Signed-off-by: Christoph Lameter Differences to version 7: - Self-tuning of the time interpolator for robustness and to minimize the time jumps forward. - Patch the hpet driver for the new interpolator - Increase the reported precision of CLOCK_REALTIME and CLOCK_MONOTONIC to the precision of the interpolator clock. - The nanosecond patch is now in the mm kernels and is no longer included. - test data included to show scalability improvement on a 512 CPU SMP system. The patch makes the following changes to the existing codebase in 2.6.8-rc2-mm2: - Consistently increases performance over existing codebase - Make the IA64 fastcall work for all clock sources and not only for ITC based clocking. - Add fastcall for clock_gettime(REALTIME and MONOTONIC) (the fastcall also returns nanoseconds instead of usecs*1000) - Scalability improvements in particular for the use of global clocks by avoiding the use of a cmpxchg. For applications that continually "live" in gettimeofday on an SMP system this will be a significant improvement. - Ability to switch off the cmpxchg for ITC based systems through a "nojitter" option on the kernel command line. This increases scalability of the time functions significantly. The ITC tuning code that runs during bootup typically insures that ITC offsets are less than a few cycles which are longer than the delay caused by the gettime functions and therefore the cmpxchg is not necessary on most systems. - Self tuning interpolator limiting the jumps forward to 10-20 usecs on each occurrence and increasing accuracy as well as robustness. There is no danger anymore that the interpolator is configured to be running too fast. - Report the increased accuracy via clock_getres() to userspace. - Generic interface. An interpolator can be easily setup by simply setting up a time_interpolator structure with some values. No coding of special functions needed. - Supports the HPET timer. - Kernel fastcall faster than the Glibc ITC based timers. More performance enhancements would be possible if the requirement to insure a monotonic timesource via cmpxchg would be dropped or the gettimeofday function be changed to return nanoseconds. The performance of clock_gettime() is higher than gettimeofday() since no division by 1000 needs to be performed. Performance measurements for single calls (ITC cycles): A. 4 way Intel IA64 SMP system (kmart) ITC offsets: kmart:/usr/src/noship-tests # dmesg|grep synchr CPU 1: synchronized ITC with CPU 0 (last diff 1 cycles, maxerr 417 cycles) CPU 2: synchronized ITC with CPU 0 (last diff 2 cycles, maxerr 417 cycles) CPU 3: synchronized ITC with CPU 0 (last diff 1 cycles, maxerr 417 cycles) A.1. Current kernel code kmart:/usr/src/noship-tests # ./dmt gettimeofday cycles: 3737 220 215 215 215 215 215 215 215 215 clock_gettime(REAL) cycles: 4058 575 564 576 565 566 558 558 558 558 clock_gettime(MONO) cycles: 1583 621 609 609 609 609 609 609 609 609 clock_gettime(PROCESS) cycles: 71428 298 259 259 259 259 259 259 259 259 clock_gettime(THREAD) cycles: 3982 336 290 298 298 298 298 286 286 286 A.2 New code using cmpxchg kmart:/usr/src/noship-tests # ./dmt gettimeofday cycles: 3145 213 216 213 213 213 213 213 213 213 clock_gettime(REAL) cycles: 3185 230 210 210 210 210 210 210 210 210 clock_gettime(MONO) cycles: 284 217 217 216 216 216 216 216 216 216 clock_gettime(PROCESS) cycles: 68857 289 270 259 259 259 259 259 259 259 clock_gettime(THREAD) cycles: 3862 339 298 298 298 298 290 286 286 286 A.3 New code with cmpxchg switched off (nojitter kernel option) kmart:/usr/src/noship-tests # ./dmt gettimeofday cycles: 3195 219 219 212 212 212 212 212 212 212 clock_gettime(REAL) cycles: 3003 228 205 205 205 205 205 205 205 205 clock_gettime(MONO) cycles: 279 209 209 209 208 208 208 208 208 208 clock_gettime(PROCESS) cycles: 65849 292 259 259 268 270 270 259 259 259 B. SGI SN2 system running 512 IA64 CPUs. B.1. Current kernel code [root@ascender noship-tests]# ./dmt gettimeofday cycles: 17221 1028 1007 1004 1004 1004 1010 25928 1002 1003 clock_gettime(REAL) cycles: 10388 1099 1055 1044 1064 1063 1051 1056 1061 1056 clock_gettime(MONO) cycles: 2363 96 96 96 96 96 96 96 96 96 clock_gettime(PROCESS) cycles: 46537 804 660 666 666 666 666 666 666 666 clock_gettime(THREAD) cycles: 10945 727 710 684 685 686 685 686 685 686 B.2 New code ascender:~/noship-tests # ./dmt gettimeofday cycles: 3874 610 588 588 588 588 588 588 588 588 clock_gettime(REAL) cycles: 3893 612 588 582 588 588 588 588 588 588 clock_gettime(MONO) cycles: 686 595 595 588 588 588 588 588 588 588 clock_gettime(PROCESS) cycles: 290759 322 269 269 259 265 265 265 259 259 clock_gettime(THREAD) cycles: 5153 358 306 298 296 304 290 298 298 298 Scalability of time functions (in time it takes to do a million calls): ----------------------------------------------------------------------- A. 4 way Intel IA SMP system (kmart) A.1 Current code kmart:/usr/src/noship-tests # ./todscale -n1000000 CPUS WALL WALL/CPUS 1 0.192 0.192 2 1.125 0.563 4 9.229 2.307 A.2 New code using cmpxchg kmart:/usr/src/noship-tests # ./todscale CPUS WALL WALL/CPUS 1 0.188 0.188 2 0.457 0.229 4 0.413 0.103 (the measurement with 4 cpus may fluctuate up to 15.x somehow) A.3 New code without cmpxchg (nojitter kernel option) kmart:/usr/src/noship-tests # ./todscale -n10000000 CPUS WALL WALL/CPUS 1 0.180 0.180 2 0.180 0.090 4 0.252 0.063 B. SGI SN2 system running 512 IA64 CPUs. The system has a global monotonic clock and therefore has no need for compensation. Current code uses a cmpxchg. New code has no cmpxchg. B.1 current code ascender:~/noship-tests # ./todscale CPUS WALL WALL/CPUS 1 0.850 0.850 2 1.767 0.884 4 6.124 1.531 8 20.777 2.597 16 57.693 3.606 32 164.688 5.146 64 456.647 7.135 128 1093.371 8.542 256 2778.257 10.853 (System crash at 512 CPUs) B.2 New code ascender:~/noship-tests # ./todscale CPUS WALL WALL/CPUS 1 0.425 0.425 2 0.428 0.214 4 0.434 0.109 8 0.446 0.056 16 0.466 0.029 32 0.504 0.016 64 0.637 0.010 128 0.633 0.005 256 1.099 0.004 512 9.527 0.019 Clock Accuracy -------------- A. 4 CPU SMP system A.1 Old code kmart:/usr/src/noship-tests # ./cdisp Gettimeofday() = 1092124757.270305000 CLOCK_REALTIME= 1092124757.270382000 resolution= 0.000976563 CLOCK_MONOTONIC= 89.696726590 resolution= 0.000976563 CLOCK_PROCESS_CPUTIME_ID= 0.001242507 resolution= 0.000000001 CLOCK_THREAD_CPUTIME_ID= 0.001255310 resolution= 0.000000001 A.2 New code kmart:/usr/src/noship-tests # ./cdisp Gettimeofday() = 1092124478.194530000 CLOCK_REALTIME= 1092124478.194603399 resolution= 0.000000001 CLOCK_MONOTONIC= 88.198315204 resolution= 0.000000001 CLOCK_PROCESS_CPUTIME_ID= 0.001241235 resolution= 0.000000001 CLOCK_THREAD_CPUTIME_ID= 0.001254747 resolution= 0.000000001 ==== TIME INTERPOLATOR PATCH %patch Index: linux-2.6.7/arch/ia64/kernel/cyclone.c =================================================================== --- linux-2.6.7.orig/arch/ia64/kernel/cyclone.c 2004-08-09 15:46:09.000000000 -0700 +++ linux-2.6.7/arch/ia64/kernel/cyclone.c 2004-08-09 15:46:42.000000000 -0700 @@ -15,62 +15,10 @@ use_cyclone = 1; } -static u32* volatile cyclone_timer; /* Cyclone MPMC0 register */ -static u32 last_update_cyclone; - -static unsigned long offset_base; - -static unsigned long get_offset_cyclone(void) -{ - u32 now; - unsigned long offset; - - /* Read the cyclone timer */ - now = readl(cyclone_timer); - /* .. relative to previous update*/ - offset = now - last_update_cyclone; - - /* convert cyclone ticks to nanoseconds */ - offset = (offset*NSEC_PER_SEC)/CYCLONE_TIMER_FREQ; - - /* our adjusted time in nanoseconds */ - return offset_base + offset; -} - -static void update_cyclone(long delta_nsec) -{ - u32 now; - unsigned long offset; - - /* Read the cyclone timer */ - now = readl(cyclone_timer); - /* .. relative to previous update*/ - offset = now - last_update_cyclone; - - /* convert cyclone ticks to nanoseconds */ - offset = (offset*NSEC_PER_SEC)/CYCLONE_TIMER_FREQ; - - offset += offset_base; - - /* Be careful about signed/unsigned comparisons here: */ - if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) - offset_base = offset - delta_nsec; - else - offset_base = 0; - - last_update_cyclone = now; -} - -static void reset_cyclone(void) -{ - offset_base = 0; - last_update_cyclone = readl(cyclone_timer); -} struct time_interpolator cyclone_interpolator = { - .get_offset = get_offset_cyclone, - .update = update_cyclone, - .reset = reset_cyclone, + .source = TIME_SOURCE_MMIO32, + .shift = 32, .frequency = CYCLONE_TIMER_FREQ, .drift = -100, }; @@ -81,6 +29,7 @@ u64 base; /* saved cyclone base address */ u64 offset; /* offset from pageaddr to cyclone_timer register */ int i; + u32* volatile cyclone_timer; /* Cyclone MPMC0 register */ if (!use_cyclone) return -ENODEV; @@ -148,7 +97,7 @@ } } /* initialize last tick */ - last_update_cyclone = readl(cyclone_timer); + cyclone_interpolator.addr = cyclone_timer; register_time_interpolator(&cyclone_interpolator); return 0; Index: linux-2.6.7/arch/ia64/kernel/fsys.S =================================================================== --- linux-2.6.7.orig/arch/ia64/kernel/fsys.S 2004-08-05 13:33:56.000000000 -0700 +++ linux-2.6.7/arch/ia64/kernel/fsys.S 2004-08-09 15:46:42.000000000 -0700 @@ -8,6 +8,8 @@ * 18-Feb-03 louisk Implement fsys_gettimeofday(). * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more, * probably broke it along the way... ;-) + * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make + * it capable of using memory based clocks without falling back to C code. */ #include @@ -144,195 +146,206 @@ END(fsys_set_tid_address) /* - * Note 1: This routine uses floating-point registers, but only with registers that - * operate on integers. Because of that, we don't need to set ar.fpsr to the - * kernel default value. - * - * Note 2: For now, we will assume that all CPUs run at the same clock-frequency. - * If that wasn't the case, we would have to disable preemption (e.g., - * by disabling interrupts) between reading the ITC and reading - * local_cpu_data->nsec_per_cyc. - * - * Note 3: On platforms where the ITC-drift bit is set in the SAL feature vector, - * we ought to either skip the ITC-based interpolation or run an ntp-like - * daemon to keep the ITCs from drifting too far apart. + * Ensure that the time interpolator structure is compatible with the asm code */ +#if IA64_TIME_INTERPOLATOR_SOURCE_OFFSET !