o
"I’ITAN

Programmers' Technical Reference
Guide for the Java side of the TITAN
TTCN-3 Toolset

Kristof Szabados

Version 10.1.0, 2024-04-25

Table of Contents

. About the Document

1.1. Purpose
1.2. Target Groups
1.3. Naming Convention

1.4. Typographical Conventions

. TTCN-3 Limitations in this Version
. TTCN-3 Language Extensions

3.1. TTCN-3 Preprocessing

3.2. Implicit Message Encoding
3.3. RAW Encoder and Decoder
3.4. TEXT Encoder and Decoder
3.5. XML Encoder and Decoder
3.6. JSON Encoder and Decoder
3.7. OER Encoder and Decoder
3.8. Build Consistency Checks
3.9. Negative Testing

3.10. Differences between the Java side runtime, the C side Load Test Runtime and the C side

Function Test Runtime

3.11. Profiling and code coverage

. Supported ASN.1 Constructs and Limitations

5. Compiling TTCN-3 and ASN.1 Modules

5.1. Build Options

5.2. Makefile Generator

5.3. The Compilation Process for TTCN-3 and ASN.1 Modules
5.4. Particularities of ASN.1 Modules

5.5. Using Component Relation Constraints from TTCN-3

. The Run-time Configuration File

. Code Coverage of TTCN-3 Modules
. The TTCN-3 Debugger

. Test Ports

9.1. Generating the Skeleton
9.2. Message-based Example
9.3. Procedure-based Example
9.4. Test Port Functions

9.5. Support of address Type
9.6. Provider Port Types

9.7. Tips and Tricks

9.8. Setting timestamps

D 1 U1 U1 U1 R R R N NN NN

© © 0 00 J o O

12
12
13
14
15
16
16
17
17
19
29
31
34
35

10. Logger Plug-ins 38

11. Encoding and Decoding 39
11.1. The Common API 39
11.2. BER 43
11.3. RAW 43
11.4. TEXT 46
11.5. XML Encoding (XER) 46
11.6. JSON 46
11.7. OER 49

12. Mapping TTCN-3 Data Types to Java Constructs 50
12.1. Mapping of Names and Identifiers 50
12.2. Modules 51
12.3. Predefined TTCN-3 Data Types 51
12.4. Compound Data Types 98
12.5. Predefined Functions 115
12.6. Using the Signature Classes 122

13. Tips & Troubleshooting 126
13.1. Type Aliasing 126
13.2. Using External Java Functions in TTCN-3 Test Suites 126
13.3. Logging in Test Ports or External Functions 128
13.4. Reusing Logged Values or Templates in TTCN-3 Code 132
13.5. Using the TTCN-3 Preprocessing Functionality 133
13.6. Error Recovery during Test Execution 134

14. References 135

15. Abbreviations 137

Abstract

This document describes detailed information on writing components of executable test suites for
the Java side of the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose

The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites, for the Java side of the TITAN TTCN-3
Toolset.

1.2. Target Groups

This document is intended for programmers of TTCN-3 test suites, using the prototype Java code
generator provided in the plugins, with information in addition to that provided in the TITAN User
Guide, API Technical Reference and Programmers' Technical Reference Guide. It is recommended
that the programmer reads the TITAN User Guide before reading this document.

1.3. Naming Convention

This document uses the expressions "C side" and "Java side" in relation to the TITAN TTCN-3 Toolset
and Test Executor.

C side is used to reference the "original" part of the TITAN TTCN-3 Toolset available from command
line. The compiler, makefile generator, the libraries users need to link their executables to during
build time.

Java side is used to reference the part of the TITAN TTCN-3 Toolset supporting compiling TTCN-3
and ASN.1 code into Java classes via Java source code and the runtime libraries needed for this
form of building.

1.4. Typographical Conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+’ to represent key combinations. For example, Ctrl+Click

The character "/'is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLS, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLD).

Chapter 2. TTCN-3 Limitations in this
Version

The present Test Executor is an implementation of TTCN-3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the TTCN-3 language constructs detailed in [27] are not supported
in the current version of the Test Executor on both the C and the Java side. The following list extend
that list, with the TTCN-3 language constructs that are not supported, in addition, in the current
version of the Java side of the Test Executor.

