The example of a program of the Descartes language: calc

Thi s docurent takes up and expl ai ns t he cal ¢ programwhi ch cal cul ates

a fornula as an exanple of a program of the Descartes | anguage.

A cal c programcal cul ates the fornul a i nputted fromstandard i nput,
and displays a result for a result on standard output.

Nunerical value (floating point nunber), operator (+-*/), and
parenthesis () can be used for a formla.

After changing a fornula into a reverse Polish notation, it is
perfornmed in a rpnf predicate.

Codi ng Style of Program

I nt he programwhi ch anal yzes syntax, if the codi ng styl e whi ch di vi ded

a part for a syntax portion and a final controlling el ement descri bes

as shown below, an intelligible programcan be witten.

Synt ax portion Operation portion
<HEAD >

<BODY> <Cper ati on>
Exanpl e:
<Pred>

<Predl>

<Predl opertion>
<Pr ed2>

<Pred2 operaition>

Strategy of Calc

After anal yzing the syntax of the formula expressed by the character
string which man inputs and deconposing for every elenent, calc is
reconstruct ed conbi ni ng an el enent and perfornms cal cul ation so that it
may be easy to calculate. Specifically, the followi ng operation is
carried out.

1) Input the fornula of one line.

2) Analyze the syntax of the inputted formul a and change i nto a reverse
Pol i sh not ati on.

3) Conpound a predicate for the changed f ormul a as an ar gunent of a rpnf
predi cat e.

4) Performthe conpound predicate.

5 "From1l." It repeats.

Definition of Syntax
It is as foll ows when EBNF (extended Backus Naur form describes the

syntax of calc.

Synt ax of EBNF(extended Backus Naur form

expr = expradd

expr add = exprmul { "+" exprmul | "-" exprmul }
expr mul = exprID { "*" exprID | "/" expriD}
exprl D = "+" exprterm| "-" exprterm | exprterm
exprterm = "(" expr ")" | NUMBERS

The synt ax of EBNF (extended Backus Naur form is rewitten as foll ows
with the Descartes l|anguage. It turns out that it is convertible

corresponding to about 1 to 1.

Syntax by the Descartes | anguage
<expr > <expr add>;
<expradd> <exprnul > { "+" <exprmul> | "-" <exprml > };
<exprmul > <exprID> { "*" <exprID>| "/" <exprlD> };
<exprlI D> "+" <exprternms | "-" <exprterne | <exprternp ;

<exprternp (" <expr>")" | <FNUM #t> ;
By this syntax, the priority of a operator becones the foll ow ng order.
HI GH ()

Unary +, unary -

LOW +, -

Li ne | nput
In order to input one line froma keyboard, the getline predicate of
a sys nodul e is used.

::sys <getline #line Called-predicate >
#line inputted into line is set up and call it as an input file of a
call predicate
When cal ling the <expr> predicate created for the precedi ng chapter
it describes as foll ows.

::sys <getline #line <expr>>

d obal Vari abl e

A gl obal variable is used for saving an intermnmedi ate operation result.

A setVar predicateis usedinorder to set avalue as a gl obal vari abl e.

<set Var VAR VALUE>

It is performedas follows for takingout aval ue froma gl obal vari abl e.

<VAR #VAR>

The val ue of a global variable nane is set as #VAR

Call of Library Append Predicate

;i list <append #VAR LI ST1 LI ST2>

LI ST1 and LI ST2 are connected and it is set as #VAR

Reverse Polish Notation Operation

<rpn VAR RPN >
<rpnf VAR RPN >

Areverse Poland styleis calculated and aresult is set as a vari abl e.

rpn cal cul ates an i nteger and rpnf cal cul ates a fl oati ng poi nt nunber.

8. Conpl etion Sauce of Calc

?<include |ist>; /1 Include of a list library

<cal c #result>
<print "calc : "> [/ The display of a pronpt
/1l Onelineisinputted and syntax anal ysis <expr>is perforned.
/1 Aresult is set as global variable exprlist.
::sys <getline #line
<set Var exprlist ()>
<expr>
>
/[l Aresult is taken out fromexprlist,
/1 it calculates by rpnf, and a result is displayed.
<exprlist #x>

<rpnf #result #x>

<print " =" #result>
<expr >
<expr add>
<expr add>
<expr mul >

{ "+" <exprmul> // + operator
/[l + is added to exprlist.
<exprlist #x>
i list <append #list #x ("+")>

<set Var exprlist #list>

"-" <exprnmul>// - operator
[l - is added to exprlist
<exprlist #x>
i list <append #list #x ("-")>

<set Var exprlist #list>

<expr mul >
<exprl| D>
{ "*" <exprl D> /] * operator
/[l * is added to exprlist
<exprlist #x>
i list <append #list #x ("*")>

<set Var exprlist #list>

"I" <expr|ID>// [operator
/1 | is added to exprli st
<exprlist #x>
i list <append #list #x ("/")>

<set Var exprlist #list>

<exprl| D>

"+" <exprternme

"-" <exprternme
<exprlist #x>
i list <append #list #x ("-1" "*")>
<set Var exprlist #list>

<exprternp
<exprternp

"(" <expr > ")"

<FNUM #t >
<exprlist #x>
i list <append #list #x (#t)>
<set Var exprlist #list>

?{{ <calc #line> }};

Exanpl e of execution :
$ descartes calc
calc :
10+20* 30/ (2+1)
= 210

calc :

