Explanation of the Descartes language

1 Introduction

Cogito ergo sum

Rene Descartes |

The Descartes language was designed as I/F for the artificial
intelligence program. However, itwillserve also a saflexible script
which processestext sanddata s.Thenamewasconnectedwith Descartes

who is famous mathematician and philosopher.

Thelanguage with which anyone can use the Descarte slanguage easily
isnotaimed at. Whenthe userofthislanguage und erstandsdeeply, you
make it a language with which a wonderful result is obtained.

2 Descartes Language

The Descartes language is a logic programming langu age. A logical
relationis described like a Prologlanguage and a programis executed
by reasoning a result based on it. In order to rais e the power of
expression of programming in addition to it, the fu nction type and

procedural programming paradigm was introduced.

Moreover, the syntax-analysis function based on the method of BNFis
introduced as a fundamental element of grammar.

Decisive routine processing is described as a funct ion type or a
procedural procedure, and knowledge-intensive reaso ning describes it
as a logic type for required processing.

Furthermore,theDescarteslanguagehasanobject-o rientedmechanism.

This object-oriented mechanism is used also for lib rary.

3 The method for performing

¢« An argument is specified and started in the Descart
An argument specifies the file which described the

descartes PROGRAM-FILE

The program file specified as the argument is read

Forexample, ifitperformsby carryingoutthefol

to File hello, the "hello,world" message will be ou

es language.
program.

and performed.

lowingdescription
tputted.

? <print "hello, world">;

An execution result is as follows.

$./descartes hello

hello, world

result --
(<print hello, world>)

-- true

The 2nd line is an output of a message.

"true" of the last line means that execution was su

*)Althoughthereisalsoamethod ofexecutingap

in a notes Descartes language, this document does n

ccessful.

rograminteractively

ot explain.

4 Data type

Character string

hello “Hello, world!!” ‘123

Acharacterstringisasequenceofthesymbolwith whichthecharacter
was located in a line.

It is the character string which was bundled with " or'.

Whenablank,atab,anew-line,etc.areincluded inacharacterstring,

you have to bundle with " or '

Numerical value

100 0.8123 Oxal

The integer of 8-byte accuracy and the floating poi nt number of 8-byte

accuracy can be used.

A hexadecimal number is expressed with the characte r which begins from
Ox.
Variable
#x #a #abc

__ A variable without a name

Avariable is expressed with the sequence of the sy mbol which starts
in #.
Moreover, it is an variable without a name. _canb e used.

List

(abc “thisisapen” #xy 123 (listl#z)

Some character string, some number, some variable , some list, and
some function predicate are bundled with ().

(The function predicate is mentioned later.)

List has the same structure as List of a Lisp langu age.

Empty List is ().

The dot pairis ": " .

Function predicate

<app #z (abc)(def) <ap#d d1 d2>>

Acharacterstring,anumber,avariable List,and afunctionpredicate
are bundled with < and >.

Evaluation results are true, false, and unknown.

When it succeeds as a result of evaluation, it is c onsidered for

convenience that the first argument is a return val ue of a function.

5 Description of Program
5.1 Predicate

Asaperformedresult,apredicatetakesthreevalu
and unknown.

As a result of performing the predicate in the Desc
when it is set to true, unification with the progra
performed and avalue is setto the variable contai

Infalse,simplificationofapredicategoeswrong
Inunknown, otherpossibilitiesaretriedandbackt
if needed.

5.2 Function Predicate

In a predicate, when it succeeds as a result of eva
considered for conveniencethatthefirstargument
of a function. Such a predicate is called a functio
a function predicate is in an argument and the func
true, the function predicate itself is replaced wit
first argument.

[tissettofalseand,inunknown,thefunctionpr
infalse,andthefunctionpredicate calledsimilar

A function predicate is applied to the predicate of

func, f, let, letf, rpn, rpnf, compare, comparef, w

In order to enable it to use in a function predicat
apredicate, ifitwritesthat aresultreturnsto

it is convenient and convenient.

