
 1

Explanation of the Descartes language

1 Introduction

The Descartes language was designed as I/F for the artificial

intelligence program. However, it will serve also a s a flexible script

which processes text ｓ and data ｓ. The name was connected with Descartes

who is famous mathematician and philosopher.

The language with which anyone can use the Descarte s language easily

is not aimed at. When the user of this language und erstands deeply, you

make it a language with which a wonderful result is obtained.

2 Descartes Language

The Descartes language is a logic programming langu age. A logical

relation is described like a Prolog language and a program is executed

by reasoning a result based on it. In order to rais e the power of

expression of programming in addition to it, the fu nction type and

procedural programming paradigm was introduced.

Moreover, the syntax-analysis function based on the method of BNF is

introduced as a fundamental element of grammar.

Decisive routine processing is described as a funct ion type or a

procedural procedure, and knowledge-intensive reaso ning describes it

as a logic type for required processing.

Furthermore, the Descartes language has an object-o riented mechanism.

This object-oriented mechanism is used also for lib rary.

Cogito ergo sum

Rene Descartes

 2

3 The method for performing

• An argument is specified and started in the Descart es language.

An argument specifies the file which described the program.

 descartes PROGRAM-FILE

The program file specified as the argument is read and performed.

For example, if it performs by carrying out the fol lowing description

to File hello, the "hello,world" message will be ou tputted.

An execution result is as follows.

$./descartes hello

hello, world

result --

(<print hello, world>)

-- true

The 2nd line is an output of a message.

"true" of the last line means that execution was su ccessful.

*) Although there is also a method of executing a p rogram interactively

in a notes Descartes language, this document does n ot explain.

? <print "hello, world">;

 3

4 Data type

Character string

A character string is a sequence of the symbol with which the character

was located in a line.

It is the character string which was bundled with " or ' .

When a blank, a tab, a new-line, etc. are included in a character string,

you have to bundle with " or ' .

Numerical value

The integer of 8-byte accuracy and the floating poi nt number of long double

accuracy can be used.

A hexadecimal number is expressed with the characte r which begins from

0x.

Variable

A variable is expressed with the sequence of the sy mbol which starts

in #.

Moreover, it is an variable without a name. _ can b e used.

hello “Hello, world!!” ‘1 2 3’

100 0.8123 0xa1

#x #a #abc

_ A variable without a name

 4

List

Some character string, some number, some variable , some list, and

some function predicate are bundled with ().

(The function predicate is mentioned later.)

List has the same structure as List of a Lisp langu age.

Empty List is ().

The dot pair is ": " .

Function predicate

A character string, a number, a variable, List, and a function predicate

are bundled with < and >.

Evaluation results are true, false, and unknown.

When it succeeds as a result of evaluation, it is c onsidered for

convenience that the first argument is a return val ue of a function.

(abc “this is a pen” #xy 1 2 3 (list1 #z))

<app #z (a b c) (d e f) <ap #d d1 d2>>

 5

5 Description of Program

5.1 Predicate

As a performed result, a predicate takes three valu es of true, false,

and unknown.

As a result of performing the predicate in the Desc artes language,

when it is set to true, unification with the progra m registered is

performed and a value is set to the variable contai ned in a predicate.

In false, simplification of a predicate goes wrong and is interrupted.

In unknown, other possibilities are tried and backt racking is performed

if needed.

5.2 Function Predicate

In a predicate, when it succeeds as a result of eva luation, it is

considered for convenience that the first argument is the return value

of a function. Such a predicate is called a functio n predicate. When

a function predicate is in an argument and the func tion predicate is

true, the function predicate itself is replaced wit h the value of the

first argument.

It is set to false and, in unknown, the function pr edicate which called

in false, and the function predicate called similar ly serve as unknown.

A function predicate is applied to the predicate of the argument of

func, f, let, letf, rpn, rpnf, compare, comparef, w ritenl, and print.

In order to enable it to use in a function predicat e, when writing

a predicate, if it writes that a result returns to the first argument,

it is convenient and convenient.