When applicable, the relevant clause of the standard text ([1]) is given within parentheses after
each limitation. The list of ASN.1 related limitations can be found in chapter 4.25.

* The update, interleave, label, goto statements are not yet supported. (19.7, 19.8, 20.4 and 22.3.1
in [1])
* The hostId predefined function is not yet supported.

* Additionally the @profiler.start, @profiler.stop, string2ttcn TITAN extensions are also not yet
supported on the Java side.

* The @profiler.running TITAN extension is also not supported.

* Concatenating template strings is not yet supported on the Java side.

The current version of the Java side of the Test Executor is just a prototype

WARNING
version. Please note that there might still be some changes in some of its APIs.

Chapter 3. TTCN-3 Language Extensions

The Test Executor supports several non-standard additions to TTCN-3 Core Language, as detailed in
[27], in order to improve its usability or provide backward compatibility with older versions.

The following list contains the TTCN-3 language extensions that are not yet supported by the Java
side of the Test Executor. The sections/features not listed here are supported.

3.1. TTCN-3 Preprocessing

Preprocessing of the TTCN-3 files with a C style preprocessor is supported by the Java side.

Contrary to the C side, on the Java side preprocessing is supported by an internal pre-processor.
That is the generated Java files will already have the pre-processable content pre-processed.

Parameterized macros are not supported on the Java side.

3.2. Implicit Message Encoding

Compared to the description in section 3.22 of [27] the Java side has 2 major differences: Only RAW
encoding is supported for now. The syntax to be used in Java differs slightly from the one used in
C++:

The TTCN-3 attribute errorbehavior (INCOMPL_ANY:ERROR), for example, instead of being mapped to
the following C++ statement

TTCN_EncDec::set_error_behavior (TTCN_EncDec::ET_INCOMPL_ANY,
TTCN_EncDec::EB_ERROR);

is mapped to the following Java statement

TTCN_EncDec.set_error_behavior (TTCN_EncDec.error_type.ET_INCOMPL_ANY,
TTCN_EncDec.error_behavior_type.EB_ERROR);

3.3. RAW Encoder and Decoder

The Java side supports the same RAW Encoder and Decoder features as the C side.

3.4. TEXT Encoder and Decoder

The TEXT Encoder and Decoder is not yet supported on the Java side.

3.5. XML Encoder and Decoder

The XML Encoder and Decoder is not yet supported on the Java side.

3.6. JSON Encoder and Decoder

The Java side supports the same RAW Encoder and Decoder features as the C side.

3.7. OER Encoder and Decoder

The OER Encoder and Decoder is not yet supported on the Java side.

3.8. Build Consistency Checks

Executable test suites are typically put together from many sources, some of which (test ports,
function libraries, etc.) are not written by the test writers themselves, but are developed
independently. Sometimes, a test suite requires an external component with a certain feature or
bug fix, or a certain minimum TITAN version. Building with a component which does not meet a
requirement, or an old TITAN version, typically results in malfunction during execution or cryptic
error messages during build. If version dependencies are specified explicitly, they can be checked
during build and the mismatches can be reported.

3.8.1. Version Information in TTCN-3 Files

TITAN allows test writers to specify that a certain TTCN-3 module requires a minimum version of
another TTCN-3 module or a minimum version of TITAN.

The Java side of the toolset provides the same features as the C side for TTCN-3 level checking of
consistency.

3.8.2. Consistency Check in the Generated Code

The java side offers different consistency checks compared to the C side, for the generated code.

When connecting to the Main Controller in parallel mode, TITAN verifies that the Main Controller
and the Java side binaries are of the exact same version of TITAN. This is done to ensure that, that
both sides use the same communication protocol.

What is not checked on the Java side or checked differently:

* There is no platform check as Java is platform independent.

* The Java runtime will check if it can execute the compiled code. Generally a Java runtime
should be able to execute any Java code built using an earlier Java version.

* During the compilation of the Java code, the Java compiler will check if it is able to compile all
parts of the code.

3.9. Negative Testing

Negative Testing is not yet supported on the Java side.

3.10. Differences between the Java side runtime, the C
side Load Test Runtime and the C side Function Test
Runtime

The Java side was based on the Load Test runtime of the C side. For now it has the same features
and limitations.

Please note, that based on the differences between Java and C++, the Java runtime should be treated
as its own version of the runtime, when preparing for future developments.

