
BBFT: a Hierarchical Byzantine Fault
Tolerant Consensus Algorithm

ByStack Team

v1.0

1 Introduction

Consensus is the process applied by nodes to reach final agreement on network
states. Byzantine fault tolerant (BFT) consensuses are considered well suited
for permission-ed blockchains where semi-trust exists among node. BFT
consensus can deliver high TPS (transactions per second) while guarantees
safety when at most bn−1

3
c out of total n nodes are simultaneously faulty.

PBFT (practical byzantine fault tolerant) is one of the widely adopted
BFT consensuses[6]. However, it does not scale well because ofO(n2) commu-
nication complexity. In this report, we present a hierarchical BFT consensus
algorithm - BBFT. It utilizes network topology to effectively distribute and
aggregate messages among nodes and provides O(n) communication com-
plexity.

2 System Model

We define the system as an asynchronous distributed environment where
individual nodes communicate via point-to-point network. The network may
fail to deliver message, delay them (not indefinitely), or deliver them out
of order. The network by itself is heterogeneous, meaning communication
quality between nodes is not equal and does not remain constant between
the same set of nodes.

Message authentication is guaranteed by asymptotic security through
cryptographic signatures and hash functions[15, 17, 12].

We call a node a consensus node if it participates in the consensus process.
Consensus node replicates the current state of the system. Gateway node is a
consensus node that performs additional signature aggregation. Leader node

1



is a consensus node that proposes a block to be verified at the beginning of
the consensus round. Every node possess a unique ID and is known by other
nodes.

We call a node byzantine node if it behaves arbitrarily. It may delay com-
munication, modify messages, replay messages and forge signatures. Byzan-
tine nodes can even collude. We assume that the faulty nodes are computa-
tionally bound so that it is impossible to subvert the cryptographic techniques
used for message security.

Nodes are organized as tree vertices with edges being communication
paths as shown in figure 1. Non-leaf nodes are gateway nodes, and leaf nodes
are consensus nodes. Top level gateway nodes are connected to each other.
Leader node is always one of the top level gateway nodes.

Figure 1: Example Nodes inter-connection Topology

The system is Byzantine Fault Tolerant with minimal number of nodes
n = 3f + 1 when up to f nodes are faulty. This number provides a lower
threshold because in worst case of f faulty nodes, a node must be able to
proceed with n − f responses, despite that the f unresponsive nodes are
actually non-faulty. This requires n− 2f > f . Therefore n > 3f .

In the following sections we describe the process of how nodes reach con-
sensus. Then we discuss the two important components of the algorithm:
how network is partitioned and how to aggregate signatures effectively.

2



3 Consensus Process

The consensus process resembles of a typical PBFT[6] with additional han-
dling of signature aggregation at the gateway nodes. Under normal case,
the algorithm consists of three stages: distribute, aggregate, and finalize as
shown in figure 2.

Figure 2: Example Consensus Process of Single Level Five Nodes Network

At the beginning of consensus round, the nodes have the same view num-
ber v = 0, and block height h. Every node has its unique id i, which is known
by other nodes. A bitmap m is used during message passing to indicate which
nodes’ signatures are included in the aggregated signature.

1. The leader node p selects transactions from its transaction pool and
packages them into the next proposed block b. The proposal is broad-
casted to its peer gateway nodes at the same level as 〈DISTRIBUTE,
h, v,m, b, bσ〉.

2. Its peer gateway nodes receive the proposal, and start to pass it down
along the topology tree edges. This concludes the distribute stage.

3. At the leaf level, upon receipt of the proposal, consensus node i verifies
the block and signature, signs the block, and sends the result to its
parent gateway node as 〈AGGREGATE, h, v,m, bσ〉.

3



4. At every non-leaf level, gateway nodes verify the signatures received
from its children and aggregate them together with its own incremen-
tally, and pass it up along the topology tree edges.

5. When top level nodes receive the aggregated signatures, they do a full
exchange of the message. This concludes the aggregate stage.

6. The fully aggregated signature is then passed down along the topology
tree edges to reach the leaf nodes as 〈FINALIZE, h, v,m, bσ〉.

7. Any consensus node, upon receipt of at least n− f signatures, reaches
consensus and logs the block to its ledger. This concludes the finalize
stage.

A consensus node can initiate a VIEW-CHANGE proposal when it cannot
reach consensus within t time interval, an invalid block has been proposed,
or an invalid aggregated signature has been received. Here t is chosen to be
the maximum consensus process time, and depends on the number of nodes
and network characteristics. When any node received at least n− f VIEW-
CHANGE messages with the same view number from other nodes, current
view number is updated and new consensus round starts.

