dox

Manual for version 1.8.17

£, ¢

Written by Dimitri van Heesch

©1997-2019

Contents

1

2

2.1
2.2
2.3
2.4

3

3.1
3.2
3.3

3.4

4
4.1

4.2

User Manual

Introduction

Installation
Compiling fromsource on UNIX oo
Installing the binarieson UNIX
Compiling from source on Windows L

Installing the binarieson Windows e

Getting started

Step 0: Check if doxygen supports your programming language
Step 1: Creating a configurationfile
Step 2: Running doxygen L e e e
3.3.1 HTMLoutput e e e
3.3.2 LaTeXoutput o e e e
3.3.3 RTFoutput e
3.3.4 XMLoutput e e e e
3.35 Manpageoutput e e e e e
3.3.6 DocBookoutput
Step 3: Documentingthe sources L

Documenting the code

Special commentblocks
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)
Putting documentation aftermemberso oL
Examples L
Documentation at otherplaces
4.1.2 Commentblocksin Python
4.1.3 Commentblocksin VHDL e
41.4 CommentblocksinFortran
415 CommentblocksinTcl e

Anatomy of acommentblock

© © 0o N N

11
12
12
13
13
14
14
14
14
14
15

5 Markdown support 31
5.1 Standard Markdown L 31
5.1.1 Paragraphs e e e e e 31

5.1.2 Headers e e e e 31

5.1.3 Blockquotes L e e e 32

5.1.4 Lists e e e 32

515 CodeBlocks e 32

5.1.6 Horizontal Rulers 33

5.1.7 Emphasis e e e 33

5.1.8 Strikethrough 33

5.1.9 €odespans e e e e e e 33

5110 Links e e 33

Inline Links o 34

Reference Links 34

5111 Images e e e e e 34

5.1.12 AutomaticLinking e e e e e 35

5.2 Markdown Extensions 35
521 TableofContents e 35

522 Tables 35

523 Fenced Code Blocks 36

5.24 HeaderId Attributes 37

5.3 Doxygen specifics e 37
5.3.1 Including Markdown filesaspages 37

5.3.2 Treatmentof HTML blocks e 38

5.3.3 Code Block Indentation e 38

5.3.4 Emphasis and strikethrough limits 39

5.3.5 Code SpansLimits 39

5.83.6 ListsExtensions e e e e 39

5.3.7 Useofasterisks 40

5.3.8 Limitsonmarkupscope e 40

5.4 Debugging of problems L 40
6 Lists 41
7 Grouping 43
71 Modules e 43
7.2 Member Groups L e 45
7.3 Subpaging e e 46
8 Including formulas 49

Generated by Doxygen 1.8.17

9 Including tables

10 Graphs and diagrams

11 Preprocessing

12 Automatic link generation

12.1 Linkstoweb pagesand mailaddresses
12.2 Linkstoclasses e
12.3 Linkstofiles e
12.4 Linkstofunctions
125 Linkstoothermembers L
12.6 typedefs L e

13 Output Formats

14 Searching

14.1 External Indexing and Searching
14.1.1 Introduction L

14.1.2 Configuring e e

Single projectindex L

Multi projectindex e

14.1.3 Updatingtheindex e e

14.1.4 Programminginterface e e e
Indexerinputformat
SearchURLformat
Searchresultsformat

15 Customizing the output

15.1 Minor Tweaks
15.1.1 Overall Color o e e e
15.1.2 Navigation e
15.1.3 Dynamic Content
15.1.4 Header, Footer, and Stylesheetchanges

15.2 Changingthelayoutofpages e

15.3 Usingthe XML output o L e

16 Custom commands

16.1 Simple aliases e
16.2 Aliaseswitharguments L
16.3 Nesting customcommand

17 Linking to external documentation

51

53

57

61
61
61
61
61
62
64

65

67
69
69
70
71
71
72
72
72
73
73

75
75
75
75
76
76
77
80

81
81
81
82

83

Generated by Doxygen 1.8.17

v

18 Frequently Asked Questions 85
18.1 How to get information on the index page in HTML? 85
18.2 Help, some/all of the members of my class / file / namespace are not documented? 85
18.3 When | set EXTRACT_ALL to NO none of my functions are shown in the documentation. 86
18.4 My file with a custom extension is not parsed (properly) (anymore). 86
18.5 How can | make doxygen ignore some code fragment? oL 86
18.6 How can | change what is after the #include in the class documentation? 86
18.7 How can | use tag files in combination with compressed HTML? 87
18.8 | don't like the quick index that is put above each HTML page, whatdo Ido? 87
18.9 The overall HTML output looks different, while | only wanted to use my own html header file 87
18.10 Why does doxygen use Qt? e e 87
18.11 How can | exclude all test directories from my directory tree? 88
18.12 Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do |
prevent that at a certain place? L 88
18.13 My favorite programming language is X. Can I stilluse doxygen? 88

18.14 Help! | get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses

REJECT" . . . e 88
18.15 When running make in the latex directory | get "TeX capacity exceeded". Now what? 88
18.16 Why are dependencies via STL classes not shown in the dot graphs? 89
18.17 | have problems getting the search engine to work with PHP5 and/or windows 89
18.18 Can | configure doxygen from the command line? 89
18.19 How did doxygen getits name? e 89
18.20 What was the reason to develop doxygen? 89
19 Troubleshooting 91
19.1 Known Problems L e 91
19.2 HowtoHelp e 92
19.3 Howtoreportabug e 92
Il Reference Manual 93
20 Features 95
21 Doxygen usage 97
21.1 Fine-tuningthe output L L L 97
22 Doxywizard usage 99
23 Configuration 105
23.1 Format e 105
23.2 Projectrelated configurationoptions L e 107
23.3 Build related configurationoptions 112

Generated by Doxygen 1.8.17

23.4 Configuration options related to warning and progress messages 116
23.5 Configuration options related to the inputfiles L Lo 117
23.6 Configuration options related to source browsing Lo 118
23.7 Configuration options related to the alphabetical classindex 120
23.8 Configuration options related to the HTML output 120
23.9 Configuration options related to the LaTeX output 128
23.10 Configuration options related tothe RTFoutput 131
23.11 Configuration options related to the manpageoutput 132
23.12 Configuration options related to the XML outputo 132
23.13 Configuration options related to the DOCBOOK output 133
23.14 Configuration options for the AutoGen Definitions output 133
23.15 Configuration options related to the Perl module output 133
23.16 Configuration options related to the preprocessor oL 134
23.17 Configuration options related to external references L oL 135
23.18 Configuration options related to the dottool Lo 135
23.19 Examples 139
24 Special Commands 141
241 Introduction L L e e 141
24.2 \addtogroup <name> [(title)] L 143
24.3 \callgraph e 143
24.4 \hidecallgraph L e e 143
245 \callergraph o e 144
24.6 \hidecallergraph L e 144
24.7 \showrefby L 144
24.8 \hiderefby . . . Lo 144
24.9 \shOowrefs L e e 145
2410 \hiderefs L L 145
24.11 \category <name> [<header-file>] [<header-name>] 145
2412 \class <name> [<header-file>] [<header-name>] 145
2413 \def <name> L L e e e 146
24.14 \defgroup <name> (groupftitle) L 146
2415 \dir [<path fragment>]. L 146
2416 \enuUm <N@ME>> o v vt e e e e e e e e e e 146
2417 \example[{lineno}'] <file-name> L 147
2418 \endinternal L e e 147
2419 \extends <name>> e e e e e e 147
24.20 Mile[<name>] L e 148
24.21 \fn (function declaration) L 148
24.22 \headerfile <header-file> [<header-name>] oo 149

Generated by Doxygen 1.8.17

Vi

24.23
24.24
24.25
24.26
24.27
24.28
24.29
24.30
24.31
24.32
24.33
24.34
24.35
24.36
24.37
24.38
24.39
24.40
24.41
24.42
24.43
24.44
24.45
24.46
24.47
24.48
24.49
24.50
24.51
24.52
24.53
24.54
24.55
24.56
24.57
24.58
24.59
24.60
24.61
24.62

\hideinitializer e 149
\idlexcept <name> L e 149
\implements <name> L e e e e e 149
\ingroup (<groupname> [<groupname> <groupname>])o e e 150
\interface <name> [<header-file>] [<header-name>] 150
\internal e 150
\mainpage [(title)] e e e e 150
\memberof <name> e e e e 151
\name [(header)] 151
\namespace <NAME>> ittt e e e e e e e e e 151
\NOSUDGroUPINg o e e e e e e e 151
\overload [(function declaration)] 151
\package <name>> e e 152
\page <name> (title) 152
\private e e 153
\privatesection e e e e 153
\property (qualified property name) 153
\protected L e 153
\protectedsection. e e e e 153
\protocol <name> [<header-file>] [<header-name>], 154
\public . . o e 154
\publicsection e 154
\PUIE o o o o e e 154
\relates <name>> L e 154
\related <name> L e 155
\relatesalso <name> L e e e e e e 155
\relatedalso <name> L e e e e 155
\showinitializer e 155
\static e 155
\struct <name> [<header-file>] [<header-name>] 155
\typedef (typedef declaration) 155
\union <name> [<header-file>] [<header-name>], 156
\var (variable declaration) e e e e 156
\vhdlflow [(title for the flow chart)] 156
\weakgroup <name> [(title)] 156
\attention { attentiontext} L 156
\author { listof authors } e 156
\authors { list of authors} 157
\brief { brief description} 157
\bug { bug description} 157