5.3 Notes Comment

There are the following three kinds of comment.

- Range surrounded by /* */

- from # to the end of the sentence

- from //to the end of the sentence

 6

5.4 Description Rule of Predicate

 Enumeration of a predicate describes a program. The last ; (semicolon)

It divides. The first predicate calls it a head and the other predicate

calls it a body. What combined the head and the bod y is called a clause.

Not only a predicate but a list can also be describ ed on a body.

It will become easy to read if a tab divides and de scribes a body as

follows.

<predicate > (<predicate > <predicate > (<predicate >)

(<predicate > < predicate >)) ;

<predicate > <predicate > <predicate > ... <predicate > ;

-------------------- --- clause

head body

<predicate >

<predicate >

<predicate >

<predicate >

;

 7

5.5 Unification

Unification is the operation which makes two predic ates the same form

(make equal the clause which corresponds altogether from a predicate

name to the value of an argument).

5.6 Call of Program

? is attached to the head of a predicate in order t o call the described

program.

? <predicate>;

The called predicate is compared with the header an d order in a program,

and tries unification. If it succeeds in unificatio n, the program

described by the body below will be called sequenti ally from the left.

<pred1 #x #y 123 (a b c)>

 corresponding clause is coincided.

<pred1 xyz #z 123 #a>

Result of unification; #x=xyz #y=#z #a= (a b c) It becomes.

 8

5.7 Debugging Function

If the <tron> predicate is performed, a tracing fac ility will be set

to ON and trace information will be outputted at th e time of execution.

Please perform the <troff> predicate, when you turn OFF a tracing

facility.

 9

5.8 Calculation of Expression, Reverse Poland Style Cal culation

let, letf predicate

• Expression is calculated.

• A calculation result is substituted when the left s ide is a variable.

• When the left side is a numerical value, it is judg ed whether it is

equal to a calculation result.

• let calculates an integer and letf calculates a flo ating point

number.

 A function predicate can also be included in the e xpression of the

right-hand side.

The operation of the expression which omitted let i s treated as integer

operation.

Therefore, both following examples bring the same r esult.

<let expression>

<letf expression>

? <let #x = 1 + 2 + 7 * 5 >;

? <letf #x = ::sys <cos _ 1> + ::sys <sin _ 1>>;

? <let #x = 1 + 2>;

? <#x = 1 + 2>;

 10

rpn, rpnf predecate

• A reverse Poland style is calculated and a result i s set as a variable.

• rpn calculates an integer and rpnf calculates a flo ating point

number.

A function predicate can also be included in a reve rse Poland style.

<rpn VAR RPN-EXPRESSION>

<rpnf VAR RPN-EXPRESSION>

? <rpn #x 1 2 3 4 5 6 7 8 9 10 + + + + + + + + + >;

? <rpnf #i 10 9 8 * * <rpn #j 10 30 *> / #j / >;

 11

5.9 Comparison of Expression

compare, comparef predicate

• Expression is compared.

• compare is compared as an integer and comparef is c ompared as a

floating point number.

The following can be used for a comparison operator .

=, == equal

!=, <> not equal

> large

>= large or equal

< small

<= small or equal

and, or, not operator can be used for a comparison type.

<compare Expression Comparison-operator Expression >

<comparef Expression Comparison-operator Expression>

? <compare (#x > 1) and (#x < 20)>;

? <comparef not ((#y > 1.2) or (#z < 3.0))>;

 12

5.10 Global Variable

variable in the Descartes language is an effectiv e local variable

only in a clause.

It sets up as a global variable to save data over a paragraph. The

global variable in the Descartes language is mounte d by defining the

group of a variable identifier and a value as a new clause.

The setvar predicate of a sys module is used for a setup of a global

variable.

Reference of a value is <variable-identifier #varia ble>. A value will

be set as #variable.

When a setvar predicate is performed, the clause wi ll be replaced if

there is already a variable of the same name.