5.3 Notes Comment
There are the following three kinds of comment.
- Range surrounded by /* */
- from # to the end of the sentence

- from //to the end of the sentence

esoftrue, false,

artes language,

m registered is
nedinapredicate.
andisinterrupted.

rackingisperformed

luation, it is

isthereturnvalue
n predicate. When

tion predicate is

h the value of the

edicatewhichcalled
lyserveasunknown.
the argument of

ritenl, and print.

e, when writing

the firstargument,

5.4 Description Rule of Predicate

Enumerationofapredicatedescribesaprogram.The last;(semicolon)
Itdivides. Thefirstpredicate callsitaheadand the otherpredicate
callsitabody. Whatcombinedtheheadandthe bod yiscalledaclause.

<predicate > <predicate > <predicate > ... <predicate >;

--- clause
head body
Not only a predicate but a list can also be describ ed on a body.
<predicate > (<predicate > <predicate > (<predicate >)
(<predicate > < predicate >)) ; '
It will become easy to read if a tab divides and de scribes a body as

follows.

<predicate >
<predicate >
<predicate >

<predicate >

’

5.5 Unification

Unificationisthe operationwhich makestwo predic
(make equal the clause which corresponds altogether

name to the value of an argument).

atesthesameform

from a predicate

<predl #x #y 123 (abc)>
corresponding clause is coincided.
<predl xyz #z 123 #a>

Result of unification; #x=xyz #y=#z #a= (a b c) It becomes.

5.6 Call of Program

?isattachedtotheheadofapredicateinordert

program.
? <predicate>;
Thecalledpredicateiscomparedwiththeheaderan

and tries unification. If it succeeds in unificatio
described by the body below will be called sequenti

ocallthedescribed

dorderinaprogram,
n, the program

ally fromthe left.

5.7 Debugging Function

Ifthe <tron> predicate is performed, a tracing fac ility will be set
toONandtraceinformationwillbe outputtedatth etime of execution.

Please perform the <troff> predicate, when you turn OFF a tracing
facility.

5.8 Calculation of Expression, Reverse Poland Style Cal

let, letf predicate

culation

<let expression>

<letf expression>

¢ Expression is calculated.

* Acalculationresultissubstitutedwhenthelefts

¢ Whentheleftsideis anumerical value,itis judg
equal to a calculation result.

¢ let calculates an integer and letf calculates a flo
number.

A function predicate can also be included in the e

right-hand side.

ideisavariable.
edwhetheritis

ating point

xpression of the

?<let#x=1+2+7*5>;

? <letf #x = ::sys <cos _ 1> + ::sys <sin _ 1>>;

Theoperationoftheexpressionwhichomittedleti
operation.
Therefore, both following examples bring the same r

streatedasinteger

esult.

?<let#x =1+ 2>;

?<#Hx=1+2>;

rpn, rpnf predecate

<rpn VAR RPN-EXPRESSION>
<rpnf VAR RPN-EXPRESSION>

¢ AreversePolandstyleiscalculatedandaresulti ssetasavariable.

« rpn calculates an integer and rpnf calculates a flo ating point
number.

A function predicate can also be included in a reve rse Poland style.

?2<rpn#x12345678910++++++++ +>;
? <rpnf #i 10 9 8 * * <rpn #j 10 30 *>/ #j / >;

10

5.9 Comparison of Expression

compare, comparef predicate

{compare Expression Comparison—operator Expression >

{comparef Expression Comparison—operator Expression.

¢ Expression is compared.

e compare is compared as an integer and comparef is ¢ ompared as a
floating point number.

The following can be used for a comparison operator

=, == equal
1= <> not equal
> large
>= large or equal
< small
<= small or equal
and, or, not operator can be used for a comparison type.

? <compare (#x > 1) and (#x < 20)>;
? <comparef not ((#y > 1.2) or (#z < 3.0))>;

11

5.10Global Variable

variable in the Descartes language is an effectiv e local variable

only in a clause.

It sets up as a global variable to save data over a paragraph. The
global variable in the Descartes language is mounte d by defining the
group of a variable identifier and a value as a new clause.

