
The outline of the Descartes language

1. Similarity with prolog

Since the Descartes language is carried out based on
the first floor predicate calculus, it has a common
feature of a prolog language and many.
Then, the program which List connects should compare
the Descartes language and a prolog language.

In the Descartes language, it is as follows.

 <append #Z () #Z>;
 <append (#W : #Z1) (#W : #X1) #Y> <append #Z1 #X1 #Y>;

 ?<append #x (a b) (c d)>;

In prolog, it is as follows.

 append(Z, [], Z).
 append([W | Z1], [W | X1], Y) :- append(Z1, X1, Y).

 ? append(X, [a b], [c d]).

In both of the examples, the list of the 2nd argument and
the 3rd argument is connected, and a result is returned to
the 1st argument.

Is a difference understanding?
1) A predicate is bundled with ().
2) A pause of an argument uses a blank.
3) Although period"." is finally placed in prolog,
 semicolon";" is placed in the Descartes language.
4) A list uses not [] but ().
5) "|" which divides a list is ":" in the Descartes language.
6) Although ":-" is used for a pause of a head part and a body
 part by prolog, there is nothing in the Descartes language.
7) In the Descartes language, "#" is attached to a variable.

In order to perform the above-mentioned append in the Descartes
language, it performs in the predicate which attached ? as follows.

 ?<append #x (a b) (c d)>;

2. Difference with prolog

Although reference was made about the points of comparison of
the Descartes language and prolog for the preceding clause,
difference is described here.

Unlike prolog by which what can be written to a body part is

Page(1)

restricted to enumeration of a predicate, in the Descartes
language, what arbitrary lists can be written for differs
greatly. Execution sequence in a list is performed sequentially
from the described left.

<example #x> (<e1 #x> (<e2 #x #y> <e3 #y>) <e4 #y>) <e5 #x>;

In the above-mentioned example, if example is performed, it
will perform in order of e1, e2, e3, e4, and e5.

The advantages of this description are meta processing which
summarizes a sequence of a predicate and is passed to the
argument of a predicate being performed, or being able to
use in order to summarize processing for the sign for syntax
analysis shown below.

It is {} repetition as a sign for syntax analysis []
It is also big difference with prolog that the abbreviation
possibility of, |, or selection can be used.

<example2 #a> <abc> { <def #a> | (<hij> <lkm>) } ![<nop>] <end>;

If def, which of (hij lkm), or the processing in which it
succeeds is repeated and both do not correspond,
it escapes from a loop, if example2 is performed in the
above-mentioned example, abc will be performed, even if nop
is successful and it goes wrong, it is processed, and finally
end is performed.

3. comment

There are the following three kinds of comment.
 - From // to the end of the sentence
 - From # to the end of the sentence
 - Range surrounded by /* */

4. Numerical computation

Integrally in a let predicate and a floating point, a letf
predicate is used for calculation of a number.

 <let #x = 1 + 2>;
 <letf #f = 1.1 + 0.3*(2.3-1.2)>;

The function predicate mentioned later can be used within
expression.

 <letf #f = ::sys <sin #x1 3.14>+::sys<cos #x2 3.14>>;

let is omissible. The two followings are the same.

 <let #z = #x + #y>;
 <#z = #x + #y>;

Page(2)

5. Function predicate

The value of a function which the argument of predicates,
such as let, letf, f, and func, is evaluated as a function
predicate, and a function predicate returns is the 1st argument.
The variable of a return value is convenient if you use
obscurity variable"_."

 <letf #x = ::sys<sin _ ::sys<cos _ 3.14>>>;

What can be used by let and letf is only a function which
returns a numerical value.

 <f #x ::sys<car #x1 ::sys<cdr _ (a b c)>>>;

f is an alias of func and carries out the completely same work.
Moreover, f can take List as an argument, and when a
function predicate is contained in List element, after
being evaluated, it is returned as a value of a function.

 <f #x (This is a ::sys <getline _>)>;

(That it is with "::sys" above expresses the call of the
 library mentioned later, and it means the call of the getline
 predicate of a sys module.)

6. Libarary

The call of a library is performed in the following forms.

 ::LIBRARY-NAME <PREDICATE>
 <unify LIBRARY-NAME <PREDICATE>>
 <obj LIBRARY-NAME <PREDICATE>>

These three kinds of methods of calling are the same
contents of operation.

7. Object-orientation

The following forms define an object.

 :: < Object-name
 programs or inheirt object
 >;

The example of an object of a bird, a penguin, and a hawk
is shown below as an example.

::<bird
 <fly>;
 <walk>;
>;

Page(3)

::<penguin
 <fly>
 <!><false>;
 <swim>;
 inherit bird;
>;

::<hawk
 inherit bird;
>;

How to call an object is the same as how to call a library.
Please try the following.

?::bird <swim>;
?::penguin <swim>;
?::bird <walk>;
?::penguin <walk>;
?::bird <fly>;

?::penguin <fly>;
?::penguin <run>;

?::hawk <fly>;
?::hawk <walk>;
?::hawk <swim>;

7. EBNF

EBNF for syntax analysis can be used.

<Name> "Mike";
<Name> "Nancy";
<Name> "hniwa";

<name #x>
 "I" "am"
 <Name> <GETTOKEN #x>
 ["."]
 ;

? ::sys<getline _ <name #name>>;

result --
(<obj sys <getline I am hniwa <name hniwa>>>)
-- true

Page(4)