A new clause will be added if there is nothing.

Substitution of the value of a global variable

? ::sys <setvar color “red”>;

Reference of the value of a global variable

? <color #cl>;

red is set to #cl.

 13

Global array variable

A global array variable can be set up by the setarr ay predicate of

a sys module.

Arra ｙ defines the group of a value as a variable identif ier and an index

as new clause.

A number, a character string, a list, a predicate, etc. can be specified

as an index anything. Probably, in the case of a mu ltidimensional array,

it is good to set a list as an index.

set global array valiables.

? ::sys<setvar ary 7 10>;

? ::sys <setvar cell (10 20) 100>;

refference of global array valiables

?<ary 7 #v>;

10 is set as #v.

? <cell (10 20) #val>;

100 is set as #val.

 14

5.11 FILE I/O

The file of an input or an output is changed only w hile performing

the predicate of an argument.

<openr FILE PREDICATE...>

 Open file for reading. and a predicate is performe d.

<openw FILE PREDICATE...>

 Open file for writing. and a predicate is performe d.

<openwp FILE PREDICATE...>

 Open file for adding a postscript . and a predicat e is performed.

 15

5.12 Library module

Although there are the following three kinds, each expresses the same

meaning with how to call a library module.

Usually, probably, the description using :: will be convenient.

In order to use an external library module, it is n ecessary to include

a library module.

However, since it is the library module included in the system, only

a "sys" module can be used even if it does not incl ude.

:: library-module predicate

example) ::sys <writenl hello>

<unify library-module predicate>

example) <unify sys <writenl hello>>

<obj library-module predicate>

example) <obj sys <writenl hello>>

? <include library-module>

example)

?<include list>;

?::list <append #list (a b c) (d e)>;

 16

5.13 How to Make Library Module

A library module makes a file name from a library m odule name.

The program described to inside describes the progr am of the usual

Descartes language.

By including, it can be used as a library module.

Example ）example module

call append

Execution result

$./descartes append

result --

(<include example>)

-- true

result --

(<obj example <append (abc def ghi jkl) (abc def) (ghi jkl)>>)

-- true

<append #X () #X>;

<append (#A : #Z) (#A : #X) #Y>

 <append #Z #X #Y>;

? <include example>;

? ::example <append #list (abc def) (ghi jkl)>;

 17

5.14 Object-orientation

The object in the Descartes language is realized by regarding a library

module as an object. That is, a library module name is treated as an

object name.

The definition of an object is performed as follows .

 In a method, the clause which is a program of the u sual Descartes

language and which combined the head and the body c an be described.

::<Object-name

 Define-method;

 Define-method;

 inherit Inherit-object;

>;

 18

5.15 Example of Object-oriented Program

 The object of a bird, a penguin, and a hawk is de fined as an example.

// Object of a bird: flies and walks.

::<bird

 <fly>;

 <walk>;

>;

// Object of a penguin: does not fly, it swims an d walks.

::<penguin

 <fly> <false>; // cannot fly.

 <swim>; // It adds newly swimming.

 inherit bird; // bird is inherited.

>;

// A hawk is the same as a bird, flies, and walks.

::<hawk

 inherit bird; // bird is inherited

>;

 Now, a question is asked to the object of a bird, a penguin, and a

hawk. Although a question can be asked by the call of the method to an

object, the call of a method is the same as how to call a library module.

?::bird <swim>; // Does it swim in a bird?

result --

(<obj bird <swim>>)

-- unknown

?::penguin <swim>; // Does it swim in a penguin?

result --

(<obj penguin <swim>>)

-- true

 19

?::bird <walk>;

result --

(<obj bird <walk>>)

-- true

?::penguin <walk>;

result --

(<obj penguin <walk>>)

-- true

?::bird <fly>;

result --

(<obj bird <fly>>)

-- true

?::penguin <fly>;

result --

(<obj penguin <fly>>)

-- false

?::penguin <run>;

result --

(<obj penguin <run>>)

unknown

?::hawk <fly>;

result --

(<obj hawk <fly>>)