The setvar predicate of a sys module is used for a setup of aglobal
variable.

Referenceofavalueis<variable-identifier#varia ble>. Avaluewill

be set as #variable.

Substitution of the value of a global variable

? .:sys <setvar color “red”>;

Reference of the value of a global variable
? <color #cl>;

red is set to #cl.

When a setvar predicate is performed, the clause wi lIbereplacedif
there is already a variable of the same name.

A new clause will be added if there is nothing.

12

Global array variable

A global array variable can be set up by the setarr
a sys module.

Arra y definesthegroupofavalueasavariableidentif
as new clause.

Anumber,acharacterstring,alist,apredicate,
asanindexanything.Probably,inthecaseofamu

it is good to set a list as an index.

ay predicate of

ierandanindex

etc.canbespecified

ltidimensionalarray,

set global array valiables.
? iisys<setvar ary 7 10>;
? :sys <setvar cell (10 20) 100>;

refference of global array valiables
?<ary 7 #v>;

10 is set as #v.

? <cell (10 20) #val>;

100 is set as #val.

13

5.11FILE I/O

The file of an input or an output is changed only w
the predicate of an argument.

<openr FILE PREDICATE...>

Open file for reading. and a predicate is performe

<openw FILE PREDICATE...>

Open file for writing. and a predicate is performe

<openwp FILE PREDICATE...>

Openfileforaddingapostscript.andapredicat

14

hile performing

eisperformed.

5.12Library module

Although there are the following three kinds, each expresses the same

meaning with how to call a library module.

.. library-module predicate

example) ::sys <writenl hello>

<unify library-module predicate>

example) <unify sys <writenl hello>>

<obj library-module predicate>

example) <obj sys <writenl hello>>

Usually, probably, the description using :: will be convenient.

Inorderto use an external library module, itisn ecessarytoinclude

a library module.

? <include library-module>

example)

?<include list>;

?::list <append #list (a b c) (d e)>;

However, since itis the library module included in the system, only

a "sys" module can be used even if it does not incl ude.

15

5.13How to Make Library Module

A library module makes a file name from a library m
The program described to inside describes the progr
Descartes language.

By including, it can be used as a library module.

Example) example module

odule name.

am of the usual

<append #X () #X>;
<append (#A : #Z) (#A : #X) #Y>
<append #Z #X #Y>;

call append

? <include example>;

? :example <append #list (abc def) (ghi jkl)>;

Execution result

$./descartes append
result --
(<include example>)

-- true
result --

(<obj example <append (abc def ghi jkl) (abc def) (

-- true

16

ghi jkl)>>)

5.140bject-orientation

TheobjectintheDescarteslanguageisrealizedby
module as an object. That is, a library module name
object name.

The definition of an object is performed as follows

regardingalibrary
is treated as an

::<Object-name
Define-method;

Define-method;

inherit Inherit-object;

In a method, the clause which is a program of the u

language and which combined the head and the body c

17

sual Descartes

an be described.

5.15Example of Object-oriented Program
The object ofabird, apenguin,andahawkis de
I/l Object of a bird: flies and walks.
:<bird

<fly>;

<walk>;

/I Object of a penguin: does not fly, it swims an

::<penguin
<fly> <false>; I/l cannot fly.
<swim>; /I It adds newly swimming.
inherit bird; /I bird is inherited.

>,

/I A hawk is the same as a bird, flies, and walks.
::<hawk
inherit bird; /I bird is inherited

Now, a question is asked to the object of a bird, a
hawk. Although a question can be asked by the call

object,thecallofamethodisthesameashowto

?::bird <swim>; /! Does it swim in a bird?
result --
(<obj bird <swim>>)

-- unknown

?::penguin <swim>; /I Does it swim in a penguin?

result --
(<obj penguin <swim>>)

-- true

18

finedasan example.

d walks.

penguin, and a
of the method to an

callalibrarymodule.