3.11. Profiling and code coverage

The Java side does not yet support profiling and code coverage measuring support directly.

For the time being we recommend using the tools built into Eclipse on the Java generated code (The
Java side projects also behave as normal Java projects for Eclipse tooling), or other tools provided
for Java.

Chapter 4. Supported ASN.1 Constructs and
Limitations

The following list contains the ASN.1 features that are not supported on the Java side, above the
limitations listed in [27] for the C side:

* BER Encoding and Decoding are not supported.

* subtypes are not checked.

* Charsymbols are not parsed

Chapter 5. Compiling TTCN-3 and ASN.1
Modules

You can translate your TTCN-3 and ASN.1 modules, located in TITAN Java projects, to Java source
code using the builder built into the Designer plugin.

This builder is automatically invoked, when the eclipse’s build command is selected on a project.
When the Build Automatically option is selected in the Project menu, eclipse automatically builds
the project, in the background, when a file is changed.

The TITAN provided builder will use all TTCN-3 and ASN.1 files from all folders that are not
excluded. The .java files are generated into the java_src folder of the project into a package
generated from the name of the project in this format: "org.eclipse.titan." + projectname +
".generated".

The usual and recommended suffix is .ttcen for TTCN-3 and .asn for ASN.1 source files, but it is not
stringent"’. For TTCN-3 and ASN.1 modules, the names of the output files are the same as the name
of the modules, except for the suffixes which are .java.

NOTE In the ASN.1 module names hyphens are replaced by underscore character.

If you have a modular test suite (the code located in several projects that
WARNING reference each other), to build a particular project you have to first build all
projects it references. This should be done automatically by eclipse.

5.1. Build Options

The options governing how a project is built can be set via right clicking on the project and
selecting Properties /| TITAN Java Project Properties and in the window that appears on the
TITAN / Flags sub-page.

The following options are supported:
» Disable RAW encoding (-r)
Disables the generation of RAW encoder/decoder routines for all TTCN-3 types.
* Disable attribute validation (-0)

Disables the validation of "with" attributes.

This option should only be used temporarily and only by people transferring
WARNING projects from other TTCN-3 tool vendors. As the attribute validation is turned
off, users will not be notified of invalid attributes, or errors within attributes.

* Add source line info for logging (-L)

Instructs the compiler to add source file and line number information into the generated code
to be included in the log during execution. This option is only a prerequisite for logging the
source code information. The run-time configuration file parameters OptionsSourceInfoFormat
and LogEntityName in [LOGGING] have also to be set appropriately. This feature can be useful for
finding the cause of dynamic test case errors in fresh TTCN3 code. Using this option enlarges the
size of the generated code a bit and reduces execution speed slightly; therefore it is not
recommended when the TTCN3 test suite is used for load generation.

* Allow 'omit"' in template value lists (legacy behavior) (-M)

Enforces legacy behavior when matching the value omit. Allows the use of the value omit in
template lists and complemented template lists, giving the user another way to declare
templates that match omitted fields. If set, an omitted field will match a template list, if the
value omit appears in the list, and it will match a complemented template list, if omit is not in
the list (the ifpresent attribute can still be used for matching omitted fields). This also affects
the ispresent operation and the present template restriction accordingly.

* Force the generation of Seof types (-F)

Forces the code generator to generate the full classes for record of and set of types. When
turned off, and the of type of the set of/record of type is a basic type, the generated code will
only refer to pre-generated classes in the runtime library, saving compilation time.

* Enable object oriented programming - 00P (-k)

Enable object oriented programming language elements. It is not working yet on Titan Java
Projects. Syntactic and semantic analyzer and java compiler do not support OOP yet.

5.2. Makefile Generator

The Java side of TITAN does not generate a Makefile as the build is governed by the built in tools of
Eclipse.

5.3. The Compilation Process for TTCN-3 and ASN.1
Modules

The Java side compilation is integrated into the Designer plug-in using it’s syntactic and semantic
checking features.

During their run both the Designer’s analysis and Java code generator’s progress can eb followed in
the Progress view of eclipse.

During its run, the Designer might also report some of its activities on the TITAN Debug Console like
the following.