-- true

?::hawk <walk>;

result --

(<obj hawk <walk>>)

-- true

 20

?::hawk <swim>;

result --

(<obj hawk <swim>>)

-- unknown

 21

5.16 Syntax Analysis

It is like the syntax by EBNF (extended Backus Naur form) being the

following.

expr = expradd

expradd = exprmul { "+" exprmul | "-" exprmul }

exprmul = exprID { "*" exprID | "/" exprID }

exprID = "+" exprterm | "-" exprterm | exprter m

exprterm = "(" expr ")" | Number-sequence

 abcz = abc [Alphabet]

The syntax of EBNF (extended Backus Naur form) is c onvertible with

the Descartes language corresponding to 1 to 1. (Th e Descartes language

receives the grammar of LL (*).)

Syntax by the Descartes language

<expr> <expradd>;

<expradd> <exprmul> { "+" <exprmul> | "-" <exprmul> };

<exprmul> <exprID> { "*" <exprID> | "/" <exprID> };

<exprID> "+" <exprterm> | "-" <exprterm> | <exprter m> ;

<exprterm> "(" <expr> ")" | <FNUM #t> ;

 <abcz> abc [<A #n>];

[～] ： An abbreviation is possible.

{ ～} ： A repetition of 0 times or more.

| ： or Selection

<> Character string which is not bundled : Termina l

Many predicates which can be used as a token beside s FNUM of a number

sequence are defined as the sys module.

An input file is specified by file I/O explained in the preceding chapter.

The function of syntax analysis cannot be used from notes standard input.

Please use it in the input from a getline predicate or a file.

 22

• The predicate for tokens of syntax analysis

<TOKEN VAR PRED...>

 After syntax-analysis PRED execution of an input,

 obtained token is set as VAR.

<SKIPSPACE>

 The space of an input is skipped.

<C [VAR]>

 An input is set as one-character VAR.

<N [VAR]>

 When an input is a number, it is set as VAR.

 unknown is returned when different.

<A [VAR]>

 When an input is the ASCII character, it is set as VAR.

 unknown is returned when different.

<AN [VAR]>

 When an input is the ASCII character or a number,

 it is set as VAR. unknown is returned when differe nt.

<^>

 The head of a line is matched.

<$>

 The last of a line is matched.

<* VAR>

 Arbitrary character strings are matched.

<CR [VAR]>

 When an input is CR new-line, it is set as VAR.

 23

 unknown is returned when different.

<CNTL [VAR]>

 When an input is the CNTL character, it is set as VAR.

 unknown is returned when different.

<EOF [VAR]>

 When an input is the EOF character, it is set as V AR.

 unknown is returned when different.

<SPACE>

 true is returned when an input is a space. unknown is

 returned when different.

<PUNCT>

 true is returned when it is characters other than the

 alphabet and a number.

<STRINGS VAR>

 STRINGS of "..." or '...' is matched, and it is se t

 as VAR.

<WORD VAR>

 In STRINGS(s) other than the alphabet, a number,

 and "_", unknown is returned by arbitrary STRINGS.

<NUM VAR>

 The integer of an input is is set as VAR.

<FNUM VAR>

 The floating point number of an input is set as VA R.

<ID VAR>

 If an input STRINGS (a head is the alphabet and a

 number is also good except it) and it agrees, it

 24

 will be set as VAR.

<RANGE VAR CHAR1 CHAR2>

<NONRANGE VAR CHAR1 CHAR2>

 It will be set to true if contained in the range o f

 a character 1 and a character 2.

<GETTOKEN VAR>

 The token which is a result of the last syntax

 analysis is set as VAR.

 25

5.17 How to Use TOKEN Predicate

The token of arbitrary character strings is compoun dable by using a

TOKEN predicate and compounding syntax analysis of an argument. (It

becomes substitution of a regular expression.)