?::bird <walk>;
result --
(<obj bird <walk>>)

-- true

?::penguin <walk>;
result --
(<obj penguin <walk>>)

-- true

?::bird <fly>;
result --
(<obj bird <fly>>)

-- true

?::penguin <fly>;
result --

(<obj penguin <fly>>)
-- false

?::penguin <run>;
result --
(<obj penguin <run>>)

unknown

?::hawk <fly>;
result --
(<obj hawk <fly>>)

-- true

?::hawk <walk>;
result --
(<obj hawk <walk>>)

-- true

19

?::hawk <swim>;
result --
(<obj hawk <swim>>)

-- unknown

20

5.16Syntax Analysis

Itis like the syntax by EBNF (extended Backus Naur

following.

expr = expradd

expradd = exprmul { "+" exprmul | "-" exprmul

exprmul = exprIiD {"*" exprID | "/" exprID }

expriD = "+" exprterm | "-" exprterm | exprter

exprterm ="(" expr)" | Number-sequence
abcz = abc [Alphabet]

The syntax of EBNF (extended Backus Naur form) is ¢

theDescarteslanguagecorrespondingto1tol1.(Th

receives the grammar of LL (*).)

Syntax by the Descartes language

<expr><expradd>;

<expradd> <exprmul> { "+" <exprmul> | "-" <exprmul>
<exprmul> <expriD> {"*" <exprID> | "/" <exprID> };
<expriD> "+" <exprterm> | "-" <exprterm> | <exprter

<exprterm> "(" <expr>")"| <FNUM #t> ;
<abcz> abc [<A #n>];

[~] : Anabbreviation is possible.
{~} : Arepetition of O times or more.
| . or Selection

<> Character string which is not bundled : Termina

Many predicates which can be used as a token beside

sequence are defined as the sys module.
Aninputfileisspecifiedbyfilel/Oexplainedin

Thefunctionofsyntaxanalysiscannotbeusedfrom

Please use it in the input from a getline predicate

21

form) being the

onvertible with

eDescarteslanguage

s FNUM of a number

theprecedingchapter.
notesstandardinput.

or a file.

o The predicate for tokens of syntax analysis

<TOKEN VAR PRED...>
After syntax-analysis PRED execution of an input,

obtained token is set as VAR.

<SKIPSPACE>

The space of an input is skipped.

<C [VAR]>

An input is set as one-character VAR.

<N [VAR]>
When an input is a number, it is set as VAR.

unknown is returned when different.

<A [VAR]>
When an input is the ASCII character, it is set as

unknown is returned when different.
<AN [VAR]>
When an input is the ASCII character or a number,

it is set as VAR. unknown is returned when differe

<N>

The head of a line is matched.

<$>

The last of a line is matched.

<* VAR>

Arbitrary character strings are matched.

<CR [VAR]>

When an input is CR new-line, it is set as VAR.

22

VAR.

nt.

unknown is returned when different.

<CNTL [VAR]>
When an input is the CNTL character, it is set as

unknown is returned when different.

<EOF [VAR]>
When an input is the EOF character, it is set as V

unknown is returned when different.

<SPACE>
true is returned when an input is a space. unknown
returned when different.

<PUNCT>
true is returned when it is characters other than

alphabet and a number.

<STRINGS VAR>
STRINGS of "..." or "..." is matched, and it is se
as VAR.

<WORD VAR>
In STRINGS(s) other than the alphabet, a number,

and " ", unknown is returned by arbitrary STRINGS.

<NUM VAR>

The integer of an input is is set as VAR.

<FNUM VAR>

The floating point number of an input is set as VA
<ID VAR>

If an input STRINGS (a head is the alphabet and a

number is also good except it) and it agrees, it

23

VAR.

AR.

the

will be set as VAR.

<RANGE VAR CHAR1 CHAR2>
<NONRANGE VAR CHAR1 CHAR2>
It will be set to true if contained in the range o

a character 1 and a character 2.
<GETTOKEN VAR>

The token which is a result of the last syntax

analysis is set as VAR.

24

5.17How to Use TOKEN Predicate

The token of arbitrary character strings is compoun

TOKEN predicate and compounding syntax analysis of

becomes substitution of a regular expression.)