Generated by Doxygen 1.8.17

24.63 \cond [(section-label)] L 157
24.64 \copyright { copyright description} L L 158
24.65 \date {datedescription} L 158
24.66 \deprecated {description} 158
24.67 \details { detailed description} 158
24.68 \noop (texttobeignored) L 158
24.69 \else e 159
24.70 \elseif (section-label) L 159
24.71 \endcond L e e 159
24.72 \endif e 159
24.73 \exception <exception-object> { exception description}o 159
24.74 \if (section-label) 159
24.75 \ifnot (section-label) L 160
24.76 \invariant { description of invariant} 160
24.77 \note {text} 161
24.78 \par [(paragraph title)] { paragraph} Lo 161
24.79 \param TTdir]" <parameter-name> { parameter description} 161
24.80 \parblock e 162
24.81 \endparblock L e 162
24.82 \tparam <template-parameter-name> { description}o 162
24.83 \post { description of the postcondition} L 162
24.84 \pre { description of the precondition} oL 162
24.85 \remark {remarktext} L 162
24.86 \remarks {remarktext} L 162
24.87 \result { description of theresultvalue} 163
24.88 \return { description of thereturnvalue}. L 163
24.89 \returns { description of the returnvalue} L 163
24.90 \retval <returnvalue> {description} 163
24.91 \sa{references} e e e 163
24.92 \see{references} 163
24.93 \short{shortdescription} L 163
24.94 \since {text} 163
24.95 \test { paragraph describing atestcase} L o 163
24.96 \throw <exception-object> { exception description} 164
24.97 \throws <exception-object> { exception description} 164
24.98 \todo { paragraph describingwhatistobedone} oL 164
24.99 \version {versionnumber} L L 164
24.100\warning { warning message }o i i e e e e e e e e 164
24.101 \xrefitem <key> "(heading)" "(list title)" {text}o 164
24.102\addindex (text) e e 165

Generated by Doxygen 1.8.17

Vil

24.103\anchor <word>> L L L e e 165
24.104\cite <label> 165
24.105\endlink oL L L e e e 165
24.106\link <link-object> L 165
24.107\ref <name> ["(text)"] 166
24.108\refitem <name> L L e 166
24.109\secreflist L e 166
24.110\endsecreflist L 166
24.111\subpage <name> ["(text)"] 166
24.112\tableofcontents['{'[option[:level]][,option[:level]]«}] oL 167
24.113\section <section-name> (sectiontitle) Lo 167
24.114\subsection <subsection-name> (subsectiontitle)o 167
24.115\subsubsection <subsubsection-name> (subsubsectiontitle) L. 167
24.116\paragraph <paragraph-name> (paragraphtitle) 168
24.117\dontinclude['{lineno}] <file-name> 168
24 118\include[{'option}'] <file-name> L 168
24.119\includelineno <file-name> L 169
24.120\includedoc <file-name> L L 169
24121\line (pattern) L e 169
24.122\skip (pattern) e 169
24.123\skipline (pattern) L e 170
24.124 \snippet[{'option'}'] <file-name> (block_id) 170
24.125\snippetlineno <file-name> (block_id) L 170
24.126\snippetdoc <file-name> (block_id) L 171
24127\until (pattern) L e e 171
24.128\verbinclude <file-name> L L 171
24.129\htmlinclude ["[block]"] <file-name> L 171
24 130\latexinclude <file-name> L L 171
24.131\a <WOrd>> L e e 171
24.132\arg { item-description } L L L 172
24133\0 KWOrA>> o e e e e e e e e 172
24.134\C <WOrd>> L e e e e 172
24.135\codel'{'<word>"1'T e e 173
24.136\copydoc <link-object> L 173
24.137\copybrief <link-object> L 174
24.138\copydetails <link-object™> 174
24.139\docbookonly L e 174
24.140\dot ["caption"] [<sizeindication>=<size>] 174
24.141\emoji "name” . . . L L L e e 174
24.142\msc ["caption"] [<sizeindication>=<size>]o 174

Generated by Doxygen 1.8.17

24.143\startuml [{file}] ["caption"] [<sizeindication>=<size>] Lo 175
24.144\doffile <file> ["caption"] [<sizeindication>=<size>] 0. 176
24.145\mscfile <file> ["caption”] [<sizeindication>=<size>] oL 176
24.146\diafile <file> ["caption"] [<sizeindication>=<size>] 177
24147\ WOKA>> . . . L o oo e e e e 177
24.148\em <WOrd>> L L 177
24.149\endCode e e 177
24.150\enddocbookonly L L e 177
24151 enddot . . . L L L 178
24.152\endmMSC e e 178
24.153\enduml . . L L L L e 178
24.154\endhtmlonly L 178
24.155\endlatexonlyo e e 178
24.156\endmanonly L e e 178
24.157\endrtfonly L L e 178
24.158\endverbatim L L 178
24.159\endxmlonlyo L e 178
24.160M8 . . L e 179
24 161N . . . e e e 179
24162\f] . . L 179
24.163\flenvironment}{ L L e e e 179
241640\ . L L e e e 179
24.165\htmlonly ["[block]"] 179
24.166\image['{'option'}'] <format> <file> ["caption"] [<sizeindication>=<size>] 180
24 467\atexonly e e 180
24.168\manonly e e e 180
24.169\li { item-description } L L 181
241700NN . . L L 181
241471\D <SWOrd>> e e 181
24172\rtfonly . . L e e e e 182
24473 \verbalim L e 182
24174\xmlonly . . L L e 182
24175\ . L e e e e 182
24076\@ . . . e e e e e e 182
24177\~[Languageld] e 182
24078\& . . o 183
24179\ . . L e 183
24180MF . . . e e e 183
24181\ . L 183
24.182\> L L 183

Generated by Doxygen 1.8.17

24.183\% . . e e 183
24 184N e e e 183
24185\, . L e e 183
24186 \= e 183
24 187\ . e e 183
24488\ . L 183
241890\ - . e e 184
241900\ . L e e 184
25 HTML Commands 185
26 XML Commands 195
27 Emoji support 197
27.1 Representation e e e 197
27.2 Emojiimageretrieval L L e 197
Il Developers Manual 199
28 Internationalization 201
29 Perl Module Output 207
291 USage e 207
29.2 Usingthe LaTeX generator. e 207
29.2.1 Creation of PDF and DVIoutput e 208

29.3 Documentationformat. e e 208
29.4 Datastructure e e e e e 209
30 Doxygen’s internals 211
Appendices 215

A Autolink Example 217
A1 Class Documentation e e e 217
A.1.1 Autolink_Test Class Reference e 217
Detailed Description e e 217

Member Enumeration Documentation 218

Constructor & Destructor Documentation., 218

Member Function Documentation o 218

A.2 File Documentation e e 218
A.2.1 autolink.cpp File Reference e 218
Detailed Description e 219

Generated by Doxygen 1.8.17

Xi

Macro Definition Documentation L 219

Typedef Documentation 219

Enumeration Type Documentationo Lo 219

Variable Documentation 219

B Resolving Typedef Example 221
B.1 Class Documentation e 221
B.1.1 CoordStruct Struct Reference 221
Detailed Description 221

Member Data Documentation. 221

B.2 File Documentation e e e e 221
B.2.1 restypedef.cpp File Reference 221
Detailed Description e 221

Typedef Documentation 222

Function Documentation 222

C Diagrams Example 223
C.1 Class Documentation e 223
C.1.1 AClassReference e 223
Member Data Documentation. 224

C.1.2 BClassReference 224
Member Data Documentation. L 224

C.1.3 CClassReference 225
Member Data Documentation. 225

C.1.4 DClassReference 226
Member Data Documentation. 227

C.1.5 ECIlassReference 227

C.2 File Documentation e e 228
C.2.1 diagrams_a.hFileReference 228

C.2.2 diagrams_b.h FileReference 229

C.2.3 diagrams_c.h FileReference 229

C.2.4 diagrams_d.hFile Reference 230

C.2.5 diagrams_e.h FileReference L 230

D Modules Example 233
D1 Module Documentation 233
D.1.1 The FirstGroup o o o e e 233
Detailed Description 233

D.1.2 TheSecond Group o o i i e e 234
Detailed Description 234

D.1.3 TheThird Group o e 235

Generated by Doxygen 1.8.17

Xi

Detailed Description e 235

D.1.4 The Fourth Group o o o 236
Detailed Description e e 236

D15 TheFifthGroup o 237

D.2 Namespace Documentation 238
D.2.1 N1 Namespace Reference 238
Detailed Description e e 238

D.3 Class Documentation e e e 238
D.3.1 CiClassReference e 238
Detailed Description 238

D.3.2 C2ClassReference e 238
Detailed Description 238

D.3.3 C3ClassReference e 238
Detailed Description 238

D.3.4 C4ClassReference e 238
Detailed Description 238

D.35 C5ClassReference e 238
Detailed Description 239

D.4 File Documentation e 239
D.4.1 group.cpp File Reference 239
Detailed Description 239

E Member Groups Example 241
E.A1 Class Documentation e 241
E.1.1 Memgrp_TestClass Reference 241
Detailed Description 241

Member Function Documentation 241

E.2 File Documentation e 242
E.2.1 memgrp.cpp File Reference 242
Detailed Description 242

Macro Definition Documentation L 242

Function Documentation 242

F Style Examples 243
F1 After Block Example L 243
F1.1 Class Documentation e 243
Afterdoc_Test Class Reference . e 243

F2 QT StyleExample e 244
F2.1 Class Documentation e 244
QTstyle_Test Class Reference 244

F.3 Javadoc Style Example L 246

Generated by Doxygen 1.8.17

X

F.3.1 Class Documentation 246
Javadoc TestClass Reference 246

F.4 Javadoc Banner Example L 248
F4.1 File Documentation L 248
javadoc-banner.h File Reference 248

G Structural Commands Example 251
G.1 File Documentation e 251
G.1.1 structemd.h File Reference 251
Detailed Description L 251

Macro Definition Documentation L L 251

Typedef Documentation L 252

Function Documentation 252

Variable Documentation L 253

H Language Examples 255
H.A Python Docstring Example o e 255
H.1.1 Namespace Documentation e 255
docstring Namespace Reference Lo Lo 255

H.1.2 Class Documentation 255
docstring.PyClass Class Reference, 255

H.1.3 File Documentation L 256
docstring.py File Reference L 256

H.2 PythonExample 256
H.2.1 Namespace Documentation 256
pyexample Namespace Reference o o oo 256

H.2.2 Class Documentation 257
pyexample.PyClass Class Reference 257

H.3 VHDL Example e 257
H.3.1 Class Documentation 257
behavior Architecture Reference 257

mux_using_with Entity Reference o oo 257

H.3.2 File Documentation 258
mux.vhdl File Reference 258

H4 TclExample o o e 258
H.4.1 Namespace Documentation 258

ns Namespace Reference e 258

H.4.2 Class Documentation 259
ns:itcl_class Class Reference e 259

ns:oo_class Class Reference 261

H.4.3 File Documentation 262

Generated by Doxygen 1.8.17

Xiv

tclexample.tcl File Reference Lo

I Class Example

1.1 Class Documentation e e e
[.1.1 Test Class Reference e
Detailed Description

J Define Example

J.1 File Documentation e
J. 1.1 defineh FileReference
Detailed Description

Macro Definition Documentation

K Enum Example

K.1 Class Documentation L
K.1.1 Enum_TestClass Reference i
Detailed Description

Member Enumeration Documentation L Lo L

L Example Example

L.1 Class Documentation e
L.1.1 Example_TestClass Reference
Detailed Description

Member Function Documentation

L.2 Example Documentation
L.2.1 example_test.cpp

M Extends/Implements Example

M.1 Class Documentation e e e e
M.1.1 Car Struct Reference e
Detailed Description

M.1.2 Object StructReference
Detailed Description e

Member Function Documentation

M.1.3 Truck Struct Reference
Detailed Description e

M.1.4 Vehicle Struct Reference L
Detailed Description

Member Function Documentation

M.2 File Documentation e e e e
M.2.1 manual.cFile Reference
Function Documentation L

265
265
265
265

267
267
267
267
267

269
269
269
269
269

Generated by Doxygen 1.8.17

XV

N File Example
N.1 File Documentation
N.1.1 file.h File Reference .

