 RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask 2 Acceptance mask 2

23 RX data 5 RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3

24 RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -

25 RX data 7 RX data 5 TX data 7 TX data 5 reserved (0x00) -

26 RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -

27 FIFO RX data 7 - TX data 7 reserved (0x00) -

28 FIFO RX data 8 - TX data 8 reserved (0x00) -

29 RX message counter - RX msg counter -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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20.5.2 Mode register

Writing to MOD.1-3 can only be done when reset mode has been entered previously. 

In Listen only mode the core will not send any acknowledgements. Note that unlike the SJA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

20.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

Table 99. Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJA1000)

MOD.3 Acceptance filter mode 1 - single filter mode, 0 - dual filter mode

MOD.2 Self test mode If set the controller is in self test mode 

MOD.1 Listen only mode If set the controller is in listen only mode 

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode

Table 100.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 Self reception request Transmits and simultaneously receives a message

CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer



134
20.5.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read
out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

20.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

Table 101.Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error warning 
limit. 

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 102.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.5 Error passive interrupt Set when the core goes between error active and error passive

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while the fifo is not empty.
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20.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

20.5.7 Arbitration lost capture register

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

20.5.8 Error code capture register

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 103.Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description

IR.7 Bus error interrupt 1 - enabled, 0 - disabled

IR.6 Arbitration lost interrupt 1 - enabled, 0 - disabled

IR.5 Error passive interrupt 1 - enabled, 0 - disabled

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt 1 - enabled, 0 - disabled

IR.2 Error warning interrupt 1 - enabled, 0 - disabled.

IR.1 Transmit interrupt 1 - enabled, 0 - disabled

IR.0 Receive interrupt 1 - enabled, 0 - disabled

Table 104.Bit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description

ALC.7-5 - reserved

ALC.4-0 Bit number Bit where arbitration is lost

Table 105.Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0 - transmission error

ECC.4-0 Segment Where in the frame the error occurred

Table 106.Error code interpretation

ECC.7-6 Description

0 Bit error

1 Form error

2 Stuff error

3 Other
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Bit 4 downto 0 of the ECC register is interpreted as below

20.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

20.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event
resets this counter to 0.

20.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

Table 107.Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame

0x02 ID.28 - ID.21

0x06 ID.20 - ID.18

0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 - ID.13

0x0F ID.12 - ID.5

0x0E ID.4 - ID.0

0x0C Bit RTR

0x0D Reserved bit 1

0x09 Reserved bit 0

0x0B Data length code

0x0A Data field

0x08 CRC sequence

0x18 CRC delimiter

0x19 Acknowledge slot

0x1B Acknowledge delimiter

0x1A End of frame

0x12 Intermission

0x11 Active error flag

0x16 Passive error flag

0x13 Tolerate dominant bits

0x17 Error delimiter

0x1C Overload flag
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20.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

TX frame information

This field has the same layout for both SFF and EFF frames.

Bit 7 - FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard
frame. 1 = EFF, 0 = SFF.

Bit 6 - RTR should be set to 1 for an remote transmission request frame.

Bit 5:4 - are don’t care.

Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value
greater than 8 is used 8 bytes will be transmitted.

TX identifier 1

This field is the same for both SFF and EFF frames.

Bit 7:0 - The top eight bits of the identifier.

Table 108.

# Write (SFF) Write(EFF)

16 TX frame information TX frame information

17 TX ID 1 TX ID 1

18 TX ID 2 TX ID 2

19 TX data 1 TX ID 3

20 TX data 2 TX ID 4

21 TX data 3 TX data 1

22 TX data 4 TX data 2

23 TX data 5 TX data 3

24 TX data 6 TX data 4

25 TX data 7 TX data 5

26 TX data 8 TX data 6

27 - TX data 7

28 - TX data 8

Table 109.TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0

Table 110.TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21
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TX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.

Bit 4:0 - Don’t care.

TX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

TX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

TX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier

Bit 2:0 - Don’t care

Data field

For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is
transmitted starting from the MSB at the lowest address.

Table 111.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 - - - - -

Table 112.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 113.TX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 114.TX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 - - -
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20.5.13 Receive buffer

RX frame information

This field has the same layout for both SFF and EFF frames.

Bit 7 - Frame format of received message. 1 = EFF, 0 = SFF.

Bit 6 - 1 if RTR frame.

Bit 5:4 - Always 0.

Bit 3:0 - DLC specifies the Data Length Code.

RX identifier 1

This field is the same for both SFF and EFF frames.

Bit 7:0 - The top eight bits of the identifier.

RX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.

Bit 4 - 1 if RTR frame.

Table 115.

# Read (SFF) Read (EFF)

16 RX frame information RX frame information

17 RX ID 1 RX ID 1

18 RX ID 2 RX ID 2

19 RX data 1 RX ID 3

20 RX data 2 RX ID 4

21 RX data 3 RX data 1

22 RX data 4 RX data 2

23 RX data 5 RX data 3

24 RX data 6 RX data 4

25 RX data 7 RX data 5

26 RX data 8 RX data 6

27 RX FI of next message in fifo RX data 7

28 RX ID1 of next message in fifo RX data 8

Table 116.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

Table 117.RX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 118.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 RTR 0 0 0 0
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Bit 3:0 - Always 0.