The character string whose head is an alphanumeric
2nd character with an alphabetic character
<TOKEN #token <A _>{<AN_>}>

Number sequence (it is equivalent to ::sys<;NUM #to
<TOKEN #token { <N _>}>

The character string of a capital letter or a numbe
<TOKEN #token { <RANGE _ A Z>|<N _>}>

“DISK"+ A triple figures number
<TOKEN #token “DISK” <N _> <N > <N _>>

ATOKENpredicateisusedforlexicalanalysislike

and a TOKEN predicate is not used for the analysis

sentence which is a sequence of a character string

25

dable by using a

an argument. (It

character from the

ken>)

acharacterstring,

of syntax like the

5.18timeout predicate

Atimeout predicate closes processing of the predic
endedwithintheappointedtime,andreturnsitby

time is specified by a micro second bit.

ate which is not

unknown.Theappointed

<timeout Appointed-time Predicate...>

Processing whichis likely to require executiontim
whichmay lapseintoaninfinite loop are performed
andinnotfinishingwithintheappointedtime, it

tries other methods.

e, and processing
forthetimebeing,

usesfortheusewhich

< Processing > ::sys<writenl “False”>;

< Processing > <timeout 1000000 < ProcessingA>>;

< Processing > <timeout 1000000 < ProcessingB>>;

26

5.19findall predicate

findallApredicateisusedtocalculatealltheso lutionsofthepredicate
ofanargument. Usually, execution ofa predicatei sended by the solution
found first.

However, even when it turns out that there are othe r solutions, if it
remainsasitis, itcannotask. Forexample, inth ecaseofaproblemlike
search of a course, it may not restrict that the co urse acquired firstis
the optimal, but it may need to evaluate whether it is the optimal to all

the courses.

<findall predicate...>

findall Execution of a predicate may lapse into an infinite loop and
processing may not finish it eternally. In order to close processing in
a moderate place, it will be convenient if you use combining a timeout
predicate.

27

5.20 for Loop and Foreach Loop, Map Predicate

It is loop processing of procedure processing.

for (VAR TIMES) PRED 1RFE...>
<{for (VAR INIT-VAL LAST-VAL) PRED...>

Thepredicateofthespecifiednumberoftimesand anargumentisperformed.
Anumberis setto avariablein order. The value f rom O makesitincrease
every[1]fromthevaluetothe value ofthenumb eroftimesofexecution,
orthelastvalue,whenthe numberoftimesofexec utionisspecified, when
an initial value is specified. After execution of 1 turn, bind of all the
variables is cleared and a predicate is performed f rom the beginning.

<foreach (VAR LIST) PRED...>
<map (VAR LIST) PRED...>

The predicate of an argument is performed for every element of List.

List value is set to a variable in order.
Bind of the variable under execution after executio noflturniscleared,

and a predicate is performed from the beginning.

28

5.21 Character Code

A character code uses UTF8 by a default.

When you specify EUC or SJIS, please specify inac ode predicate.

UTF8 specification
?<code UTF8>;

EUC specification
? <code EUC>;

SJIS specification
?<code SJIS>;

29

6 Example of Program

6.1 Additional Processing of List

The program which performs additional processing of
<append Result Listl List2>
The result of having added List2 to Listl in the f

answer.

<append #X () #X>; 11 () It will be set to #x if #
<append (#A : #Z) (#A : #X) #Y> [/ Additional proc
performed using List except #A from List1.

<append #Z #X #Y>;

?<append #x (abc)(def)>; /(abc)(def)l

result --

(<append (abcdef) (abc)(def)>) /I A resul
first argument. (ab c d e f) Setup

-- true

Conversely,itcanalsoaskforLiszt 1andLiszt2
get Liszt of an answer. Since there are two or more

findall predicate is used in order to investigate a

? <findall <append (a b c) #x #y> ::sys<writen| #x #y
()(abc)

(@) (bc)

(ab) (c)

(abc)()

result --

(<findall <append (a b c) Undef48 Undef49> <obj sys
Undef49>>>)

-- true

30

List is made.

ormis setas an

X is added.

essing is

t adds.

t is the

ofaninputwhocan
possibilities, a

Il results.