Detailed Description

Variable Documentation e e e e e e e

O Fn Example
01 Class Documentation L e e e e e e
O.1.1 Fn_TestClass Reference e

Detailed Description

Member Function Documentation e

P Overload Example

P.1 Class Documentation

P1.1 Overload TestClass Reference,

Detailed Description

Member Function Documentation

Q Page Example
Q.1 Adocumentation page
Q.1.1 An example section .

The first subsection

The second subsection e

Q.2 Anotherpage

R Relates Example
R.1 Class Documentation
R.1.1 String Class Reference
Detailed Description

Friends And Related

S Author Example

Function Documentation

S.1 Bug List
S.2 Class Documentation e
S.2.1 SomeNiceClass Class Reference . i

Detailed Description

T Par Example

T.A Class Documentation

TA11 Par TestClassReference e

Detailed Description

U Include Example

277
277
277
277
277

279
279
279
279
279

281
281
281
281
281

283
283
283
283
283
283

285
285
285
285
285

287
287
287
287
287

289
289
289
289

291

Generated by Doxygen 1.8.17

XVI

U1 pag_example L e 291
U.2 Class Documentation e e e e 291
U.2.1 Include TestClass Reference. i 291
Detailed Description 291

Generated by Doxygen 1.8.17

Part |

User Manual

Chapter 1

Introduction

Introduction

Doxygen is the de facto standard tool for generating documentation from annotated C++ sources, but it also supports
other popular programming languages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and
UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent D.

Doxygen can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual (in IATEX)
from a set of documented source files. There is also support for generating output in RTF (MS-Word), Post«
Script, hyperlinked PDF, compressed HTML, and Unix man pages. The documentation is extracted directly
from the sources, which makes it much easier to keep the documentation consistent with the source code.

2. You can configure doxygen to extract the code structure from undocumented source files. This is very useful
to quickly find your way in large source distributions. Doxygen can also visualize the relations between the
various elements by means of include dependency graphs, inheritance diagrams, and collaboration diagrams,
which are all generated automatically.

3. You can also use doxygen for creating normal documentation (as | did for the doxygen user manual and

web-site).

Doxygen is developed under Mac OS X and Linux, but is set-up to be highly portable. As a result, it runs on most
other Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

+ Section Installation discusses how to download, compile and install doxygen for your platform.
+ Section Getting started tells you how to generate your first piece of documentation quickly.
 Section Documenting the code demonstrates the various ways that code can be documented.

+ Section Markdown support show the Markdown formatting supported by doxygen.

« Section Lists shows how to create lists.

+ Section Grouping shows how to group things together.

+ Section Including tables shows how to insert tables in the documentation.

« Section Including formulas shows how to insert formulas in the documentation.

http://www.doxygen.org/download.html

4 Introduction

 Section Graphs and diagrams describes the diagrams and graphs that doxygen can generate.

» Section Preprocessing explains how doxygen deals with macro definitions.

« Section Automatic link generation shows how to put links to files, classes, and members in the documentation.
+ Section Output Formats shows how to generate the various output formats supported by doxygen.

 Section Searching shows various ways to search in the HTML documentation.

» Section External Indexing and Searching shows how use the external search and index tools

« Section Customizing the output explains how you can customize the output generated by doxygen.

+ Section Custom Commands show how to define and use custom commands in your comments.

« Section Linking to external documentation explains how to let doxygen create links to externally generated
documentation.

« Section Frequently Asked Questions gives answers to frequently asked questions.

+ Section Troubleshooting tells you what to do when you have problems.

The second part forms a reference manual:

+ Section Features presents an overview of what doxygen can do.

» Section Doxygen usage shows how to use the doxygen program.

+ Section Doxywizard usage shows how to use the doxywizard program.

« Section Configuration shows how to fine-tune doxygen, so it generates the documentation you want.

« Section Special Commands shows an overview of the special commands that can be used within the docu-
mentation.

e Section HTML Commands shows an overview of the HTML commands that can be used within the documen-
tation.

» Section XML Commands shows an overview of the C# style XML commands that can be used within the
documentation.

+ Section Emoji support shows an introduction how emoji can be used within the documentation.
The third part provides information for developers:

» Section Doxygen's Internals gives a global overview of how doxygen is internally structured.
+ Section Perl Module Output shows how to use the PerlMod output.

+ Section Internationalization explains how to add support for new output languages.

Doxygen license

Copyright © 1997-2019 by Dimitri wvan Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of the GNU
General Public License is hereby granted. No representations are made about the suitability of this software for any
purpose. |t is provided "as is" without express or implied warranty. Seethe GNU General Public License
for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they are not
affected by this license.

Generated by Doxygen 1.8.17

mailto:doxygen@gmail.com
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

User examples

Doxygen supports a number of output formats where HTML is the most popular one. I've gathered some nice
examples of real-life projects using doxygen.

These are part of a larger 1list of projects that use doxygen. If you know other projects, let me know
and I'll add them.

Future work

Although doxygen is successfully used by large number of companies and open source projects already, there is
always room for improvement.

You can submit enhancement requests in the bug tracker. Make sure the severity of the bug report is set
to "enhancement”.

Acknowledgments
Thanks go to:

» Malte Z6ckler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed some code
of an old version of DOC++. Although | have rewritten practically all code since then, DOC++ has still given
me a good start in writing doxygen.

« All people at Qt Software, for creating a beautiful GUI Toolkit (which is very useful as a Windows/Unix platform
abstraction layer :-)

» My brother Frank for rendering the logos.

« Harm van der Heijden for adding HTML help support.

» Wouter Slegers of Your Creative Solutions for registering the www.doxygen.org domain.
 Parker Waechter for adding the RTF output generator.

+ Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration generator.

» Tim Mensch for adding the todo command.

Christian Hammond for redesigning the web-site.

» Ken Wong for providing the HTML tree view code.

Talin for adding support for C# style comments with XML markup.

Petr Prikryl for coordinating the internationalization support. All language maintainers for providing transla-
tions into many languages.

« Theband Porcupine Tree for providing hours of great music to listen to while coding.

* many, many others for suggestions, patches and bug reports.

Generated by Doxygen 1.8.17

http://www.doxygen.org/results.html
http://www.doxygen.org/results.html
http://www.doxygen.org/projects.html
mailto:doxygen@gmail.com?subject=New%20project%20using%20Doxygen
https://github.com/doxygen/doxygen/issues
http://www.yourcreativesolutions.nl
http://www.porcupinetree.com/

Introduction

Generated by Doxygen 1.8.17

Chapter 2

Installation

2.1 Compiling fromsource on UNIX o L e
2.2 Installing the binarieson UNIX L o e

2.3 Compiling from source on Windows L

© © o0

2.4 Installing the binarieson Windows e

First go to the download page to get the latest distribution, if you have not downloaded doxygen already.

2.1 Compiling from source on UNIX

If you downloaded the source distribution, you need at least the following to build the executable:

« The GNUtools flex, bison, libiconv and GNU make, and strip
* You need python (version 2.6 or higher, see https://www.python.org).

* In order to generate a Makefile for your platform, you need cmake version 3.1.3 or later.

To take full advantage of doxygen's features the following additional tools should be installed.

Qt Software's GUI toolkit Ot version 4.3 or higher (including Qt 5). This is needed to build the GUI front-end
doxywizard.

« A IATEX distribution: forinstance TeX Live Thisis needed for generating IATEX, Postscript, and PDF output.

e the Graph visualization toolkit version 1.8.10 or higher Needed for the in-
clude dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you compile
graphviz yourself, make sure you do include freetype support (which requires the freetype library and header
files), otherwise the graphs will not render proper text labels.

* For formulas in the HTML output (when MathJax is not used) or in case you do not wish to use pdflatex,
the ghostscript interpreter is needed. You can finditat www.ghostscript.com.

Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Create a build directory (for instance inside the source tree)

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
https://www.python.org
https://cmake.org/
https://www.qt.io/developers/
http://www.tug.org/interest.html#free
http://www.graphviz.org/
https://www.ghostscript.com/

Installation

2.2

cd doxygen—-$VERSION
mkdir build
cd build

. Run cmake with the makefile generator

cmake -G "Unix Makefiles"

cmake tries to determine the platform you use, and will look for the requires tools. It will report if something
is missing.
If you have Qt-4.3 or higher installed and want to build the GUI front-end, you should enable it as follows:

cmake -Dbuild_wizard=YES ..
For an overview of other configuration options use

cmake -L ..

. Compile the program by running make:

make

The program should compile without problems and the binaries (doxygen and optionally doxywizard)
should be available in the bin directory within the build directory.

. Optional: Generate the user manual.

cmake -Dbuild_doc=YES ..
make docs

To let doxygen generate the HTML and PDF documentation.

The HTML directory within the build directory will now contain the html documentation (just point a HTML
browser to the file index.html in the html directory).