On-the-fly analyzation of project bughunt started
**The project bughunt does not seem to need syntax check.
** Had to start checking at @ modules.
**On-the-fly semantic checking of projects (4 modules) took 1.04777E-4 seconds
Generating code for module ‘common'
Generating code for module ‘Bug'
re-Generated code for module ‘Bug'
Generating code for module ‘single_test'
Generating code for module ‘parallel_test’
Generated 4 Java files.
Generating code for single main
The whole analysis block took 0.0022510720000000002 seconds to complete

The activities leading to the compilation of the project can be grouped to 3 sets.

5.3.1. The initial analysis

First, the Designer reads the TTCN-3 and ASN.1 input files and performs syntax check according to
the BNF of TTCN-3 [1] (including the additions of [3]) or ASN.1 [4], [7], [8], [9]. The syntax errors are
reported in the Problems view with the appropriate location information. Whenever it is possible,
the Designer tries to recover from syntax errors and continue the analysis in order to detect further
errors.

Error recovery is not always successful and it might result in additional undesired
error messages when the parser gets out of synchronization. Therefore it is
recommended to study the first lines on the compiler’s error listings because the
error messages at the end are not always relevant.

NOTE

After the syntax check the Designer performs semantic analysis on TTCN-3 /ASN.1 module(s) and
verifies whether the various definitions and language elements are used in the appropriate way
according to the static semantics of TTCN-3 and ASN.1 languages. In addition to error messages the
Designer reports a warning when the corresponding definition is correct, but it might have
unwanted effects.

5.3.2. Subsequent analysis after change

Instead of repeating the analysis of the whole project always, the Designer is able to offer
incremental analysis. This means that after the first analysis, the semantic information gained from
the TTCN-3 and ASN.1 files is not deleted, but kept in the memory. So when users edit something in
the same project, the Designer only has to re-read that file, and repeat the semantic analysis on the
smallest set of semantic entities, that might be affected by the change. Reducing the length of
subsequent analysis duration times.

5.3.3. Actual Java code generation and Java compilation

After at least one analysis was done on a project, the Designer can generate a Java file, for each
module without errors, that contains the translated module. If the name of the input module is
MyModule (i.e.it begins with module MyModule), the name of the generated Java file will be

10

MyModule.java. Note that the name of the output file does NOT depend on the name of input file. In
ASN.1 module names the hyphens are converted to underscore characters (e.g. the Java code for My-
Asn-Module will be placed into My_Asn_Module.java). The Java files are generated into the "java_src"
folder of the project into a package generated from the name of the project in this format:
"org.eclipse.titan." + projectname + ".generated".

By default, the compiler generates the Java code for the input modules:

 that do not have any errors inside them
* and were not yet analyzed or the last change might have affected them
* and either do not already have a Java file generated for them, or the content of the file needs to

be updated.

This sophisticated methods allows to reduce the length of the build after a change, by minimizing
the amount of code re-analyzed, re-generated and re-compiled by Java.

Once the Designer’s built in Java code generator finishes, the Java compiler of Eclipse takes the
generated Java code and compiles them into .class files. Which can be used for execution inside
eclipse, or can be exported as jar files, to be executed from the command line.

When the compiler translates an ASN.1 module, the different ASN.1 types are mapped to TTCN-3
types as described in the table below.

Table 12. Mapping of ASN.1 types to TTCN-3 types

ASN.1 TTCN-3

Simple types

NULL —*

BOOLEAN boolean

INTEGER integer
ENUMERATED enumerated

REAL float

BIT STRING bitstring

OCTET STRING octetstring

OBJECT IDENTIFIER objid

RELATIVE-OID objid

string charstring

string 1 universal charstring
string § universal charstring
Compound types

CHOICE union

SEQUENCE record

11

ASN.1 TTCN-3

SET set
SEQUENCE OF record of
SET OF set of

* There is no corresponding TTCN-3 type
T IA5String, NumericString, PrintableString, VisibleString (ISO646String)
I GeneralString, GraphicString, TeletexString (T61String), VideotexString
§ BMPString, UniversalString, UTF8String

5.4. Particularities of ASN.1 Modules

The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

5.5. Using Component Relation Constraints from
TTCN-3

The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

[1] .ttcn3, or .asn1 suffixes are supported as well.

12

Chapter 6. The Run-time Configuration File

In general the Java side supports the exact same configuration file format and options in the same
way as the C side does, described in chapter 7 of [27]. There are some features, that are not yet
supported on the Java side:

* LoggerPlugins within the LOGGING section are not yet supported. The section is read correctly,
but such plugins are not loaded during runtime.