The character string whose head is an alphanumeric character from the

2nd character with an alphabetic character

<TOKEN #token <A _> { <AN _> }>

Number sequence (it is equivalent to ::sys<;NUM #to ken>)

<TOKEN #token { <N _> }>

The character string of a capital letter or a numbe r

<TOKEN #token { <RANGE _ A Z> | <N _> } >

“DISK”+ A triple figures number

<TOKEN #token “DISK” <N _> <N _> <N _>>

A TOKEN predicate is used for lexical analysis like a character string,

and a TOKEN predicate is not used for the analysis of syntax like the

sentence which is a sequence of a character string .

 26

5.18 timeout predicate

A timeout predicate closes processing of the predic ate which is not

ended within the appointed time, and returns it by unknown. The appointed

time is specified by a micro second bit.

Processing which is likely to require execution tim e, and processing

which may lapse into an infinite loop are performed for the time being,

and in not finishing within the appointed time, it uses for the use which

tries other methods.

<timeout Appointed-time Predicate...>

< Processing > <timeout 1000000 < ProcessingA>>;

< Processing > <timeout 1000000 < ProcessingB>>;

< Processing > ::sys<writenl “False”>;

 27

5.19 findall predicate

findall A predicate is used to calculate all the so lutions of the predicate

of an argument. Usually, execution of a predicate i s ended by the solution

found first.

However, even when it turns out that there are othe r solutions, if it

remains as it is, it cannot ask. For example, in th e case of a problem like

search of a course, it may not restrict that the co urse acquired first is

the optimal, but it may need to evaluate whether it is the optimal to all

the courses.

findall Execution of a predicate may lapse into an infinite loop and

processing may not finish it eternally. In order to close processing in

a moderate place, it will be convenient if you use combining a timeout

predicate.

<findall predicate...>

 28

5.20 ｆor Loop and Foreach Loop, Map Predicate

It is loop processing of procedure processing.

The predicate of the specified number of times and an argument is performed.

A number is set to a variable in order. The value f rom 0 makes it increase

every [1] from the value to the value of the numb er of times of execution,

or the last value, when the number of times of exec ution is specified, when

an initial value is specified. After execution of 1 turn, bind of all the

variables is cleared and a predicate is performed f rom the beginning.

The predicate of an argument is performed for every element of List.

List value is set to a variable in order.

Bind of the variable under execution after executio n of 1 turn is cleared,

and a predicate is performed from the beginning.

<for (VAR TIMES) PRED 述語...>

<for (VAR INIT-VAL LAST-VAL) PRED...>

<foreach (VAR LIST) PRED...>

<map (VAR LIST) PRED...>

 29

5.21 Character Code

A character code uses UTF8 by a default.

When you specify EUC or SJIS, please specify in a c ode predicate.

UTF8 specification

?<code UTF8>;

EUC specification

? <code EUC>;

SJIS specification

?<code SJIS>;

 30

6 Example of Program

6.1 Additional Processing of List

The program which performs additional processing of List is made.

<append Result List1 List2>

 The result of having added List2 to List1 in the f orm is set as an

answer.

<append #X () #X>; // () It will be set to #x if # x is added.

<append (#A : #Z) (#A : #X) #Y> // Additional proc essing is

performed using List except #A from List1.

 <append #Z #X #Y>;

? <append #x (a b c) (d e f)>; // (a b c) (d e f) I t adds.

result --

(<append (a b c d e f) (a b c) (d e f)>) // A resul t is the

first argument. (a b c d e f) Setup

-- true

Conversely, it can also ask for Liszt 1 and Liszt 2 of an input who can

get Liszt of an answer. Since there are two or more possibilities, a

findall predicate is used in order to investigate a ll results.

? <findall <append (a b c) #x #y> ::sys<writenl #x #y >>；

() (a b c)

(a) (b c)

(a b) (c)

(a b c) ()

result --

(<findall <append (a b c) Undef48 Undef49> <obj sys <writenl Undef48

Undef49>>>)

-- true

 31

6.2 Algorithm of Euclid

The program which asks for the greatest common deno minator using the

algorithm of Euclid is made.