. Optional: static linking

If you want to build a statically linked version of doxygen that embeds libclang you need to first build LLVM
and clang from sources using the following options:

cmake -DLIBCLANG_BUILD_STATIC=ON \
-DBUILD_SHARED_LIBS=0FF \
-DLLVM_ENABLE_PIC=0FF \
-DLLVM_BUILD_LLVM_DYLIB=OFF \
-DLLVM_BUILD_LLVM_C_DYLIB=OFF \
-DLLVM_ENABLE_TERMINFO=0FF \
path_to_1llvm_root_source_dir

and then build doxygen with these options:

cmake —-DCMAKE_BUILD_TYPE=Release \
"-DCMAKE_FIND_LIBRARY_SUFFIXES=.a" \
"-1dl;-1z;-1lpthread" \
-Duse_libclang=YES \
path_to_doxygen_root_source_dir

Installing the binaries on UNIX

After the compilation of the source code do a make install to install doxygen. If you downloaded the binary
distribution for UNIX, type:

./configure
make install

Generated by Doxygen 1.8.17

2.3 Compiling from source on Windows 9

Binaries are installed into the directory <prefix>/bin. Use make install_docs to install the documen-
tation and examples into <docdir>/doxygen.

<prefix> defaults to /usr/local but can be changed with the ——prefix option of the configure script.
The default <docdir> directory is <prefix>/share/doc/packages and can be changed with the
—-docdir option of the configure script.

Alternatively, you can also copy the binaries from the bin directory manually to some bin directory in your search
path. This is sufficient to use doxygen.
Note

You need the GNU install tool for this to work (it is part of the coreutils package). Other install tools may put
the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required for these
packages.

2.3 Compiling from source on Windows

From version 1.8.10 onwards, build files need to be generated by cmake. cmake can be downloaded from
https://cmake.org/download/

At the moment only the express version of Visual Studio 2013 is tested, but other version might also work.
Alternatively, you can compile doxygen the UNIX way using Cygwin or MinGW.

The next step is to install modern versions of bison and flex (see https://sourceforge.«
net/projects/winflexbison/. Afterinstallation and adding them to your path rename win_flex.exe
to flex.exe and win_bison.exe to bison.exe) Furthermore you have to install python (version 2.6 or
higher, see https://www.python.org). These packages are needed during the compilation process.
Download doxygen's source tarball and put it somewhere (e.g. use c: \tools)

Now start a visual studio native command shell (for either x86 or x64) and type

cd c:\tools
tar zxvf doxygen-x.y.z.src.tar.gz

to unpack the sources (you can obtain tar from e.g. http://gnuwin32.sourceforge.«
net/packages.html). Alternatively you can use an unpack program, like 7-Zip (see https://www.
7-zip.org/) or use the built-in unpack feature of modern Windows systems).

Now your environment is setup to generate the required project files for doxygen.
cd into the doxygen—x. y. z directory, create and cd to a build directory

mkdir build
cd build
cmake -G "Visual Studio 12 2013" ..

Note that compiling Doxywizard requires Qt 4.3 or newer (see https://www.gt.io/developers/).

Also read the next section for additional tools you may need to install to run doxygen with certain features enabled.

2.4 Installing the binaries on Windows

Doxygen comes as a self-installing archive, so installation is extremely simple. Just follow the dialogs.

After installation it is recommended to also download and install GraphViz (version 2.20 or better is highly recom-
mended). Doxygen can use the dot tool of the GraphViz package to render nicer diagrams, see the HAVE_DOT
option in the configuration file.

Generated by Doxygen 1.8.17

https://cmake.org/download/
https://cmake.org/download/
https://en.wikipedia.org/wiki/Cygwin
http://www.mingw.org/
https://sourceforge.net/projects/winflexbison/
https://sourceforge.net/projects/winflexbison/
https://www.python.org
http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html
https://www.7-zip.org/
https://www.7-zip.org/
https://www.qt.io/developers/

10 Installation

If you want to produce compressed HTML files (see GENERATE_HTMLHELP) in the configuration file, then you
need the Microsoft HTML help workshop. You can download it from Microsoft.

If you want to produce Qt Compressed Help files (see QHG_LOCATION) in the configuration file, then you need
ghelpgenerator which is part of Qt. You can download Qt from Qt Software Downloads.

In order to generate PDF output or use scientific formulas you will also need to install LaTeX and
Ghostscript.

For IATEX a number of distributions exists. Popular ones that should work with doxygen are MikTex and pro«
TeXt.

Ghostscript can be downloaded from Sourceforge.

After installing IATEX and Ghostscript you'll need to make sure the tools latex.exe, pdflatex.exe, and gswin32c.exe
are present in the search path of a command box. Follow these instructions if you are unsure and run the
commands from a command box to verify it works.

Generated by Doxygen 1.8.17

https://www.microsoft.com/en-us/download/details.aspx?id=21138
https://www.qt.io/download
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Ghostscript
https://en.wikipedia.org/wiki/Ghostscript
https://miktex.org/
https://www.tug.org/protext/
https://www.tug.org/protext/
https://sourceforge.net/projects/ghostscript/
https://www.computerhope.com/issues/ch000549.htm

Chapter 3

Getting started

3.1

3.2

3.3

3.4

Step 0:

Step 1:

Step 2:

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

Step 3:

Check if doxygen supports your programming language 12
Creating a configurationfile 12
Running doxygen 13
HTML output o e e e e 13
LaTeXoutput o e e e e 14
RTF output e e e 14
XMLoutput o e 14
Man page output L 14
DocBook output e e e 14
Documenting the sources L 15

The executable doxygen is the main program that parses the sources and generates the documentation. See
section Doxygen usage for more detailed usage information.

Optionally, the executable doxywizard can be used, which is a graphical front-end for editing the configuration
file that is used by doxygen and for running doxygen in a graphical environment. For Mac OS X doxywizard will be
started by clicking on the doxygen application icon.

The following figure shows the relation between the tools and the flow of information between them (it looks complex
but that's only because it tries to be complete):

12 Getting started

.
Doxywizard E Your application custom
: output
rea ;
generate/edit XML files doxmlparserlib | |
Conlfig file]
Layout file Doxyfile
make ps postscript
L fil
generate generate atex files latex
read update + L
Makefile make pdf PDF
read I's
Sources Doxygen
I read
read generate
Man pages
Custom bag
— headers izl
— footers Tag file(s) (. e ‘
- images |||/ ! ‘Windows only !
I~ I I
I I
import | doc
refman.rtf T MS-Word .
I I
HTML read | chm |
pages ! HTML Help Workshop — 3

Figure 3.1: Doxygen information flow

3.1 Step 0: Check if doxygen supports your programming language

First, assure that your programming language has a reasonable chance of being recognized by doxygen. These
languages are supported by default: C, C++, C#, Objective-C, IDL, Java, VHDL, PHP, Python, Tcl, Fortran, and D. It
is possible to configure certain file type extensions to use certain parsers: see the Configuration/ExtensionMappings
for details. Also, completely different languages can be supported by using preprocessor programs: see the

Helpers page for details.

3.2 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configuration file.
A project can consist of a single source file, but can also be an entire source tree that is recursively scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you. To do this
call doxygen from the command line with the —g option:

doxygen —-g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named Doxyfile will
be created. If a file with the name <config-file> already exists, doxygen will rename it to <config-file>.bak before
generating the configuration template. If you use - (i.e. the minus sign) as the file name then doxygen will try to
read the configuration file from standard input (st din), which can be useful for scripting.

Generated by Doxygen 1.8.17

http://www.doxygen.org/helpers.html
http://www.doxygen.org/helpers.html

3.2 Step 1: Creating a configuration file 13

The configuration file has a format that is similar to that of a (simple) Makefile. It consists of a number of assignments
(tags) of the form:

TAGNAME = VALUE or
TAGNAME = VALUE1l VALUE2

You can probably leave the values of most tags in a generated template configuration file to their default value. See
section Configuration for more details about the configuration file.

If you do not wish to edit the configuration file with a text editor, you should have a look at doxywizard, which is a
GUI front-end that can create, read and write doxygen configuration files, and allows setting configuration options
by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can leave INPUT tag empty and
doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should assign the root directory or directories
to the INPUT tag, and add one or more file patterns to the FILE_PATTERNS tag (for instance *.cpp *.h). Only
files that match one of the patterns will be parsed (if the patterns are omitted a list of typical patterns is used for the
types of files doxygen supports). For recursive parsing of a source tree you must set the RECURSIVE tag to YES.
To further fine-tune the list of files that is parsed the EXCLUDE and EXCLUDE_PATTERNS tags can be used. To
omit all test directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/*

Doxygen looks at the file's extension to determine how to parse a file, using the following table:

Extension | Language | Extension | Language | Extension | Language
.dox | C/C++ .adl | IDL .f | Fortran
.doc | C/C++ .ddl | IDL for | Fortran

.c | C/C++ .odl | IDL .f90 | Fortran
.cc | C/C++ Jjava | Java .fo5 | Fortran
.cxx | C/C++ .cs | C# .f03 | Fortran
.cpp | C/C++ d|D .fo8 | Fortran
C++ | C/C++ .php | PHP .vhd | VHDL
di | C/C++ .php4 | PHP .vhdl | VHDL
ixx | C/C++ .php5 | PHP .ucf | VHDL
dpp | C/C++ .inc | PHP .gsf | VHDL
d++ | C/C++ .phtml | PHP el | TCL
inl | C/C++ .m | Objective-C .md | Markdown
.h | C/C++ .M | Objective-C | .markdown | Markdown
H | C/C++ .py | Python .ice | Slice
.hh | C/C++ .pyw | Python
HH | C/C++
.hxx | C/C++
.hpp | C/C++
.h++ | C/C++
.mm | C/C++
ixt | C/C++

Any other extension is not parsed unless it is added to FILE_PATTERNS and the appropriate EXTENSION_MAPPING
is set.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware of), you
can still get an idea of what the structure is and how the documented result would look like. To do so, you must
set the EXTRACT_ALL tag in the configuration file to YES. Then, doxygen will pretend everything in your sources

Generated by Doxygen 1.8.17

14 Getting started

is documented. Please note that as a consequence warnings about undocumented members will not be generated
as long as EXTRACT_ALL is set to YES.

To analyze an existing piece of software it is useful to cross-reference a (documented) entity with its definition in the
source files. Doxygen will generate such cross-references if you set the SOURCE_BROWSER tag to YES.