RX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier

Bit 2- 1 if RTR frame

Bit 1:0 - Don’t care

Data field

For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. 

20.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.

There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller fil-
ters are used and if either of these signals a match the message is accepted. Each filter consists of two
parts the acceptance code and the acceptance mask. The code registers are used for specifying the pat-

Table 119.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 120.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 121.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0
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tern to match and the mask registers specify don’t care bits. In total eight registers are used for the
acceptance filter as shown in the table below. Note that they are only read/writable in reset mode.

Single filter mode, standard frame

When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18

ACR1.4 is compared to the RTR bit.

ACR1.3-0 are unused.

ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACR0-3 are compared against
the incoming message in the following way:

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

ACR2.7-0 & ACR3.7-3 are compared to ID.12-0

ACR3.2 are compared to the RTR bit

ACR3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Filter 1

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18

ACR1.4 is compared to the RTR bit.

ACR1.3-0 are compared against upper nibble of data byte 1

Table 122.Acceptance filter registers

Address Description

16 Acceptance code 0 (ACR0)

17 Acceptance code 1 (ACR1)

18 Acceptance code 2 (ACR2)

19 Acceptance code 3 (ACR3)

20 Acceptance mask 0 (AMR0)

21 Acceptance mask 1 (AMR1)

22 Acceptance mask 2 (AMR2)

23 Acceptance mask 3 (AMR3)



142
ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2

ACR2.7-0 & ACR3.7-5 are compared to ID.28-18

ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Filter 1

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2

ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

20.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

20.6 Common registers

There are three common registers that are at the same addresses and have the same functionality in
both BasiCAN and PeliCAN mode. These are the Clock divider register and bus timing register 0 and
1.
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20.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

20.6.2 Bus timing 0

The CAN core system clock is calculated as:

tscl = 2*tclk*(BRP+1)

where tclk is the system clock.

The sync jump width defines how many clock cycles (tscl) a bit period may be adjusted with by one
re-synchronization.

20.6.3 Bus timing 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

ttseg1 = tscl * ( TSEG1+1)

ttseg2 = tscl * ( TSEG2+1)

tbit = ttseg1 + ttseg2 + tscl

The additional tscl term comes from the initial sync segment.

Table 123.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN

CDR.6 - unused (cbp bit of SJA1000)

CDR.5 - unused (rxinten bit of SJA1000)

CDR.4 - reserved

CDR.3 Clock off Disable the clkout output

CDR.2-0 Clock divisor Frequency selector

Table 124.Bit interpretation of bus timing 0 register (BTR0) (address 6)

Bit Name Description

BTR0.7-6 SJW Synchronization jump width

BTR0.5-0 BRP Baud rate prescaler

Table 125.Bit interpretation of bus timing 1 register (BTR1) (address 7)

Bit Name Description

BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point

BTR1.6-4 TSEG2 Time segment 2

BTR1.3-0 TSEG1 Time segment 1
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Sampling is done between TSEG1 and TSEG2 in the bit period. 

20.7 Design considerations

This chapter will list known differences between this CAN controller and the SJA1000 on which is it
based.

• All bits related to sleep mode areunavailable

• Output control and test registers do not exist (reads 0x00)

• Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented

• Overrun irq and status not set until fifo is read out

BasicCAN specific differences:

• The receive irq bit is not reset on read, works like in PeliCAN mode

• Bit CR.6 always reads 0 and is not a flip flop with no effect as in SJA1000

PeliCAN specific differences:

• Writing 256 to tx error counter gives immediate bus-off when still in reset mode

• Read Buffer Start Address register does not exist

• Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)

• The core transmits active error frames in Listen only mode

20.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

20.9 Configuration options

Table 126 shows the configuration options of the core (VHDL generics).

Table 126.Configuration options

Generic Function Allowed range Default

slvndx AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The AHB I/O area base address. Compared with bit 19-8 
of the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area 
and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0 - NTECH
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20.10 Signal descriptions

Table 127 shows the interface signals of the core (VHDL ports).

20.11 Library dependencies

Table 128 shows libraries that should be used when instantiating the core.

20.12 Component declaration

library grlib;
use grlib.amba.all;
use gaisler.can.all;

component can_oc                    
   generic (
    slvndx    : integer := 0;
    ioaddr    : integer := 16#000#;
    iomask    : integer := 16#FF0#;
    irq       : integer := 0;
    memtech   : integer := 0);
   port (                          
      resetn  : in  std_logic;        
      clk     : in  std_logic;        
      ahbsi   : in  ahb_slv_in_type; 
      ahbso   : out ahb_slv_out_type;
      can_rxi : in  std_logic;      
      can_txo : out std_logic    
);                           
   end component; 

Table 127.Signal descriptions

Signal name Field Type Function Active

CLK Input AHB clock

RESETN Input Reset Low

AHBSI * Input AMBA AHB slave inputs -

AHBSO * Input AMBA AHB slave outputs

CAN_RXI Input CAN receiver input High

CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

Table 128.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER CAN Component Component declaration
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