* EXTERNAL_COMMANDS section is not yet supported. The section is read correctly, but the
scripts set there will not be executed during runtime.

* In MAIN_CONTROLLER section the UnixSocketsEnabled feature is not supported. Java does not
seem to offer support for this feature.

* It is also not yet possible to configure the logging options dynamically.

On the C side, in the configuration file it is possible to use the %e Meta-character in the log file’s
name, to insert into it the name of the binary generating the log files. On the Java side this %e Meta-
character will represent the name of the project. This is because on the Java side the easiest and
fastest way to execute TITAN Java projects does not involve the generation of a "binary" to be
executed. As such in these situations the concept of the "name of the binary" does not exist.

13

Chapter 7. Code Coverage of TTCN-3 Modules

Measuring Code Coverage directly from TITAN is not yet supported on the Java side.

14

Chapter 8. The TTCN-3 Debugger

Debugging TTCN-3 directly from TITAN is not yet supported on the Java side.

15

Chapter 9. Test Ports

The Java source code generated by the Java code generator is protocol independent, that is, it does
not contain any device specific operations. To provide the connection between the executable test
suite and SUT, that is, the physical interface of the test equipment”, a so-called Test Port is needed.

The Test Port is a software library written in Java language, which is a part of the executable test
program. It maps the device specific operations to function calls specified in an API. This chapter
describes the Test Port API in details.

9.1. Generating the Skeleton

The functions of Test Ports must be written by the user who knows the interface between the
executable test suite and the test equipment. In order to make this development easier, Eclipse
features can be used to generate and update Test Port skeletons. A Test Port belongs to one certain
TTCN-3 port type, so the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Java code generator,
and it is put into the generated Java code. The user has nothing to do with this part.

The other part is a Java class, which is written mainly by the user. This class can be found in a
separate Java file (their suffixes are .java). It is recommended to store this file in a folder separate
from the generated java files (for example called user_provided), so as it should not be deleted when
clearing the project. The name of the source files and the Java class have to be identical to the name
of the port type. And the Java class has to be located in the Java package whos name is generated as
org.eclipse.titan. + projectname + .user_provided. Please note that the name mapping rules
described in Mapping of Names and Identifiers also apply to these class and file names.

During the compilation, when the Java compiler encounters the usage of a Test Port that does not
yet has a user generated implementation, it will report an error in the generated code for missing
its import. Also offering Quick Fixes either by simply bringing the mouse cursor over the error
location, or by right clicking and selecting Quick Fix from the menu. Using the action that starts like
Create class 'MyMessagePort' in package - eclipse will automatically generate the class the user
needs. Once the class is create one should set its base class and right click in its body part selecting
the Source/Override\Implement Methods::+ to automatically generate a skeleton for the needed
functions.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test Port class
member functions also needs to change. Java will report build error like "The typeXY must
implement the inherited abstract method...". In this case, the Override\Implement Methods::+ action
should be invoked again, to create the skeletons of the newly required functions.

If you have defined a TTCN-3 port type that you intend to use for internal communication only
(that is, for sending and receiving messages between TTCN-3 test components), you do not need to
generate and compile an empty Test Port skeleton for that port type. Adding the attribute with
{extension "internal"} to the port type definition in the TTCN-3 module disables the generation
and use of a Test Port for the port type.

16

In the following we introduce two port type definitions: one for a message based and another one
for a procedure based port. In our further examples we will refer to the test port skeletons
generated according to these definitions given within the project called MyProject and module
called MyModu'e.

9.2. Message-based Example

The definition of MyMessagePort:

type port MyMessagePort message
{

in octetstring;
out integer;
inout charstring;

¥
That is, the types integer and charstring can be sent, and octetstring and charstring can be received
on port MyMessagePort.