It can also include the sources directly into the documentation by setting INLINE_SOURCES to YES (this can be
handy for code reviews for instance).

3.3 Step 2: Running doxygen
To generate the documentation you can now enter:

doxygen <config-file>

Depending on your settings doxygen will create html, rt f, latex, xml, man, and/or docbook directories inside
the output directory. As the names suggest these directories contain the generated documentation in HTML, RTF,
IATEX, XML, Unix-Man page, and DocBook format.

The default output directory is the directory in which doxygen is started. The root directory to which the output is
written can be changed using the OUTPUT_DIRECTORY. The format specific directory within the output directory
can be selected using the HTML_OUTPUT, RTF_OUTPUT, LATEX_OUTPUT, XML_OUTPUT, MAN_OUTPUT,
and DOCBOOK_OUTPUT. tags of the configuration file. If the output directory does not exist, doxygen will try to
create it for you (but it will not try to create a whole path recursively, like mkdir -p does).

3.3.1 HTML output

The generated HTML documentation can be viewed by pointing a HTML browser to the index.html file in the
html directory. For the best results a browser that supports cascading style sheets (CSS) should be used (I'm
using Mozilla Firefox, Google Chrome, Safari, and sometimes IE8, IE9, and Opera to test the generated output).

Some of the features the HTML section (such as GENERATE_TREEVIEW or the search engine) require a browser
that supports Dynamic HTML and JavaScript enabled.

3.3.2 LaTeX output

The generated IATEX documentation must first be compiled by a IATEX compiler (I use a recent teTeX distribution for
Linux and MacOSX and MikTex for Windows). To simplify the process of compiling the generated documentation,
doxygen writes a Makefile into the 1atex directory (on the Windows platform also a make .bat batch file is
generated).

The contents and targets in the Makefile depend on the setting of USE_PDFLATEX. If it is disabled (set to NO),
then typing make in the 1latex directory a dvi file called refman.dvi will be generated. This file can then be
viewed using xdvi or converted into a PostScript file refman . ps by typing make ps (this requires dvips).

To put 2 pages on one physical page use make ps_2onl instead. The resulting PostScript file can be send to a
PostScript printer. If you do not have a PostScript printer, you can try to use ghostscript to convert PostScript into
something your printer understands.

Conversion to PDF is also possible if you have installed the ghostscript interpreter; just type make pdf (or make
pdf_2onl).

To get the best results for PDF output you should set the PDF_HYPERLINKS and USE_PDFLATEX tags to YES.
In this case the Makefile will only contain a target to build re fman . pdf directly.

Generated by Doxygen 1.8.17

3.4 Step 3: Documenting the sources 15

3.3.3 RTF output

Doxygen combines the RTF output to a single file called refman.rtf. This file is optimized for importing into the
Microsoft Word. Certain information is encoded using so called fields. To show the actual value you need to select
all (Edit - select all) and then toggle fields (right click and select the option from the drop down menu).

3.3.4 XML output

The XML output consists of a structured "dump"” of the information gathered by doxygen. Each compound (class/-
namespacef/file/...) has its own XML file and there is also an index file called index . xml.

Afile called combine.xs1t XSLT script is also generated and can be used to combine all XML files into a single
file.

Doxygen also generates two XML schema files index.xsd (for the index file) and compound. xsd (for the
compound files). This schema file describes the possible elements, their attributes and how they are structured, i.e.
it the describes the grammar of the XML files and can be used for validation or to steer XSLT scripts.

In the addon/doxmlparser directory you can find a parser library for reading the XML output produced by
doxygen in an incremental way (see addon/doxmlparser/include/doxmlint£.h for the interface of the
library)

3.3.5 Man page output

The generated man pages can be viewed using the man program. You do need to make sure the man directory is
in the man path (see the MANPATH environment variable). Note that there are some limitations to the capabilities
of the man page format, so some information (like class diagrams, cross references and formulas) will be lost.

3.3.6 DocBook output

Doxygen can also generate output in the DocBook format. How to process the DocBook output is beyond the
scope of this manual.

3.4 Step 3: Documenting the sources

Although documenting the sources is presented as step 3, in a new project this should of course be step 1. Here |
assume you already have some code and you want doxygen to generate a nice document describing the APl and
maybe the internals and some related design documentation as well.

If the EXTRACT_ALL option is set to NO in the configuration file (the default), then doxygen will only generate
documentation for documented entities. So how do you document these? For members, classes and namespaces
there are basically two options:

1. Place a special documentation block in front of the declaration or definition of the member, class or names-
pace. For file, class and namespace members it is also allowed to place the documentation directly after the
member.

See section Special comment blocks to learn more about special documentation blocks.
2. Place a special documentation block somewhere else (another file or another location) and put a structural

command in the documentation block. A structural command links a documentation block to a certain entity
that can be documented (e.g. a member, class, namespace or file).

See section Documentation at other places to learn more about structural commands.

The advantage of the first option is that you do not have to repeat the name of the entity.

Generated by Doxygen 1.8.17

https://docbook.org/

16 Getting started

Files can only be documented using the second option, since there is no way to put a documentation block before
a file. Of course, file members (functions, variables, typedefs, defines) do not need an explicit structural command;
just putting a special documentation block in front or behind them will work fine.

The text inside a special documentation block is parsed before it is written to the HTML and/or IATEX output files.

During parsing the following steps take place:

» Markdown formatting is replaced by corresponding HTML or special commands.

« The special commands inside the documentation are executed. See section Special Commands for an
overview of all commands.

« If a line starts with some whitespace followed by one or more asterisks (x) and then optionally more whites-
pace, then all whitespace and asterisks are removed.

« All resulting blank lines are treated as a paragraph separators. This saves you from placing new-paragraph
commands yourself in order to make the generated documentation readable.

* Links are created for words corresponding to documented classes (unless the word is preceded by a %; then
the word will not be linked and the % sign is removed).

« Links to members are created when certain patterns are found in the text. See section Automatic link generation
for more information on how the automatic link generation works.

» HTML tags that are in the documentation are interpreted and converted to IKTEX equivalents for the IATEX
output. See section HTML Commands for an overview of all supported HTML tags.

Generated by Doxygen 1.8.17

Chapter 4

Documenting the code

41 Special commentblocks L L 17
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java) 17
Putting documentation aftermemberso oL 20

Examples L 21

Documentation at otherplaces Lo 23

4.1.2 CommentblocksinPython 25

41.3 Commentblocksin VHDL e 26

41.4 Commentblocksin Fortran 26

415 CommentblocksinTcl e 27

4.2 Anatomy of acommentblock 29

This chapter covers two topics:

1. How to put comments in your code such that doxygen incorporates them in the documentation it generates.
This is further detailed in the next section.

2. Ways to structure the contents of a comment block such that the output looks good, as explained in section
Anatomy of a comment block.

4.1 Special comment blocks

A special comment block is a C or C++ style comment block with some additional markings, so doxygen knows it
is a piece of structured text that needs to end up in the generated documentation. The next section presents the
various styles supported by doxygen.

For Python, VHDL, Fortran, and Tcl code there are different commenting conventions, which can be
found in sections Comment blocks in Python, Comment blocks in VHDL, Comment blocks in Fortran, and
Comment blocks in Tcl respectively.

4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)

For each entity in the code there are two (or in some cases three) types of descriptions, which together form
the documentation for that entity; a brief description and detailed description, both are optional. For methods
and functions there is also a third type of description, the so called in body description, which consists of the
concatenation of all comment blocks found within the body of the method or function.

Having more than one brief or detailed description is allowed (but not recommended, as the order in which the
descriptions will appear is not specified).

18 Documenting the code

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides longer, more
detailed documentation. An "in body" description can also act as a detailed description or can describe a collection
of implementation details. For the HTML output brief descriptions are also used to provide tooltips at places where
an item is referenced.

There are several ways to mark a comment block as a detailed description:

1. You can use the Javadoc style, which consist of a C-style comment block starting with two x*'s, like this:

/**
* ... text ...

*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment block,
as shown in this example:

/%!
* ... text ...
*/

In both cases the intermediate x's are optional, so

/*!

. text ...
%/
is also valid.

3. Athird alternative is to use a block of at least two C++ comment lines, where each line starts with an additional
slash or an exclamation mark. Here are examples of the two cases:

/17
/// ... text ...
/17

or

//!
//V... text ...
//!

Note that a blank line ends a documentation block in this case.

4. Some people like to make their comment blocks more visible in the documentation. For this purpose you can
use the following:

/**//**
* ... text

***/

(note the 2 slashes to end the normal comment block and start a special comment block).
or
L1110 7 7777 7777777777777777777777

/// ... text ...
[77777070707000777777777777777777777777777777777

or

/**********‘k‘k‘k**********‘k*‘k‘k***********‘k‘k********
* ... text

Kk kkkkk Ak khkhkhkh Ak Ak Ak kkkkkkkkkkkkkkkkkkkxkxok/

Generated by Doxygen 1.8.17

4.1 Special comment blocks 19

as long as JAVADOC_BANNER = YES is used.

[x*
« A brief history of JavaDoc-style (C-style) comments.
*

«+ This is the typical JavaDoc-style C-style comment. It starts with two

+ asterisks.

*

* @param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.

*/

void cstyle(int theory);
/***
« A brief history of JavaDoc-style (C-style) banner comments.
*
This is the typical JavaDoc-style C-style "banner" comment. It starts with
a forward slash followed by some number, n, of asterisks, where n > 2. It'’s
written this way to be more "visible" to developers who are reading the
source code.

Often, developers are unaware that this is not (by default) a valid Doxygen
comment block!

However, as long as JAVADOC_BLOCK = YES is added to the Doxyfile, it will
work as expected.

This style of commenting behaves well with clang-format.

B T T T S N 3

@param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.
******‘k***************‘k******‘k*‘k*****************************‘k****************/

void javadocBanner (int theory);

/***//**

« A brief history of Doxygen-style banner comments.

This is a Doxygen-style C-style "banner" comment. It starts with a "normal"
comment and is then converted to a "special" comment block near the end of
the first line. It is written this way to be more "visible" to developers
who are reading the source code.

This style of commenting behaves poorly with clang-format.