=0 || IA64_TIME_INTERPOLATOR_SHIFT_OFFSET != 2 \ + || IA64_TIME_INTERPOLATOR_JITTER_OFFSET != 3 || IA64_TIME_INTERPOLATOR_NSEC_OFFSET != 4 +#error fsys_gettimeofday incompatible with changes to struct time_interpolator +#endif +#define CLOCK_REALTIME 0 +#define CLOCK_MONOTONIC 1 +#define CLOCK_DIVIDE_BY_1000 0x4000 +#define CLOCK_ADD_MONOTONIC 0x8000 ENTRY(fsys_gettimeofday) .prologue .altrp b6 .body - add r9=TI_FLAGS+IA64_TASK_SIZE,r16 - addl r3=THIS_CPU(cpu_info),r0 - -#ifdef CONFIG_SMP - movl r10=__per_cpu_offset - movl r2=sal_platform_features - ;; - - ld8 r2=[r2] - movl r19=xtime // xtime is a timespec struct - - ld8 r10=[r10] // r10 <- __per_cpu_offset[0] - addl r21=THIS_CPU(cpu_info),r0 - ;; - add r10=r21, r10 // r10 <- &cpu_data(time_keeper_id) - tbit.nz p8,p0 = r2, IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT_BIT -(p8) br.spnt.many fsys_fallback_syscall -#else - ;; - mov r10=r3 - movl r19=xtime // xtime is a timespec struct -#endif - ld4 r9=[r9] - movl r17=xtime_lock - ;; - - // r32, r33 should contain the 2 args of gettimeofday - adds r21=IA64_CPUINFO_ITM_NEXT_OFFSET, r10 - mov r2=-1 - tnat.nz p6,p7=r32 // guard against NaT args - ;; - - adds r10=IA64_CPUINFO_ITM_DELTA_OFFSET, r10 -(p7) tnat.nz p6,p0=r33 -(p6) br.cond.spnt.few .fail_einval - - adds r8=IA64_CPUINFO_NSEC_PER_CYC_OFFSET, r3 - movl r24=2361183241434822607 // for division hack (only for / 1000) - ;; - - ldf8 f7=[r10] // f7 now contains itm_delta - setf.sig f11=r2 - adds r10=8, r32 - - adds r20=IA64_TIMESPEC_TV_NSEC_OFFSET, r19 // r20 = &xtime->tv_nsec - movl r26=jiffies - - setf.sig f9=r24 // f9 is used for division hack - movl r27=wall_jiffies - - and r9=TIF_ALLWORK_MASK,r9 - movl r25=last_nsec_offset - ;; - - /* - * Verify that we have permission to write to struct timeval. Note: - * Another thread might unmap the mapping before we actually get - * to store the result. That's OK as long as the stores are also - * protect by EX(). - */ -EX(.fail_efault, probe.w.fault r32, 3) // this must come _after_ NaT-check -EX(.fail_efault, probe.w.fault r10, 3) // this must come _after_ NaT-check - nop 0 - - ldf8 f10=[r8] // f10 <- local_cpu_data->nsec_per_cyc value - cmp.ne p8, p0=0, r9 -(p8) br.spnt.many fsys_fallback_syscall - ;; -.retry: // *** seq = read_seqbegin(&xtime_lock); *** - ld4.acq r23=[r17] // since &xtime_lock == &xtime_lock->sequence - ld8 r14=[r25] // r14 (old) = last_nsec_offset - - ld8 r28=[r26] // r28 = jiffies - ld8 r29=[r27] // r29 = wall_jiffies - ;; - - ldf8 f8=[r21] // f8 now contains itm_next - mov.m r31=ar.itc // put time stamp into r31 (ITC) == now - sub r28=r29, r28, 1 // r28 now contains "-(lost + 1)" - ;; - - ld8 r2=[r19] // r2 = sec = xtime.tv_sec - ld8 r29=[r20] // r29 = nsec = xtime.tv_nsec - tbit.nz p9, p10=r23, 0 // p9 <- is_odd(r23), p10 <- is_even(r23) - - setf.sig f6=r28 // f6 <- -(lost + 1) (6 cyc) - ;; - + mov r31 = r32 + tnat.nz p6,p0 = r33 // guard against NaT argument +(p6) br.cond.spnt.few .fail_einval + mov r30 = CLOCK_DIVIDE_BY_1000 + ;; +.gettime: + // Register map + // Incoming r31 = pointer to address where to place result + // r30 = flags determining how time is processed + // r2,r3 = temp r4-r7 preserved + // r8 = result nanoseconds + // r9 = result seconds + // r10 = temporary storage for clock difference + // r11 = preserved: saved ar.pfs + // r12 = preserved: memory stack + // r13 = preserved: thread pointer + // r14 = debug pointer / usable + // r15 = preserved: system call number + // r16 = preserved: current task pointer + // r17 = wall to monotonic use + // r18 = time_interpolator->offset + // r19 = address of wall_to_monotonic + // r20 = pointer to struct time_interpolator / pointer to time_interpolator->address + // r21 = shift factor + // r22 = address of time interpolator->last_counter + // r23 = address of time_interpolator->last_cycle + // r24 = adress of time_interpolator->offset + // r25 = last_cycle value + // r26 = last_counter value + // r27 = pointer to xtime + // r28 = sequence number at the beginning of critcal section + // r29 = address of seqlock + // r30 = time processing flags / memory address + // r31 = pointer to result + // Predicates + // p6,p7 short term use + // p8 = timesource ar.itc + // p9 = timesource mmio64 + // p10 = timesource mmio32 + // p11 = timesource not to be handled by asm code + // p12 = memory time source ( = p9 | p10) + // p13 = do cmpxchg with time_interpolator_last_cycle + // p14 = Divide by 1000 + // p15 = Add monotonic + // + // Note that instructions are optimized for McKinley. McKinley can process two + // bundles simultaneously and therefore we continuously try to feed the CPU + // two bundles and then a stop. + tnat.nz p6,p0 = r31 // branch deferred since it does not fit into bundle structure + mov pr = r30,0xc000 // Set predicates according to function + add r2 = TI_FLAGS+IA64_TASK_SIZE,r16 + movl r20 = time_interpolator + ;; + ld8 r20 = [r20] // get pointer to time_interpolator structure + movl r29 = xtime_lock + ld4 r2 = [r2] // process work pending flags + movl r27 = xtime + ;; // only one bundle here + ld8 r21 = [r20] // first quad with control information + and r2 = TIF_ALLWORK_MASK,r2 +(p6) br.cond.spnt.few .fail_einval // deferred branch + ;; + add r10 = IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET,r20 + extr r3 = r21,32,32 // time_interpolator->nsec_per_cyc + extr r8 = r21,0,16 // time_interpolator->source + nop.i 123 + cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled +(p6) br.cond.spnt.many fsys_fallback_syscall + ;; + cmp.eq p8,p12 = 0,r8 // Check for cpu timer + cmp.eq p9,p0 = 1,r8 // MMIO64 ? + extr r2 = r21,24,8 // time_interpolator->jitter + cmp.eq p10,p0 = 2,r8 // MMIO32 ? + cmp.lt p11,p0 = 2,r8 // function? +(p11) br.cond.spnt.many fsys_fallback_syscall + ;; + setf.sig f7 = r3 // Setup for scaling of counter +(p15) movl r19 = wall_to_monotonic +(p12) ld8 r30 = [r10] + cmp.ne p13,p0 = r2,r0 // need jitter compensation? + extr r21 = r21,16,8 // shift factor + ;; +.time_redo: + .pred.rel.mutex p8,p9,p10 + ld4.acq r28 = [r29] // xtime_lock.sequence. Must come first for locking purposes +(p8) mov r2 = ar.itc // CPU_TIMER. 