Let n be the number of consensus nodes, and m be the number of top level
gateway nodes, the total number of messages communicated in the consensus
process is λ = m2 − 2m+ 3n− 2. When 1 ≤ m ≤

√
n⇒ λ ≤ 4n− 2

√
n− 2,

the communication complexity is O(n). Multi-level gateway nodes do not
impact overall complexity, because only the top level gateway nodes perform
full message exchange. BBFT exhibits its flexibility when m changes. As two
special cases of BBFT, when m = 1, BBFT becomes FBFT[16], and when
m = n, BBFT becomes PBFT.

4 Network Zoning

We define topology graph as the logical view of inter-connection among nodes.
Nodes are vertices in the graph, and undirected edges are the communication
paths between nodes, with its weight being communication latency. We
define topology tree as the minimal spanning tree (MST) that connects all
the nodes together, without any cycles and with the minimal possible total
latency. We consider the topology tree unique given the fact that it is highly
impossible for the latency to be exact the same between any two pairs of
connected nodes in real use case.

Finding MST of an undirected graph is a well studied area[14, 7, 10].
Highly optimal linear complexity algorithms exist[8, 13]. Linear complexity

4



distributed solutions also exist, where nodes are fully disconnected and only
communicate by message passing[9, 1]. To construct the MST in BBFT,
we can either deploy a dedicated service that requests latency numbers from
nodes and returns the MST back to nodes, or distributed algorithm can be
applied. Note that even with the centralized approach, the service internal
implementation can be transparent to the nodes. The detail of the algorithm
is out of the scope of this report.

Once the MST is built, the tree is rotated such that the elected leader
node is at top level, and the number of the top level gateway nodes does
not exceed

√
n. Given the dynamic of network inter-connection state, the

topology tree is re-generated periodically. Re-generation frequency depends
on the use case and is coordinated with leader election.

5 Signature Aggregation

When gateway node receives responses from it children consensus nodes, it
performs signature aggregation before routing the message. A naive aggre-
gation would simply concatenate all signatures together, which may lead to
big message size and requires recipient to verify all signatures. We call a key
aggregation effective if

1. The aggregated key size should remain relatively constant regardless of
number of participants.

2. The verification time of the key should remain relatively constant re-
gardless of number of participants.

Here the term ”key” may refer to any types of primitives, such as secret keys,
public keys, signatures, etc.

In BBFT, we use BLS (Boneh–Lynn–Shacham) multi-signature scheme[4,
5, 3] to effectively aggregate signatures. With BLS, it’s possible to aggre-
gate all types of primitives and the result is always another valid primitive.
Primitives which were already aggregated can also be further aggregated in-
crementally, independent from the order in which it happens. With this
property, the aggregated signature size remains constant regardless of num-
ber of participating signatures. Another unique property of BLS is that it
can be done in single round, unlike Schnorr signature scheme[11], where a
pre-commitment setup is needed, which leads to multiple rounds of communi-
cation. This feature makes it ideal for distributed and trust-less environment.

Let n be the number of participants, m be the message communicated
among them. The BLS signature aggregation scheme in BBFT works as
follows:

5



• Setup: We choose an efficiently computable non-degenerate bilinear
pairing e : G0×G1 → GT [3], where G0, G1, and GT are groups of prime
order q. Let g0 and g1 be the generators of G0 and G1 respectively. We
also choose two hash functions H0 : M → G0, a mapping from message
space to G0, and H1 : Gn

1 → Zq.

• KeyGen(): Every participant picks a secret key sk ∈ Zq, and shares its

public key pk = g
sk·H1(gsk1 )
1 with each other. pk ∈ G1.

• Sign(sk, m): Participant with secret key sk signs m and outputs sig-
nature σ = H0(m)sk·H1(gsk1 ). σ ∈ G0.

• Aggregate(σ1, σ2,...,σn): Upon receipt of multiple signatures on mes-
sage m, the aggregated signature σ =

∏n
i=1 σi is computed as the prod-

uct of individual signatures σi. σ ∈ G0.

• Verify(σ, m): Participant verifies an aggregated signature on m by
first computing aggregated public key κ =

∏n
i=1 pki, as the product of

individual public key pki. κ ∈ G1. Then verification is done by the
two-pairing check e(σ, g1) = e(H0(m), κ).

Pairing operation is known to be expensive, it is order of magnitude slower
than typical ECDSA, such as Schnorr signature[2, 11]. However, in the case
of same message, the number of pairing is limited to 2 for every aggregated
signature verified regardless of number of input signatures.