R

@param theory Even if there is only one possible unified theory. it is just a
* set of rules and equations.
**/

void doxygenBanner (int theory);

See Javadoc Banner example for the corresponding IATEX documentation that is generated by doxygen.
For the brief description there are also several possibilities:

1. One could use the \brief command with one of the above comment blocks. This command ends at the end of
a paragraph, so the detailed description follows after an empty line.

Here is an example:

/+! \brief Brief description.
* Brief description continued.
*

* Detailed description starts here.
x/

2. If JAVADOC_AUTOBRIEF is set to YES in the configuration file, then using Javadoc style comment blocks
will automatically start a brief description which ends at the first dot followed by a space or new line. Here is
an example:

/*% Brief description which ends at this dot. Details follow
* here.

*/
The option has the same effect for multi-line special C++ comments:

/// Brief description which ends at this dot. Details follow
/// here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here are two
examples:

/// Brief description.
/*% Detailed description. =/

Generated by Doxygen 1.8.17

20 Documenting the code

or

//! Brief description.

//! Detailed description
//! starts here.

Note the blank line in the last example, which is required to separate the brief description from the block
containing the detailed description. The JAVADOC_AUTOBRIEF should also be set to NO for this case.

As you can see doxygen is quite flexible. If you have multiple detailed descriptions, like in the following example:

//! Brief description, which is
//! really a detailed description since it spans multiple lines.
/*! Another detailed description!

*/

They will be joined. Note that this is also the case if the descriptions are at different places in the code! In this case
the order will depend on the order in which doxygen parses the code.

Unlike most other documentation systems, doxygen also allows you to put the documentation of members (including
global functions) in front of the definition. This way the documentation can be placed in the source file instead of the
header file. This keeps the header file compact, and allows the implementer of the members more direct access to
the documentation. As a compromise the brief description could be placed before the declaration and the detailed
description before the member definition.

Putting documentation after members

If you want to document the members of a file, struct, union, class, or enum, it is sometimes desired to place the
documentation block after the member instead of before. For this purpose you have to put an additional < marker
in the comment block. Note that this also works for the parameters of a function.

Here are some examples:
int var; /x!< Detailed description after the member »*/

This block can be used to put a Qt style detailed documentation block after a member. Other ways to do the same
are:

int var; /*+< Detailed description after the member »*/
or

int var; //!< Detailed description after the member
//1<

or

int var; ///< Detailed description after the member
///<

Most often one only wants to put a brief description after a member. This is done as follows:
int var; //!< Brief description after the member

or

int var; ///< Brief description after the member

For functions one can use the @param command to document the parameters and then use [in], [out],
[in, out] to document the direction. For inline documentation this is also possible by starting with the direc-
tion attribute, e.g.

Generated by Doxygen 1.8.17

4.1 Special comment blocks 21

void foo(int v /*%< [in] docs for input parameter v. =*/);

Note that these blocks have the same structure and meaning as the special comment blocks in the previous section
only the < indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:
/+! A test class x/
class Afterdoc_Test
{
public:
/*% An enum type.
* The documentation block cannot be put after the enum!
x/
enum EnumType

{

int EVall, /*x< enum value 1 %/
int EVal2 /*x< enum value 2 =/
bi
void member () ; //!'< a member function.
protected:
int value; /+!1< an integer value */

i

See After Block example for the corresponding IATEX documentation that is generated by doxygen.

Warning

These blocks can only be used to document members and parameters. They cannot be used to document
files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the structural com-
mands mentioned in the next section (like \class) are not allowed inside these comment blocks.

Examples

Here is an example of a documented piece of C++ code using the Qt style:
//! A test class.
/!
A more elaborate class description.
*
/
class QTstyle_Test
{
public:

//! An enum.
/%! More detailed enum description. =/
enum TEnum {
TVall, /*!< Enum value TVall. x/
TVal2, /*!< Enum value TVal2. x/
TVal3 /#!< Enum value TvVal3. x/
}
//! Enum pointer.
/+! Details. x/
~enumPtr,
//! Enum variable.
/+! Details. */
enumVar;

//! A constructor.
/x !
A more elaborate description of the constructor.
*/
QTstyle_Test ();

//! A destructor.
/%!
A more elaborate description of the destructor.
*/
~QTstyle_Test () ;

//! A normal member taking two arguments and returning an integer value.
/!

\param a an integer argument.

\param s a constant character pointer.

\return The test results

\sa QTstyle_Test (), ~QTstyle_Test (), testMeToo() and publicVar (
*/

int testMe (int a,const char =xs);

//! A pure virtual member.

/*!

Generated by Doxygen 1.8.17

22 Documenting the code

\sa testMe ()

\param cl the first argument.

\param c2 the second argument.
*/

virtual void testMeToo(char cl,char c2) = 0;

//! A public variable.
/%!
Details.
*/
int publicVar;

//!' A function variable.
/!
Details.
*/
int (xhandler) (int a,int b);
}i

See QT Style example for the corresponding IATEX documentation that is generated by doxygen.

The brief descriptions are included in the member overview of a class, namespace or file and are printed using a
small italic font (this description can be hidden by setting BRIEF_MEMBER_DESC to NO in the configuration file).
By default the brief descriptions become the first sentence of the detailed descriptions (but this can be changed by
setting the REPEAT_BRIEF tag to NO). Both the brief and the detailed descriptions are optional for the Qt style.

By default a Javadoc style documentation block behaves the same way as a Qt style documentation block. This is not
according the Javadoc specification however, where the first sentence of the documentation block is automatically
treated as a brief description. To enable this behavior you should set JAVADOC_AUTOBRIEF to YES in the
configuration file. If you enable this option and want to put a dot in the middle of a sentence without ending it, you
should put a backslash and a space after it. Here is an example:

/*% Brief description (e.g.\ using only a few words). Details follow. =*/

Here is the same piece of code as shown above, this time documented using the Javadoc style and
JAVADOC_AUTOBRIEF set to YES:

/**

* A test class. A more elaborate class description.
*/

class Javadoc_Test

{
public:

/ *x
* An enum.
* More detailed enum description.
x/
enum TEnum {
TVall, /**< enum value TVall. x/
TVal2, /**< enum value TVal2. x/
TVal3 /%< enum value TVal3. x/
}
xenumPtr, /x*< enum pointer. Details. x/
enumVar; /**< enum variable. Details. x/

[x*
* A constructor.
* A more elaborate description of the constructor.
*/

Javadoc_Test () ;

[x %
* A destructor.
* A more elaborate description of the destructor.
*/
~Javadoc_Test () ;

[**
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

@param s a constant character pointer.

@see Javadoc_Test ()

@see ~Javadoc_Test ()

@see testMeToo ()

@see publicVar ()

* @return The test results

*/

int testMe (int a,const char =*s);

*ook kb ot

[x*
* A pure virtual member.
* @see testMe ()
* @param cl the first argument.

Generated by Doxygen 1.8.17

4.1 Special comment blocks 23

* @param c2 the second argument.
x/
virtual void testMeToo (char cl,char c2) = 0;

/ **
* a public variable.
* Details.
*/
int publicVar;
[x*
* a function variable.
* Details.
*/
int (xhandler) (int a,int b);
bi
See Javadoc Style example for the corresponding IATEX documentation that is generated by doxygen.
Similarly, if one wishes the first sentence of a Qt style documentation block to automatically be treated as a brief
description, one may set QT_AUTOBRIEF to YES in the configuration file.

Documentation at other places

In the examples in the previous section the comment blocks were always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often comfortable,
there may sometimes be reasons to put the documentation somewhere else. For documenting a file this is even
required since there is no such thing as "in front of a file".

Doxygen allows you to put your documentation blocks practically anywhere (the exception is inside the body of a
function or inside a normal C style comment block).

The price you pay for not putting the documentation block directly before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information. So in practice
you should avoid the use of structural commands unless other requirements force you to do so.

Structural commands (like all other commands) start with a backslash (\), or an at-sign (@) if you prefer Javadoc
style, followed by a command name and one or more parameters. For instance, if you want to document the class
Test in the example above, you could have also put the following documentation block somewhere in the input that
is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.

*/

Here the special command \class is used to indicate that the comment block contains documentation for the
class Test. Other structural commands are:

« \struct to document a C-struct.

« \union to document a union.

+ \enum to document an enumeration type.

« \fn to document a function.

* \var to document a variable or typedef or enum value.
« \def to document a #define.

* \typedef to document a type definition.

« \file to document a file.

* \namespace to document a namespace.

* \package to document a Java package.

* \interface to document an IDL interface.

Generated by Doxygen 1.8.17

24 Documenting the code

See section Special Commands for detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for namespaces.
To document a global C function, typedef, enum or preprocessor definition you must first document the file that
contains it (usually this will be a header file, because that file contains the information that is exported to other
source files).

Attention

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), you must document the file in which they are defined. In other words, there must at least be a

/%! \file x/
ora

/*x% @file x/

line in this file.

Here is an example of a C header named st ructcmd. h that is documented using structural commands:
/%! \file structcmd.h
\brief A Documented file.

Details.

*/

/*! \def MAX(a,b)

\brief A macro that returns the maximum of \a a and \a b.

Details.
*/

/! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/%! \var int errno
\brief Contains the last error code.

\warning Not thread safe!

/*! \fn int open(const char *pathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.

/*! \fn int close(int £d)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/x! \fn size_t write(int fd,const char xbuf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.
*/

/x! \fn int read(int fd,char xbuf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.
\param count The number of bytes to read.

*/

#define MAX (a,b) (((a)>(b))2(a): (b))

typedef unsigned int UINT32;

int errno;

int open(const char x,int);

int close(int);

size_t write(int,const char %, size_t);

int read(int,char x,size_t);

See Structural Commands example for the corresponding IATEX documentation that is generated by doxygen.

Generated by Doxygen 1.8.17

4.1 Special comment blocks 25

Because each comment block in the example above contains a structural command, all the comment blocks could be
moved to another location or input file (the source file for instance), without affecting the generated documentation.
The disadvantage of this approach is that prototypes are duplicated, so all changes have to be made twice! Because
of this you should first consider if this is really needed, and avoid structural commands if possible. | often receive
examples that contain \fn command in comment blocks which are place in front of a function. This is clearly a case
where the \fn command is redundant and will only lead to problems.