36 clocks latency!!! + add r22 = IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET,r20 +(p9) ld8 r2 = [r30] // readq(ti->address). Could also have latency issues.. +(p10) ld4 r2 = [r30] // readw(ti->address) +(p13) add r23 = IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET,r20 + ;; // could be removed by moving the last add upward + ld8 r26 = [r22] // time_interpolator->last_counter +(p13) ld8 r25 = [r23] // time interpolator->last_cycle + add r24 = IA64_TIME_INTERPOLATOR_OFFSET_OFFSET,r20 +(p15) ld8 r17 = [r19],IA64_TIMESPEC_TV_NSEC_OFFSET + ld8 r9 = [r27],IA64_TIMESPEC_TV_NSEC_OFFSET + nop.i 123 + ;; + ld8 r18 = [r24] // time_interpolator->offset + ld8 r8 = [r27],-IA64_TIMESPEC_TV_NSEC_OFFSET // xtime.tv_nsec +(p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm) + ;; +(p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared + sub r10 = r2,r26 // current_counter - last_counter + ;; +(p6) sub r10 = r25,r26 // time we got was less than last_cycle +(p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg + ;; + setf.sig f8 = r10 + nop.i 123 + ;; +(p7) cmpxchg8.rel r3 = [r23],r2,ar.ccv +EX(.fail_efault, probe.w.fault r31, 3) // This takes 5 cycles and we have spare time + xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter) +(p15) add r9 = r9,r17 // Add wall to monotonic.secs to result secs + ;; +(p15) ld8 r17 = [r19],-IA64_TIMESPEC_TV_NSEC_OFFSET +(p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful redo + // simulate tbit.nz.or p7,p0 = r28,0 + and r28 = ~1,r28 // Make sequence even to force retry if odd + getf.sig r2 = f8 mf - xma.l f8=f6, f7, f8 // f8 (last_tick) <- -(lost + 1)*itm_delta + itm_next (5 cyc) - nop 0 - - setf.sig f12=r31 // f12 <- ITC (6 cyc) - // *** if (unlikely(read_seqretry(&xtime_lock, seq))) continue; *** - ld4 r24=[r17] // r24 = xtime_lock->sequence (re-read) - nop 0 - ;; - - xma.l f8=f11, f8, f12 // f8 (elapsed_cycles) <- (-1*last_tick + now) = (now - last_tick) - nop 0 - ;; - - getf.sig r18=f8 // r18 <- (now - last_tick) - xmpy.l f8=f8, f10 // f8 <- elapsed_cycles*nsec_per_cyc (5 cyc) - add r3=r29, r14 // r3 = (nsec + old) - ;; - - cmp.lt p7, p8=r18, r0 // if now < last_tick, set p7 = 1, p8 = 0 - getf.sig r18=f8 // r18 = elapsed_cycles*nsec_per_cyc (6 cyc) - nop 0 - ;; - -(p10) cmp.ne p9, p0=r23, r24 // if xtime_lock->sequence != seq, set p9 - shr.u r18=r18, IA64_NSEC_PER_CYC_SHIFT // r18 <- offset -(p9) br.spnt.many .retry - ;; - - mov ar.ccv=r14 // ar.ccv = old (1 cyc) - cmp.leu p7, p8=r18, r14 // if (offset <= old), set p7 = 1, p8 = 0 + add r8 = r8,r18 // Add time interpolator offset ;; - -(p8) cmpxchg8.rel r24=[r25], r18, ar.ccv // compare-and-exchange (atomic!) -(p8) add r3=r29, r18 // r3 = (nsec + offset) - ;; - shr.u r3=r3, 3 // initiate dividing r3 by 1000 - ;; - setf.sig f8=r3 // (6 cyc) - mov r10=1000000 // r10 = 1000000 + ld4 r10 = [r29] // xtime_lock.sequence +(p15) add r8 = r8, r17 // Add monotonic.nsecs to nsecs + shr.u r2 = r2,r21 + ;; // overloaded 3 bundles! + // End critical section. + add r8 = r8,r2 // Add xtime.nsecs + cmp4.ne.or p7,p0 = r28,r10 +(p7) br.cond.dpnt.few .time_redo // sequence number changed ? + // Now r8=tv->tv_nsec and r9=tv->tv_sec + mov r10 = r0 + movl r2 = 1000000000 + add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31 +(p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack + ;; +.time_normalize: + mov r21 = r8 + cmp.ge p6,p0 = r8,r2 +(p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting some time + ;; +(p14) setf.sig f8 = r20 +(p6) sub r8 = r8,r2 +(p6) add r9 = 1,r9 // two nops before the branch. +(p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod +(p6) br.cond.dpnt.few .time_normalize + ;; + // Divided by 8 though shift. Now divide by 125 + // The compiler was able to do that with a multiply + // and a shift and we do the same +EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles +(p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it... ;; -(p8) cmp.ne.unc p9, p0=r24, r14 - xmpy.hu f6=f8, f9 // (5 cyc) -(p9) br.spnt.many .retry - ;; - - getf.sig r3=f6 // (6 cyc) + mov r8 = r0 +(p14) getf.sig r2 = f8 ;; - shr.u r3=r3, 4 // end of division, r3 is divided by 1000 (=usec) - ;; - -1: cmp.geu p7, p0=r3, r10 // while (usec >= 1000000) - ;; -(p7) sub r3=r3, r10 // usec -= 1000000 -(p7) adds r2=1, r2 // ++sec -(p7) br.spnt.many 1b - - // finally: r2 = sec, r3 = usec -EX(.fail_efault, st8 [r32]=r2) - adds r9=8, r32 - mov r8=r0 // success +(p14) shr.u r21 = r2, 4 ;; -EX(.fail_efault, st8 [r9]=r3) // store them in the timeval struct - mov r10=0 +EX(.fail_efault, st8 [r31] = r9) +EX(.fail_efault, st8 [r23] = r21) FSYS_RETURN - /* - * Note: We are NOT clearing the scratch registers here. Since the only things - * in those registers are time-related variables and some addresses (which - * can be obtained from System.map), none of this should be security-sensitive - * and we should be fine. - */ - .fail_einval: - mov r8=EINVAL // r8 = EINVAL - mov r10=-1 // r10 = -1 + mov r8 = EINVAL + mov r10 = -1 FSYS_RETURN - .fail_efault: - mov r8=EFAULT // r8 = EFAULT - mov r10=-1 // r10 = -1 + mov r8 = EFAULT + mov r10 = -1 FSYS_RETURN END(fsys_gettimeofday) +ENTRY(fsys_clock_gettime) + .prologue + .altrp b6 + .body + cmp4.lt p6, p0 = CLOCK_MONOTONIC, r32 + // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC +(p6) br.spnt.few fsys_fallback_syscall + mov r31 = r33 + shl r30 = r32,15 + br.many .gettime +END(fsys_clock_gettime) + /* * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize). */ @@ -838,7 +851,7 @@ data8 0 // timer_getoverrun data8 0 // timer_delete data8 0 // clock_settime - data8 0 // clock_gettime + data8 fsys_clock_gettime // clock_gettime data8 0 // clock_getres // 1255 data8 0 // clock_nanosleep data8 0 // fstatfs64 Index: linux-2.6.7/arch/ia64/kernel/time.c =================================================================== --- linux-2.6.7.orig/arch/ia64/kernel/time.c 2004-08-09 15:46:09.000000000 -0700 +++ linux-2.6.7/arch/ia64/kernel/time.c 2004-08-09 18:50:04.000000000 -0700 @@ -45,46 +45,7 @@ #endif -static void -itc_reset (void) -{ -} - -/* - * Adjust for the fact that xtime has been advanced by delta_nsec (may be negative and/or - * larger than NSEC_PER_SEC. - */ -static void -itc_update (long delta_nsec) -{ -} - -/* - * Return the number of nano-seconds that elapsed since the last - * update to jiffy. It is quite possible that the timer interrupt - * will interrupt this and result in a race for any of jiffies, - * wall_jiffies or itm_next. Thus, the xtime_lock must be at least - * read synchronised when calling this routine (see do_gettimeofday() - * below for an example). - */ -unsigned long -itc_get_offset (void) -{ - unsigned long elapsed_cycles, lost = jiffies - wall_jiffies; - unsigned long now = ia64_get_itc(), last_tick; - - last_tick = (cpu_data(TIME_KEEPER_ID)->itm_next - - (lost + 1)*cpu_data(TIME_KEEPER_ID)->itm_delta); - - elapsed_cycles = now - last_tick; - return (elapsed_cycles*local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT; -} - -static struct time_interpolator itc_interpolator = { - .get_offset = itc_get_offset, - .update = itc_update, - .reset = itc_reset -}; +static struct time_interpolator itc_interpolator; int do_settimeofday (struct timespec *tv) @@ -127,51 +88,13 @@ void do_gettimeofday (struct timeval *tv) { - unsigned long seq, nsec, usec, sec, old, offset; - - while (1) { + unsigned long seq, nsec, usec, sec, offset; + do { seq = read_seqbegin(&xtime_lock); - { - old = last_nsec_offset; - offset = time_interpolator_get_offset(); - sec = xtime.tv_sec; - nsec = xtime.tv_nsec; - } - if (unlikely(read_seqretry(&xtime_lock, seq))) - continue; - /* - * Ensure that for any pair of causally ordered gettimeofday() calls, time - * never goes backwards (even when ITC on different CPUs are not perfectly - * synchronized). (A pair of concurrent calls to gettimeofday() is by - * definition non-causal and hence it makes no sense to talk about - * time-continuity for such calls.) - * - * Doing this in a lock-free and race-free manner is tricky. Here is why - * it works (most of the time): read_seqretry() just succeeded, which - * implies we calculated a consistent (valid) value for "offset". If the - * cmpxchg() below succeeds, we further know that last_nsec_offset still - * has the same value as at the beginning of the loop, so there was - * presumably no timer-tick or other updates to last_nsec_offset in the - * meantime. This isn't 100% true though: there _is_ a possibility of a - * timer-tick occurring right right after read_seqretry() and then getting - * zero or more other readers which will set last_nsec_offset to the same - * value as the one we read at the beginning of the loop. If this - * happens, we'll end up returning a slightly newer time than we ought to - * (the jump forward is at most "offset" nano-seconds). There is no - * danger of causing time to go backwards, though, so we are safe in that - * sense. We could make the probability of this unlucky case occurring - * arbitrarily small by encoding a version number in last_nsec_offset, but - * even without versioning, the probability of this unlucky case should be - * so small that we won't worry about it. - */ - if (offset <= old) { - offset = old; - break; - } else if (likely(cmpxchg(&last_nsec_offset, old, offset) == old)) - break; - - /* someone else beat us to updating last_nsec_offset; try again */ - } + offset = time_interpolator_get_offset(); + sec = xtime.tv_sec; + nsec = xtime.tv_nsec; + } while (unlikely(read_seqretry(&xtime_lock, seq))); usec = (nsec + offset) / 1000; @@ -277,6 +200,18 @@ ia64_set_itm(local_cpu_data->itm_next); } +static int nojitter; + +static int __init nojitter_setup(char *str) +{ + nojitter = 1; + printk("Jitter checking for ITC timers disabled\n"); + return 1; +} + +__setup("nojitter", nojitter_setup); + + void __devinit ia64_init_itm (void) { @@ -339,7 +274,23 @@ if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { itc_interpolator.frequency = local_cpu_data->itc_freq; + itc_interpolator.shift = 16; itc_interpolator.drift = itc_drift; + itc_interpolator.source = TIME_SOURCE_CPU; +#ifdef CONFIG_SMP + /* On IA64 in an SMP configuration ITCs are never accurately synchronized. + * Jitter compensation requires a cmpxchg which may limit + * the scalability of the syscalls for retrieving time. + * The ITC synchronization is usually successful to within a few + * ITC ticks but this is not a sure thing. If you need to improve + * timer performance in SMP situations then boot the kernel with the + * "nojitter" option. However, doing so may result in time fluctuating (maybe + * even going backward) if the ITC offsets between the individual CPUs + * are too large. + */ + if (!nojitter) itc_interpolator.jitter = 1; +#endif + itc_interpolator.addr = NULL; register_time_interpolator(&itc_interpolator); } Index: linux-2.6.7/arch/ia64/sn/kernel/sn2/timer.c =================================================================== --- linux-2.6.7.orig/arch/ia64/sn/kernel/sn2/timer.c 2004-06-15 22:19:36.000000000 -0700 +++ linux-2.6.7/arch/ia64/sn/kernel/sn2/timer.c 2004-08-09 15:46:42.000000000 -0700 @@ -20,57 +20,16 @@ extern unsigned long sn_rtc_cycles_per_second; -static volatile unsigned long last_wall_rtc; -static unsigned long rtc_offset; /* updated only when xtime write-lock is held! */ -static long rtc_nsecs_per_cycle; -static long rtc_per_timer_tick; - -static unsigned long -getoffset(void) -{ - return rtc_offset + (GET_RTC_COUNTER() - last_wall_rtc)*rtc_nsecs_per_cycle; -} - - -static void -update(long delta_nsec) -{ - unsigned long rtc_counter = GET_RTC_COUNTER(); - unsigned long offset = rtc_offset + (rtc_counter - last_wall_rtc)*rtc_nsecs_per_cycle; - - /* Be careful about signed/unsigned comparisons here: */ - if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) - rtc_offset = offset - delta_nsec; - else - rtc_offset = 0; - last_wall_rtc = rtc_counter; -} - - -static void -reset(void) -{ - rtc_offset = 0; - last_wall_rtc = GET_RTC_COUNTER(); -} - - -static struct time_interpolator sn2_interpolator = { - .get_offset = getoffset, - .update = update, - .reset = reset -}; +static struct time_interpolator sn2_interpolator; void __init sn_timer_init(void) { sn2_interpolator.frequency = sn_rtc_cycles_per_second; sn2_interpolator.drift = -1; /* unknown */ + sn2_interpolator.shift = 10; /* RTC is 54 bits maximum shift is 10 */ + sn2_interpolator.addr = RTC_COUNTER_ADDR; + sn2_interpolator.source = TIME_SOURCE_MMIO64; register_time_interpolator(&sn2_interpolator); - - rtc_per_timer_tick = sn_rtc_cycles_per_second / HZ; - rtc_nsecs_per_cycle = 1000000000 / sn_rtc_cycles_per_second; - - last_wall_rtc = GET_RTC_COUNTER(); } Index: linux-2.6.7/include/linux/timex.h =================================================================== --- linux-2.6.7.orig/include/linux/timex.h 2004-06-15 22:18:56.000000000 -0700 +++ linux-2.6.7/include/linux/timex.h 2004-08-09 19:02:02.000000000 -0700 @@ -53,8 +53,10 @@ #include #include +#include #include +#include /* * The following defines establish the engineering parameters of the PLL @@ -320,81 +322,148 @@ #ifdef CONFIG_TIME_INTERPOLATION -struct time_interpolator { - /* cache-hot stuff first: */ - unsigned long (*get_offset) (void); - void (*update) (long); - void (*reset) (void); +#define TIME_SOURCE_CPU 0 +#define TIME_SOURCE_MMIO64 1 +#define TIME_SOURCE_MMIO32 2 +#define TIME_SOURCE_FUNCTION 3 + +/* For proper operations time_interpolator clocks must run slightly slower + * than the standard clock since the interpolator may only correct by having + * time jump forward during a tick. A slower clock is usually a side effect + * of the integer divide of the nanoseconds in a second by the frequency. + * The accuracy of the division can be increased by specifying a shift. + * However, this may cause the clock not to be slow enough. + * The interpolator will self-tune the clock by slowing down if no + * resets occur or speeding up if the time jumps per analysis cycle + * become too high. + * + * Setting jitter compensates for a fluctuating timesource by comparing + * to the last value read from the timesource to insure that an earlier value + * is not returned by a later call. The price to pay + * for the compensation is that the timer routines are not as scalable anymore. + */ - /* cache-cold stuff follows here: */ - struct time_interpolator *next; +#define INTERPOLATOR_ADJUST 65536 +#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST + +struct time_interpolator { + unsigned short source; /* time source flags */ + unsigned char shift; /* increases accuracy of multiply by shifting. */ + /* Note that bits may be lost if shift is set too high */ + unsigned char jitter; /* if set compensate for fluctuations */ + unsigned nsec_per_cyc; /* set by register_time_interpolator() */ + void *addr; /* address of counter or function */ + unsigned long offset; /* nsec offset at last update of interpolator */ + unsigned long last_counter; /* counter value in units of the counter at last update */ + unsigned long last_cycle; /* Last timer value if TIME_SOURCE_JITTER is set */ unsigned long frequency; /* frequency