6 Conclusion

We present BBFT, an efficient byzantine fault tolerant consensus algorithm.
The model achieves O(n) communication complexity with certain limit on
number of gateway nodes. It is worth noting that as a highly flexible and re-
configurable model, zoning and aggregation techniques proposed here are not
necessarily the only choices. Depending on the real use case, other techniques
can be easily integrated into the consensus model.

6



References

[1] B. Awerbuch. “Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election, and Related Problems”.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing. STOC ’87. New York, New York, USA: ACM, 1987,
pp. 230–240. isbn: 0-89791-221-7. doi: 10.1145/28395.28421. url:
http://doi.acm.org/10.1145/28395.28421.

[2] Alexander Block. BLS: Is it really that slow? url: https://blog.
dash.org/bls-is-it-really-that-slow-4ca8c1fcd38e. (accessed:
05.21.2019).

[3] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact Multi-
signatures for Smaller Blockchains”. In: Advances in Cryptology – ASI-
ACRYPT 2018. Ed. by Thomas Peyrin and Steven Galbraith. Cham:
Springer International Publishing, 2018, pp. 435–464. isbn: 978-3-030-
03329-3.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from
the Weil Pairing”. In: Proceedings of the 7th International Conference
on the Theory and Application of Cryptology and Information Secu-
rity: Advances in Cryptology. ASIACRYPT ’01. Berlin, Heidelberg:
Springer-Verlag, 2001, pp. 514–532. isbn: 3-540-42987-5. url: http:
//dl.acm.org/citation.cfm?id=647097.717005.

[5] Dan Boneh et al. “Aggregate and Verifiably Encrypted Signatures
from Bilinear Maps”. In: Proceedings of the 22Nd International Con-
ference on Theory and Applications of Cryptographic Techniques. EU-
ROCRYPT’03. Warsaw, Poland: Springer-Verlag, 2003, pp. 416–432.
isbn: 3-540-14039-5. url: http://dl.acm.org/citation.cfm?id=
1766171.1766207.

[6] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Toler-
ance”. In: Proceedings of the Third Symposium on Operating Systems
Design and Implementation. OSDI ’99. New Orleans, Louisiana, USA:
USENIX Association, 1999, pp. 173–186. isbn: 1-880446-39-1. url:
http://dl.acm.org/citation.cfm?id=296806.296824.

[7] E. W. Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0945-
3245. doi: 10.1007/BF01386390. url: https://doi.org/10.1007/
BF01386390.

7



[8] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci Heaps and
Their Uses in Improved Network Optimization Algorithms”. In: J.
ACM 34.3 (July 1987), pp. 596–615. issn: 0004-5411. doi: 10.1145/
28869.28874. url: http://doi.acm.org/10.1145/28869.28874.

[9] R. G. Gallager, P. A. Humblet, and P. M. Spira. “A Distributed Al-
gorithm for Minimum-Weight Spanning Trees”. In: ACM Trans. Pro-
gram. Lang. Syst. 5.1 (Jan. 1983), pp. 66–77. issn: 0164-0925. doi:
10.1145/357195.357200. url: http://doi.acm.org/10.1145/
357195.357200.

[10] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem”. In: Proceedings of the American
Mathematical Society 7.1 (1956), pp. 48–50. issn: 00029939, 10886826.
url: http://www.jstor.org/stable/2033241.

[11] Gregory Maxwell et al. “Simple Schnorr multi-signatures with appli-
cations to Bitcoin”. In: Designs, Codes and Cryptography (Feb. 2019).
doi: 10.1007/s10623-019-00608-x.

[12] Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems. Norwell,
MA, USA: Kluwer Academic Publishers, 1994. isbn: 0792393686.

[13] Seth Pettie and Vijaya Ramachandran. “An Optimal Minimum Span-
ning Tree Algorithm”. In: J. ACM 49.1 (Jan. 2002), pp. 16–34. issn:
0004-5411. doi: 10.1145/505241.505243. url: http://doi.acm.
org/10.1145/505241.505243.

[14] R. C. Prim. “Shortest connection networks and some generalizations”.
In: The Bell System Technical Journal 36.6 (Nov. 1957), pp. 1389–
1401. issn: 0005-8580. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[15] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems”. In: Commun. ACM
21.2 (Feb. 1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.
359342. url: http://doi.acm.org/10.1145/359340.359342.

[16] Harmony Team. Harmony Technical Whitepaper. url: https://harmony.
one/whitepaper.pdf. (accessed: 05.21.2019).

[17] Gene Tsudik. “Message Authentication with One-way Hash Functions”.
In: SIGCOMM Comput. Commun. Rev. 22.5 (Oct. 1992), pp. 29–38.
issn: 0146-4833. doi: 10.1145/141809.141812. url: http://doi.
acm.org/10.1145/141809.141812.

8