When you place a comment block in a file with one of the following extensions . dox, . txt, or . doc then doxygen
will hide this file from the file list.

If you have a file that doxygen cannot parse but still would like to document it, you can show it as-is using
\verbinclude, e.g.

/*! \file myscript.sh
* Look at this nice script:
* \verbinclude myscript.sh

*/

Make sure that the script is explicitly listed in the INPUT or that FILE_PATTERNS includes the . sh extension and
the the script can be found in the path set via EXAMPLE_PATH.

4.1.2 Comment blocks in Python

For Python there is a standard way of documenting the code using so called documentation strings. Such strings
are stored in doc and can be retrieved at runtime. Doxygen will extract such comments and assume they have to
be represented in a preformatted way.

"""@package docstring
Documentation for this module.

More details.

nnn

def func():
"""Documentation for a function.

More details.

nun

class PyClass:
"""Documentation for a class.

More details.

nun

def __init__ (self):
"""The constructor."""
self._memVar = 0;

def PyMethod(self):
"""Documentation for a method."""

See Python Docstring example for the corresponding IATEX documentation that is generated by doxygen.
Note that in this case none of doxygen's special commands are supported.

There is also another way to document Python code using comments that start with "##". These type of comment
blocks are more in line with the way documentation blocks work for the other languages supported by doxygen and
this also allows the use of special commands.

Here is the same example again but now using doxygen style comments:
@package pyexample

Documentation for this module.

#

More details.

Documentation for a function.

#

More details.

def func() :

Documentation for a class.
#

More details.

class PyClass:

Generated by Doxygen 1.8.17

26 Documenting the code

The constructor.
def __init__ (self):
self._memvVar = 0;

Documentation for a method.
(@param self The object pointer.
def PyMethod(self):

A class variable.
classVar = 0;

Q@var _memVar

a member variable

See Python example for the corresponding IATEX documentation that is generated by doxygen.

Since python looks more like Java than like C or C++, you should set OPTIMIZE_OUTPUT_JAVA to YES in the
configuration file.

4.1.3 Comment blocks in VHDL

For VHDL a comment normally start with "--". Doxygen will extract comments starting with "--I". There are only two
types of comment blocks in VHDL; a one line "--I" comment representing a brief description, and a multi-line "--!"
comment (where the "--I" prefix is repeated for each line) representing a detailed description.

Comments are always located in front of the item that is being documented with one exception: for ports the
comment can also be after the item and is then treated as a brief description for the port.

Here is an example VHDL file with doxygen comments:
-—! @file
--! @brief 2:1 Mux using with-select
-—! Use standard library
library i ;
——! Use logic elements
use ieee.std_logic_1164.all;
--! Mux entity brief description
--! Detailed description of this
——! mux design element.
e v mux_using_with i
port (

din_0 s ir std_logic; --! Mux first input
din_1 : std_logic; --! Mux Second input
sel : std_logic; —--! Select input
mux_out : t std_logic --! Mux output

)i
- ty;
—-! @brief Architecture definition of the MUX

—-! @details More details about this mux element.

itecture behavior of mux_using_with
begin
h (sel)
mux_out <= din_0 ror,
din_1 en others;
er rchitecture;

See VHDL example for the corresponding IATEX documentation that is generated by doxygen.

As of VHDL 2008 it is also possible to use /* style comments. Doxygen will handle /+* ... x/as plain com-
mentsand /x! ... x/ style comments as special comments to be parsed by doxygen.

To get proper looking output you need to set OPTIMIZE_OUTPUT_VHDL to YES in the configuration file. This will
also affect a number of other settings. When they were not already set correctly doxygen will produce a warning
telling which settings where overruled.

4.1.4 Comment blocks in Fortran

When using doxygen for Fortran code you should set OPTIMIZE_FOR_FORTRAN to YES.

The parser tries to guess if the source code is fixed format Fortran or free format Fortran code. This may not always
be correct. If not one should use EXTENSION_MAPPING to correct this. By setting EXTENSION_MAPPING =
f=FortranFixed f90=FortranFree files with extension f are interpreted as fixed format Fortran code and

Generated by Doxygen 1.8.17

4.1 Special comment blocks 27

files with extension £90 are interpreted as free format Fortran code.

For Fortran "I>" or "I<" starts a comment and "!!" or "!>" can be used to continue an one line comment into a
multi-line comment.

Here is an example of a documented Fortran subroutine:

!> Build the restriction matrix for the aggregation

!'! method.

!'l @param aggr information about the aggregates

!'l @todo Handle special case

subroutine intrestbuild(A,aggr,Restrict,A_ghost)
implicit none

Type (SpMtx), intent(in) :: A !< our fine level matrix
Type (Aggrs), intent (in) :: aggr

Type (SpMtx), intent (out) :: Restrict !< Our restriction matrix
]

end subroutine

As an alternative you can also use comments in fixed format code:
C> Function comment
C> another line of comment
function a(i)
C> input parameter
integer i
end function A

4.1.5 Comment blocks in Tcl

Doxygen documentation can be included in normal Tcl comments.

To start a new documentation block start a line with ## (two hashes). All following comment lines and continuation
lines will be added to this block. The block ends with a line not starting with a # (hash sign).

A brief documentation can be added with ;#< (semicolon, hash and less-than sign). The brief documentation also
ends at a line not starting with a # (hash sign).

Inside doxygen comment blocks all normal doxygen markings are supported. The only exceptions are described in
the following two paragraphs.

If a doxygen comment block ends with a line containing only #\ code or #@code all code until a line only containing
#\endcode or #@endcode is added to the generated documentation as code block.

If a doxygen comment block ends with a line containing only #\verbatimor #@verbatim all code until a line
only containing #\endverbatimor #@endverbatim is added verbatim to the generated documentation.

To detect namespaces, classes, functions and variables the following Tcl commands are recognized. Documenta-
tion blocks can be put on the lines before the command.

* namespace eval .. Namespace
* proc .. Function

* variable .. Variable

* common .. Common variable

e itcl::class .. Class

* itcl::body .. Class method body definition
e 0o::class create .. Class

* oo::define .. OO Class definition
* method .. Class method definitions
» constructor .. Class constructor
* destructor .. Class destructor

* public .. Setprotection level

Generated by Doxygen 1.8.17

28 Documenting the code

« protected .. Set protection level

* private .. Set protection level

Following is an example using doxygen style comments:
\file tclexample.tcl

File documentation.

#\verbatim

Startup code:\
exec tclsh "$0" "s@"
#\endverbatim
Documented namespace \c ns
The code is inserted here:
#\code
namespace eval ns {
Documented proc \c ns_proc
\param[in] arg some argument
proc ns_proc {arg} {}
Documented var \c ns_var
Some documentation.
variable ns_var
Documented itcl class \c itcl_class
itcl::class itcl_class {
Create object.
constructor {args} {eval $args}
Destroy object.
destructor {exit}
Documented itcl method \c itcl_method_x
i \param[in] arg Argument
private method itcl_method_x {arg}{}
Documented itcl method \c itcl_method_y
\param[in] arg Argument
protected method itcl_method_y {arg} {}
Documented itcl method \c itcl_method_z
\param[in] arg Argument
public method itcl_method_z {arg} {}
Documented common itcl var \c itcl_Var
common itcl_Var
#4# \protectedsection

variable itcl_varl; #< Documented itcl var \c itcl_varl
variable itcl_var2 }

Documented oo class \c oo_class

oco::class create oo_class {
Create object.
Configure with args
constructor {args} {eval S$args}
Destroy object.
Exit.
destructor {exit}
Documented oo var \c oo_var
Defined inside class
variable oo_var
\private Documented oo method \c oco_method_x
\param[in] arg Argument
method oo_method_x {arg} {}
\protected Documented oo method \c oo_method_y
\param[in] arg Argument
method oo_method_y {arg} {}
\public Documented oo method \c oo_method_z
\param[in] arg Argument
method oo_method_z {arg} {}

}

}
#\endcode

itcl::body ::ns::itcl_class::itcl_method_x {argx} {
puts "Sargx OK"
}

oo::define ns::00_class {
\public Outside defined variable \c oo_var_out
Inside oo_class
variable oo_var_out

}

Documented global proc \c glob_proc
\param[in] arg Argument
proc glob_proc {arg} {puts S$arg}

variable glob_var;#< Documented global var \c glob_var\
with newline

#< and continued line

end of file

Generated by Doxygen 1.8.17

4.2 Anatomy of a comment block 29

See TCL example for the corresponding IATEX documentation that is generated by doxygen.

4.2 Anatomy of a comment block

The previous section focused on how to make the comments in your code known to doxygen, it explained the
difference between a brief and a detailed description, and the use of structural commands.

In this section we look at the contents of the comment block itself.
Doxygen supports various styles of formatting your comments.
The simplest form is to use plain text. This will appear as-is in the output and is ideal for a short description.

For longer descriptions you often will find the need for some more structure, like a block of verbatim text, a list, or
a simple table. For this doxygen supports the Markdown syntax, including parts of the Markdown Extra
extension.

Markdown is designed to be very easy to read and write. It's formatting is inspired by plain text mail. Markdown
works great for simple, generic formatting, like an introduction page for your project. Doxygen also supports reading
of markdown files directly. For more details see chapter Markdown support.

For programming language specific formatting doxygen has two forms of additional markup on top of Markdown
formatting.

1. Javadoc like markup. See Special Commands for a complete overview of all commands supported by
doxygen.

2. XML markup as specifiedinthe C# standard. See XML Commands for the XML commands supported
by doxygen.

If this is still not enough doxygen also supports a subset of the HTML markup language.

Generated by Doxygen 1.8.17

https://daringfireball.net/projects/markdown/syntax
https://michelf.ca/projects/php-markdown/extra/
https://en.wikipedia.org/wiki/Javadoc
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments
http://standards.iso.org/ittf/PubliclyAvailableStandards/c042926_ISO_IEC_23270_2006(E).zip
https://en.wikipedia.org/wiki/HTML

30

Documenting the code

Generated by Doxygen 1.8.17

Chapter 5

Markdown support

Markdown support was introduced in doxygen version 1.8.0. It is a plain text formatting syntax written by John
Gruber, with the following underlying design goal:

The design goal for Markdown's formatting syntax is to make it as readable as possible. The idea is
that a Markdown-formatted document should be publishable as-is, as plain text, without looking like it's
been marked up with tags or formatting instructions. While Markdown's syntax has been influenced by
several existing text-to-HTML filters, the single biggest source of inspiration for Markdown's syntax is
the format of plain text email.