in counts/second */ long drift; /* drift in parts-per-million (or -1) */ + unsigned long skips; /* skips forward */ + unsigned long ns_skipped; /* nanoseconds skipped */ + struct time_interpolator *next; }; -extern volatile unsigned long last_nsec_offset; -#ifndef __HAVE_ARCH_CMPXCHG -extern spin_lock_t last_nsec_offset_lock; -#endif extern struct time_interpolator *time_interpolator; -extern void register_time_interpolator(struct time_interpolator *); -extern void unregister_time_interpolator(struct time_interpolator *); - -/* Called with xtime WRITE-lock acquired. */ -static inline void -time_interpolator_update(long delta_nsec) +static inline unsigned long +time_interpolator_get_cycles(unsigned int src) { - struct time_interpolator *ti = time_interpolator; + unsigned long (*x)(void); - if (last_nsec_offset > 0) { -#ifdef __HAVE_ARCH_CMPXCHG - unsigned long new, old; + switch (src) + { + case TIME_SOURCE_FUNCTION: + x = time_interpolator->addr; + return x(); - do { - old = last_nsec_offset; - if (old > delta_nsec) - new = old - delta_nsec; - else - new = 0; - } while (cmpxchg(&last_nsec_offset, old, new) != old); -#else - /* - * This really hurts, because it serializes gettimeofday(), but without an - * atomic single-word compare-and-exchange, there isn't all that much else - * we can do. - */ - spin_lock(&last_nsec_offset_lock); - { - last_nsec_offset -= min(last_nsec_offset, delta_nsec); - } - spin_unlock(&last_nsec_offset_lock); -#endif + case TIME_SOURCE_MMIO64 : + return readq(time_interpolator->addr); + + case TIME_SOURCE_MMIO32 : + return readl(time_interpolator->addr); + + default: return get_cycles(); } +} - if (ti) - (*ti->update)(delta_nsec); +static inline unsigned long +time_interpolator_get_counter(void) +{ + unsigned int src = time_interpolator->source; + + if (time_interpolator->jitter) + { + unsigned long lcycle; + unsigned long now; + + do { + lcycle = time_interpolator->last_cycle; + now = time_interpolator_get_cycles(src); + if (lcycle && time_after(lcycle,now)) return lcycle; + /* Keep track of the last timer value returned. The use of cmpxchg here + * will cause contention in an SMP environment. + */ + } while (unlikely(cmpxchg(&time_interpolator->last_cycle,lcycle,now) != lcycle)); + return now; + } + else + return time_interpolator_get_cycles(src); } -/* Called with xtime WRITE-lock acquired. */ +extern void register_time_interpolator(struct time_interpolator *); +extern void unregister_time_interpolator(struct time_interpolator *); + static inline void time_interpolator_reset(void) { - struct time_interpolator *ti = time_interpolator; - - last_nsec_offset = 0; - if (ti) - (*ti->reset)(); + time_interpolator->offset = 0; + time_interpolator->last_counter = time_interpolator_get_counter(); } -/* Called with xtime READ-lock acquired. */ +#define GET_TI_NSECS(count,i) ((((count) - i->last_counter) * i->nsec_per_cyc) >> i->shift) + static inline unsigned long time_interpolator_get_offset(void) { - struct time_interpolator *ti = time_interpolator; - if (ti) - return (*ti->get_offset)(); - return last_nsec_offset; + return time_interpolator->offset + + GET_TI_NSECS(time_interpolator_get_counter(),time_interpolator); +} + +static inline void time_interpolator_update(long delta_nsec) +{ + unsigned long counter=time_interpolator_get_counter(); + unsigned long offset=time_interpolator->offset + GET_TI_NSECS(counter,time_interpolator); + + /* The interpolator compensates for late ticks by accumulating + * the late time in time_interpolator->offset. A tick earlier than + * expected will lead to a reset of the offset and a corresponding + * jump of the clock forward. Again this only works if the + * interpolator clock is running slightly slower than the regular clock + * and the tuning logic insures that. + */ + + if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) + time_interpolator->offset = offset - delta_nsec; + else { + time_interpolator->skips++; + time_interpolator->ns_skipped += delta_nsec - offset; + time_interpolator->offset = 0; + } + time_interpolator->last_counter = counter; + + /* Tuning logic for time interpolator invoked every minute or so. + * Decrease interpolator clock speed if no skips occurred and an offset is carried. + * Increase interpolator clock speed if we skip too much time. + */ + if (jiffies % INTERPOLATOR_ADJUST == 0) + { + if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) + time_interpolator->nsec_per_cyc--; + if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) + time_interpolator->nsec_per_cyc++; + time_interpolator->skips = 0; + time_interpolator->ns_skipped = 0; + } } #else /* !CONFIG_TIME_INTERPOLATION */ Index: linux-2.6.7/kernel/timer.c =================================================================== --- linux-2.6.7.orig/kernel/timer.c 2004-08-09 15:46:15.000000000 -0700 +++ linux-2.6.7/kernel/timer.c 2004-08-09 15:46:42.000000000 -0700 @@ -620,6 +620,9 @@ if (xtime.tv_sec % 86400 == 0) { xtime.tv_sec--; wall_to_monotonic.tv_sec++; + /* The timer interpolator will make time change gradually instead + * of an immediate jump by one second. + */ time_interpolator_update(-NSEC_PER_SEC); time_state = TIME_OOP; clock_was_set(); @@ -631,6 +634,7 @@ if ((xtime.tv_sec + 1) % 86400 == 