>>

<writenl Undef48

6.2 Algorithm of Euclid

The program which asks for the greatest common deno
algorithm of Euclid is made.

Thegreatestcommon denominatorofaninteger1and

as an answer in the form of <gcd answer integerl in

Please refer to it for the algorithm of Euclid on b

<gcd #x #x 0>;
#X. .

/[#xandthegreatestcommondenom

<gcd #x #a #b>
::Sys <compare #a >=#b> // When the #a is
<#c = #a % #b>
<gcd #x #b #c>

/I let is omitted.

<gcd #x #a #b>
<#c = #b % #a>
<gcd #x #a #c> :

/I When the #b is larger

?<gcd #x 511639100 258028360>;
result --
(<gcd 20 511639100 258028360>)

-- true

31

minator using the
aninteger2isset
teger2>.

ooks or WWW.

inatorofOare

larger

6.3 Number of Fibonacci
It is a program which asks for the number of Fibona CCi.
<fib Result Number>
The number of Fibonacci corresponding to the number ofinputsis set

as an answer.

Please refer to it for the number of Fibonacci on b ooks or WWW.
The feature of this program is adding like cash the result of having
performed "the usual calculation processing" to a p rogram.
Theresultwhichaccumulatesincashcanincrease, sothatitcalculates,
and a larger number of calculation can be accelerat ed.
<fib 0 0>; /I In the case of O
<fib 1 1>; /I In the case of 01
<fib #result #n> /I The usual calculation processi ng
<#nl=#n-1>
<#n2=#n-2>
<#result = <fib #nn1 #n1>+<fib #nn2 #n2>>
.:sys <setarray fib #result #n> /[Aresultis writtenin
cash.
?<fib #x 30>;
result --
(<fib 832040 30>)
-- true

32

6.4 html DA

html 774 VEEKTHT0TTATT,
TrTU—= R DEIRTDT 7 ANEME L, EORDORELS) % GEPEE THOIA IR,
BERFELE LTHEITTH L. BOh tm 1 7 7 A ANARENET,

<html #html #title #body> // ~v K
<func #html // func BAEObREE, LD FTosIERT 7 L—h
11 #title L#body NiEZHZ HILD,

(
"<HTML>
<HEAD>
<TITLE>" #title "</TITLE>
</HEAD>
<BODY>
test html
"
#body "
"
::sys<random _ >
" </BODY>
</HTML>"
)>;

?<html#h"HelloWorld" "Thisprogramistest."> :sys<writenl#h>;

Il 37

LUFIE#ER T
(KHTML>
<HEAD>
<TITLE> Hello World </TITLE>
</HEAD>
<BODY>
test html
 This program is test.
 6 93663189 </BODY>
</HTML>)

33

6.5 quick sort

quick sort

<append #X () #X>;
<append (#A : #Z) (#A : #X) #Y>
<append #Z #X #Y>;

<gsort () ()>; 110
<gsort #sortedlist (#x : #list) >

<gsplit #x #list #11 #12> /] #list

I/ #11,#12 W5
<qsort #s1 #I1 > Il #11
<qsort #s2 #12 > 11 #12

<append #sortedlist #s1 (#x : #s2) >
<gsplit _ () O 0>
<gsplit #x (#y : #list) (#y : #|1) #12>// #y
AN

11Sys <compare #y <= #x>

<qsplit #x #list #|1 #12>}//
<gsplit #x (#y : #list) #11 (#y : #12)>//#y
5

<qsplit #x #list #|1 #12>}//

?<qsort#s(111237120-11094856) >;

result --

(<gsort((10123456789101112) (11123

85 6) >)

-- true

34

TNAY ZALEHENY) A SOROERZE Y — 57077 Laeff) £,

Z Y — b LT2RERIZ0

EHX EDASOPRENHT
EV— b
EV— b

Il FERERET D

D XV /hSTauUTHL I

R

DX LD REWVOTH2 IZA

R

7120-11094