The greatest common denominator of an integer 1 and an integer 2 is set

as an answer in the form of <gcd answer integer1 in teger2>.

Please refer to it for the algorithm of Euclid on b ooks or WWW.

<gcd #x #x 0>; // # x and the greatest common denom inator of 0 are

#x. 。

<gcd #x #a #b>

 ::sys <compare #a >= #b> // When the #a is larger

 <#c = #a % #b> // let is omitted.

 <gcd #x #b #c>

 ;

<gcd #x #a #b>

 <#c = #b % #a> // When the #b is larger

 <gcd #x #a #c> ;

?<gcd #x 511639100 258028360>;

result --

(<gcd 20 511639100 258028360>)

-- true

 32

6.3 Number of Fibonacci

It is a program which asks for the number of Fibona cci.

<fib Result Number>

The number of Fibonacci corresponding to the number of inputs is set

as an answer.

Please refer to it for the number of Fibonacci on b ooks or WWW.

The feature of this program is adding like cash the result of having

performed "the usual calculation processing" to a p rogram.

The result which accumulates in cash can increase, so that it calculates,

and a larger number of calculation can be accelerat ed.

<fib 0 0>; // In the case of 0

<fib 1 1>; // In the case of 01

<fib #result #n> // The usual calculation processi ng

 <#n1=#n-1>

 <#n2=#n-2>

 <#result = <fib #nn1 #n1>+<fib #nn2 #n2>>

 ::sys <setarray fib #result #n> // A result is written in

cash.

 ;

?<fib #x 30>;

result --

(<fib 832040 30>)

-- true

 33

6.4 ｈｔｍｌの合成

ｈｔｍｌファイルを合成するプログラムです。

テンプレートのような元のファイルを用意し、その中の可変部分を述語や変数で埋め込み、

関数述語として実行すると、目的のｈｔｍｌファイルが合成されます。

<html #html #title #body> // ヘッド

 <func #html // func 関数述語。これより下の引数がテンプレート

 // #title と#body が置き換えられる。

 (

"<HTML>

<HEAD>

<TITLE>" #title "</TITLE>

</HEAD>

<BODY>

 test html
"

 #body "
"

 ::sys<random _ >

" </BODY>

</HTML>"

)>;

?<html #h "Hello World" "This program is test."> ::sys <writenl #h>;

// 実行

以下は結果です。

(<HTML>

<HEAD>

<TITLE> Hello World </TITLE>

</HEAD>

<BODY>

 test html
 This program is test.
 6 93663189 </BODY>

</HTML>)

 34

6.5 quick sort

quick sort アルゴリズムを使いリストの中の要素をソートするプログラムを作ります。

<append #X () #X>;

<append (#A : #Z) (#A : #X) #Y>

 <append #Z #X #Y>;

<qsort () ()>; // () をソートした結果は()

<qsort #sortedlist (#x : #list) >

 <qsplit #x #list #l1 #l2> // #list を #x より小さいか大きいかで

// #l1,#l2 に分ける

 <qsort #s1 #l1 > // #l1 をソート

 <qsort #s2 #l2 > // #l2 をソート

 <append #sortedlist #s1 (#x : #s2) > // 結果を結合する

;

<qsplit _ () () ()>;

<qsplit #x (#y : #list) (#y : #l1) #l2> // #y が#x より小さければ#l1 に

入れる

 ::sys <compare #y <= #x>

 <qsplit #x #list #l1 #l2>; // 末尾再帰

<qsplit #x (#y : #list) #l1 (#y : #l2)> // #y が#x より大きいので#l2 に入

れる

 <qsplit #x #list #l1 #l2>; // 末尾再帰

?<qsort #s (11 12 3 7 1 2 0 -1 10 9 4 8 5 6) >;

result --

(<qsort (-1 0 1 2 3 4 5 6 7 8 9 10 11 12) (11 12 3 7 1 2 0 -1 10 9 4

8 5 6) >)

-- true