0) { xtime.tv_sec++; wall_to_monotonic.tv_sec--; + /* Use of time interpolator for a gradual change of time */ time_interpolator_update(NSEC_PER_SEC); time_state = TIME_WAIT; clock_was_set(); @@ -1427,10 +1431,6 @@ } #ifdef CONFIG_TIME_INTERPOLATION -volatile unsigned long last_nsec_offset; -#ifndef __HAVE_ARCH_CMPXCHG -spinlock_t last_nsec_offset_lock = SPIN_LOCK_UNLOCKED; -#endif struct time_interpolator *time_interpolator; static struct time_interpolator *time_interpolator_list; @@ -1441,17 +1441,21 @@ { if (!time_interpolator) return 1; - return new->frequency > 2*time_interpolator->frequency || + return new->frequency > 2 * time_interpolator->frequency || (unsigned long)new->drift < (unsigned long)time_interpolator->drift; } void register_time_interpolator(struct time_interpolator *ti) { + ti->nsec_per_cyc = (NSEC_PER_SEC << ti->shift) / ti->frequency; spin_lock(&time_interpolator_lock); write_seqlock_irq(&xtime_lock); if (is_better_time_interpolator(ti)) + { time_interpolator = ti; + time_interpolator_reset(); + } write_sequnlock_irq(&xtime_lock); ti->next = time_interpolator_list; @@ -1482,6 +1486,7 @@ for (curr = time_interpolator_list; curr; curr = curr->next) if (is_better_time_interpolator(curr)) time_interpolator = curr; + time_interpolator_reset(); } write_sequnlock_irq(&xtime_lock); spin_unlock(&time_interpolator_lock); Index: linux-2.6.7/arch/ia64/kernel/asm-offsets.c =================================================================== --- linux-2.6.7.orig/arch/ia64/kernel/asm-offsets.c 2004-08-09 15:46:09.000000000 -0700 +++ linux-2.6.7/arch/ia64/kernel/asm-offsets.c 2004-08-09 15:47:33.000000000 -0700 @@ -188,9 +188,6 @@ DEFINE(IA64_CLONE_VM, CLONE_VM); BLANK(); - /* used by fsys_gettimeofday in arch/ia64/kernel/fsys.S */ - DEFINE(IA64_CPUINFO_ITM_DELTA_OFFSET, offsetof (struct cpuinfo_ia64, itm_delta)); - DEFINE(IA64_CPUINFO_ITM_NEXT_OFFSET, offsetof (struct cpuinfo_ia64, itm_next)); DEFINE(IA64_CPUINFO_NSEC_PER_CYC_OFFSET, offsetof (struct cpuinfo_ia64, nsec_per_cyc)); DEFINE(IA64_TIMESPEC_TV_NSEC_OFFSET, offsetof (struct timespec, tv_nsec)); @@ -202,5 +199,21 @@ BLANK(); DEFINE(IA64_MCA_TLB_INFO_SIZE, sizeof (struct ia64_mca_tlb_info)); + /* used by head.S */ + DEFINE(IA64_CPUINFO_NSEC_PER_CYC_OFFSET, offsetof (struct cpuinfo_ia64, nsec_per_cyc)); + BLANK(); + /* used by fsys_gettimeofday in arch/ia64/kernel/fsys.S */ + DEFINE(IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET, offsetof (struct time_interpolator, addr)); + DEFINE(IA64_TIME_INTERPOLATOR_SOURCE_OFFSET, offsetof (struct time_interpolator, source)); + DEFINE(IA64_TIME_INTERPOLATOR_SHIFT_OFFSET, offsetof (struct time_interpolator, shift)); + DEFINE(IA64_TIME_INTERPOLATOR_NSEC_OFFSET, offsetof (struct time_interpolator, nsec_per_cyc)); + DEFINE(IA64_TIME_INTERPOLATOR_OFFSET_OFFSET, offsetof (struct time_interpolator, offset)); + DEFINE(IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET, offsetof (struct time_interpolator, last_cycle)); + DEFINE(IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET, offsetof (struct time_interpolator, last_counter)); + DEFINE(IA64_TIME_INTERPOLATOR_JITTER_OFFSET, offsetof (struct time_interpolator, jitter)); + DEFINE(IA64_TIME_SOURCE_CPU, TIME_SOURCE_CPU); + DEFINE(IA64_TIME_SOURCE_MMIO64, TIME_SOURCE_MMIO64); + DEFINE(IA64_TIME_SOURCE_MMIO32, TIME_SOURCE_MMIO32); + DEFINE(IA64_TIMESPEC_TV_NSEC_OFFSET, offsetof (struct timespec, tv_nsec)); } Index: linux-2.6.7/drivers/char/hpet.c =================================================================== --- linux-2.6.7.orig/drivers/char/hpet.c 2004-08-05 13:33:57.000000000 -0700 +++ linux-2.6.7/drivers/char/hpet.c 2004-08-09 15:46:42.000000000 -0700 @@ -662,40 +662,10 @@ #ifdef CONFIG_TIME_INTERPOLATION -static unsigned long hpet_offset, last_wall_hpet; -static long hpet_nsecs_per_cycle, hpet_cycles_per_sec; - -static unsigned long hpet_getoffset(void) -{ - return hpet_offset + (read_counter(&hpets->hp_hpet->hpet_mc) - - last_wall_hpet) * hpet_nsecs_per_cycle; -} - -static void hpet_update(long delta) -{ - unsigned long mc; - unsigned long offset; - - mc = read_counter(&hpets->hp_hpet->hpet_mc); - offset = hpet_offset + (mc - last_wall_hpet) * hpet_nsecs_per_cycle; - - if (delta < 0 || (unsigned long)delta < offset) - hpet_offset = offset - delta; - else - hpet_offset = 0; - last_wall_hpet = mc; -} - -static void hpet_reset(void) -{ - hpet_offset = 0; - last_wall_hpet = read_counter(&hpets->hp_hpet->hpet_mc); -} - static struct time_interpolator hpet_interpolator = { - .get_offset = hpet_getoffset, - .update = hpet_update, - .reset = hpet_reset + .source = TIME_SOURCE_MMIO64, + .shift = 10, + .addr = MC }; #endif Index: linux-2.6.7/kernel/posix-timers.c =================================================================== --- linux-2.6.7.orig/kernel/posix-timers.c 2004-08-09 15:46:15.000000000 -0700 +++ linux-2.6.7/kernel/posix-timers.c 2004-08-09 19:27:46.000000000 -0700 @@ -219,6 +219,11 @@ .clock_set = do_posix_clock_monotonic_settime }; +#ifdef CONFIG_TIME_INTERPOLATION + /* Clocks are more accurate with time interpolators */ + clock_realtime.res = clock_monotonic.res = NSEC_PER_SEC/time_interpolator->frequency; +#endif + register_posix_clock(CLOCK_REALTIME, &clock_realtime); register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);