In the next section the standard Markdown features are briefly discussed. The reader is referred tothe Markdown
site for more details.

Some enhancements were made, for instance PHP Markdown Extra, and GitHub flavored
Markdown. The section Markdown Extensions discusses the extensions that doxygen supports.

Finally section Doxygen specifics discusses some specifics for doxygen's implementation of the Markdown stan-
dard.

5.1 Standard Markdown

5.1.1 Paragraphs

Even before doxygen had Markdown support it supported the same way of paragraph handling as Markdown: to
make a paragraph you just separate consecutive lines of text by one or more blank lines.

An example:

Here is text for one paragraph.

We continue with more text in another paragraph.

5.1.2 Headers

Just like Markdown, doxygen supports two types of headers
Level 1 or 2 headers can be made as the follows

This is a level 1 header

This is a level 2 header

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://michelf.ca/projects/php-markdown/extra/
https://github.github.com/github-flavored-markdown/
https://github.github.com/github-flavored-markdown/

32 Markdown support

A header is followed by a line containing only ='s or -'s. Note that the exact amount of ='s or -'s is not important as
long as there are at least two.

Alternatively, you can use #'s at the start of a line to make a header. The number of #'s at the start of the line
determines the level (up to 6 levels are supported). You can end a header by any number of #'s.

Here is an example:

This is a level 1 header

This is level 3 header

5.1.3 Block quotes
Block quotes can be created by starting each line with one or more >'s, similar to what is used in text-only emails.

> This is a block quote
> spanning multiple lines

Lists and code blocks (see below) can appear inside a quote block. Quote blocks can also be nested.
Note that doxygen requires that you put a space after the (last) > character to avoid false positives, i.e. when writing

0 if OK\n
>1 if NOK

the second line will not be seen as a block quote.

5.1.4 Lists
Simple bullet lists can be made by starting a line with -, +, or .

- Item 1

More text for this item.
- Item 2

+ nested list item.

+ another nested item.
- Item 3

List items can span multiple paragraphs (if each paragraph starts with the proper indentation) and lists can be
nested. You can also make a numbered list like so

1. First item.
2. Second item.

Make sure to also read Lists Extensions for doxygen specifics.

5.1.5 Code Blocks
Preformatted verbatim blocks can be created by indenting each line in a block of text by at least 4 extra spaces

This a normal paragraph
This is a code block
We continue with a normal paragraph again.
Doxygen will remove the mandatory indentation from the code block. Note that you cannot start a code block in the
middle of a paragraph (i.e. the line preceding the code block must be empty).

See section Code Block Indentation for more info how doxygen handles indentation as this is slightly different than
standard Markdown.

Generated by Doxygen 1.8.17

5.1 Standard Markdown 33

5.1.6 Horizontal Rulers

A horizontal ruler will be produced for lines containing at least three or more hyphens, asterisks, or underscores.
The line may also include any amount of whitespace.

Examples:

Note that using asterisks in comment blocks does not work. See Use of asterisks for details.

5.1.7 Emphasis

To emphasize a text fragment you start and end the fragment with an underscore or star. Using two stars or
underscores will produce strong emphasis.

Examples:

+*single asterisksx
single underscores
*+xdouble asterisksxx

double underscores

See section Emphasis and strikethrough limits for more info how doxygen handles emphasis / strikethrough spans
slightly different than standard / Markdown GitHub Flavored Markdown.

5.1.8 Strikethrough

To strikethrough a text fragment you start and end the fragment with two tildes.
Examples:

~~double tilde~~

See section Emphasis and strikethrough limits for more info how doxygen handles emphasis / strikethrough spans
slightly different than standard Markdown / GitHub Flavored Markdown.

5.1.9 code spans

To indicate a span of code, you should wrap it in backticks (7). Unlike code blocks, code spans appear inline in a
paragraph. An example:

Use the ‘printf()‘ function.
To show a literal backtick or single quote inside a code span use double backticks, i.e.
To assign the output of command ‘ls' to ‘var' use ‘‘var=‘ls‘‘‘.

To assign the text ’'text’ to ‘var' use ‘‘var='text’ ‘‘.

See section Code Spans Limits for more info how doxygen handles code spans slightly different than standard
Markdown.

5.1.10 Links

Doxygen supports both styles of make links defined by Markdown: inline and reference.

For both styles the link definition starts with the link text delimited by [square brackets].

Generated by Doxygen 1.8.17

34 Markdown support

Inline Links

For an inline link the link text is followed by a URL and an optional link title which together are enclosed in a set of
regular parenthesis. The link title itself is surrounded by quotes.

Examples:

[The link text] (http://example.net/)

[The link text] (http://example.net/ "Link title")

[The link text] (/relative/path/to/index.html "Link title")
[The link text] (somefile.html)

In addition doxygen provides a similar way to link a documented entity:

[The link text] (Qref MyClass)

Reference Links

Instead of putting the URL inline, you can also define the link separately and then refer to it from within the text.
The link definition looks as follows:

[link name]: http://www.example.com "Optional title"

Instead of double quotes also single quotes or parenthesis can be used for the title part.
Once defined, the link looks as follows

[link text] [link name]

If the link text and name are the same, also
[link name] []

or even

[1link name]

can be used to refer to the link. Note that the link name matching is not case sensitive as is shown in the following
example:

I get 10 times more traffic from [Google] than from
[Yahoo] or [MSN].

[google]: http://google.com/ "Google"
[yahoo]: http://search.yahoo.com/ "Yahoo Search"
[msn] : http://search.msn.com/ "MSN Search"

Link definitions will not be visible in the output.
Like for inline links doxygen also supports @ref inside a link definition:

[myclass]: @ref MyClass "My class"

5.1.11 Images

Markdown syntax for images is similar to that for links. The only difference is an additional ! before the link text.
Examples:

! [Caption text] (/path/to/img. jpg)

! [Caption text] (/path/to/img.jpg "Image title")
! [Caption text] [img def]

!'[img def]

[img def]: /path/to/img.Jjpg "Optional Title"

Generated by Doxygen 1.8.17

5.2 Markdown Extensions 35

Also here you can use @ref to link to an image:

! [Caption text] (@ref image.png)
!'[img def]

[img def]: Q@ref image.png "Caption text"

The caption text is optional.

5.1.12 Automatic Linking
To create a link to an URL or e-mail address Markdown supports the following syntax:

<http://www.example.com>
<https://www.example.com>
<ftp://www.example.com>
<mailto:address@example.com>
<address@example.com>

Note that doxygen will also produce the links without the angle brackets.

5.2 Markdown Extensions

5.2.1 Table of Contents

Doxygen supports a special link marker [TOC] which can be placed in a page to produce a table of contents at the
start of the page, listing all sections.

Note that using [TOC] is the same as using a \tableofcontents command.

Note that the TOC_INCLUDE_HEADINGS has to be set to a value > 0 otherwise no table of contents is shown
when using Markdown Headers.

5.2.2 Tables

Of the features defined by "Markdown Extra" is support for simple tables:

A table consists of a header line, a separator line, and at least one row line. Table columns are separated by the
pipe (]) character.

Here is an example:

First Header | Second Header
,,,,,,,,,,,,, | ———
Content Cell | Content Cell
Content Cell | Content Cell

which will produce the following table:

First Header | Second Header
Content Cell Content Cell
Content Cell Content Cell

Column alignment can be controlled via one or two colons at the header separator line:

| Right | Center | Left |

| - | immmmi | e |
| 10 | 10 | 10
| 1000 | 1000 | 1000 |

Generated by Doxygen 1.8.17

https://michelf.ca/projects/php-markdown/extra/#table

36 Markdown support

which will look as follows:

Right | Center | Left
10 10 10
1000 1000 1000

Additionally, column and row spans are supported. Using a caret ("") in a cell indicates that the cell above should
span rows. Sequences of carets may be used for any number of row spans. For example:

| Right | Center | Left |
[————: | === | i=——= |
| 10 | 10 | 10

(I | 1000 | 1000 |

which will look as follows:

Right | Center | Left
10 10
1000 1000

10

Column spans are supported by means of directly adjacent vertical bars (*|"). Each additional vertical bar indicates
an additional column to be spanned. To put it another way, a single vertical bar indicates a single column span, two
vertical bars indicates a 2 columns span, and so on. For example:

Right | Center | Left |

et N R R B Rl
10 | 10 | 10
1000 |||

which will look as follows:

Right | Center | Left
10 10 10
1000

For more complex tables in doxygen please have a look at: Including tables

5.2.3 Fenced Code Blocks

Another feature defined by "Markdown Extra" is support for fenced code blocks:

A fenced code block does not require indentation, and is defined by a pair of "fence lines". Such a line consists of
3 or more tilde (~) characters on a line. The end of the block should have the same number of tildes. Here is an
example:

This is a paragraph introducing:

By default the output is the same as for a normal code block.

For languages supported by doxygen you can also make the code block appear with syntax highlighting. To do
so you need to indicate the typical file extension that corresponds to the programming language after the opening
fence. For highlighting according to the Python language for instance, you would need to write the following:

A class
class Dummy:

Generated by Doxygen 1.8.17

https://michelf.ca/projects/php-markdown/extra/#fenced-code-blocks

5.3 Doxygen specifics 37

which will produce:
A class
class Dummy:

and for C you would write:

int func(int a,int b) { return axb; }

which will produce:

int func(int a,int b) { axb; }

The curly braces and dot are optional by the way.
Another way to denote fenced code blocks is to use 3 or more backticks ("™):

RURERY

also a fenced code block

RURERY

5.2.4 Header Id Attributes

Standard Markdown has no support for labeling headers, which is a problem if you want to link to a section.
PHP Markdown Extra allows you to label a header by adding the following to the header

Header 1 {#labelid}

Header 2 ## {#labelid2}

To link to a section in the same comment block you can use
[Link text] (#labelid)

to link to a section in general, doxygen allows you to use @ref