The initial Test Port file (that is, MyMessagePort.java) will look as follows:

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyMessagePort_BASE;
import org.eclipse.titan.runtime.core.TitanCharString;
import org.eclipse.titan.runtime.core.TitanInteger;

public class MyMessagePort extends MyMessagePort_BASE {

public MyMessagePort(final String name) {
super(name);

}

@0verride

protected void outgoing_send(TitanInteger send_par) {
// T0DO Auto-generated method stub

}

@0verride

protected void outgoing_send(TitanCharString send_par) {
// TODO Auto-generated method stub

}

9.3. Procedure-based Example

The definition of MyProcedurePort in module MyModule:

17

type port MyProcedurePort procedure
{

in inProc;
out outProc;
inout inoutProc;

+

The signature definitions are imported from a module called MyModule2, noblock is not used and
exceptions are used so that every member function of the port class is generated for this example.
If the keyword noblock is used the compiler will optimize code generation by not generating
outgoing reply, incoming reply member functions and their argument types. If the signature has no
exception outgoing raise, incoming exception member functions and related types will not be
generated.

The port type MyProcedurePort can handle call, getreply and catch operations referencing the
signatures outProc and inoutProc, and it can handle getcall, reply and raise operations referencing
the signatures inProc and inoutProc.

The initial Test Port file (that is, MyProcedurePort.java) will look as follows:

18

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyProcedurePort_BASE;
import org.eclipse.titan.MyProject.generated.MyModule2.inProc_reply;

import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_call;
import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_reply;
import org.eclipse.titan.MyProject.generated.MyModule2.outProc_call;

public class MyProcedurePort extends MyProcedurePort_BASE {

public MyProcedurePort(final String name) {
super(name);

}

@0verride

public void outgoing_call(outProc_call call_par) {
// TODO Auto-generated method stub

}

@0verride

public void outgoing_call(inoutProc_call call_par) {
// TODO Auto-generated method stub

}

@Override

public void outgoing_reply(inProc_reply reply_par) {
// T0DO Auto-generated method stub

}

@0verride

public void outgoing_reply(inoutProc_reply reply_par) {
// TODO Auto-generated method stub

}

9.4. Test Port Functions

This section summarizes all possible member functions of the Test Port class. These functions have
an empty implementation in the base class of the Test Port.

The identical functions of both port types are:

* the constructor
* the parameter setting function

* the map and unmap function

the start and stop function

* descriptor event and timeout handler(s)

19

» some additional functions and attributes

The functions above will be described using an example of message based ports (MyMessagePort, also
introducing the functions specific to message based port types). Using these functions is identical
(or very similar) in procedure based Test Ports.

Functions specific to message based ports:

* send functions: outgoing send
* incoming functions: incoming message
» Functions specific to procedure based ports:
» outgoing functions: outgoing_call, outgoing_reply, outgoing_raise
* incoming functions: incoming_call, incoming_reply, incoming_exception
Both test port types can use the same logging and error handling mechanism, and the handling of

incoming operations on port MyProcedurePort is similar to receiving messages on port MyMessagePort
(regarding the event handler).

The easiest way to discover what functions can be overwritten and to generate their
skeleton is by using the earlier described Override\Implement Methods::- functionality

NOTE
of eclipse. That functionality automatically list all functions from the class
generated for the given testport and the its parent classes, that can be overwritten.
Please note, that in Java functions by default inherit the documentation/comments
NOTE from the function they overwrite. So while the functions just inserted to overwrite

functions from the base class might not appear to have a comment, in eclipse
moving the cursor over their name will reveal their actual comment.

9.4.1. Constructor
NOTE On the Java side Test Ports do not have destructors.

The Test Port class belongs to a TTCN-3 port type, and its instances implement the functions of the
port instances. That is, each Test Port instance belongs to the port of a TTCN-3 test component. The
number of TTCN-3 component types, port types and port instances is not limited; you may have
several Test Port classes and several instances of a given Test Port class in one test suite.

The Test Port instances are global and static objects from the point of view of the Java code. This
means, their constructor is called before the test execution (that is, before the main function starts).
They are also stored as threadlocal to be only accessible by the thread (Parallel Test Component)
they belong to. The name of a Test Port object is composed of the name of the corresponding
component type and the name of the port instance within the component type.

In case of parallel test execution, each TTCN-3 test component thread has its own Test Port
instances. Of course, only the Test Ports of the active component type are used, the member
functions of other inactive Test Port instances (except constructor) shall never be called. All Test
Port instances should be handled as being static, their constructor is called only once, at the time

20

their component is created. The test component threads (that is, the child threads of Host
Controller) will have to create/initialize their own Test Port instances.

The Test Port class is derived from an abstract base class which can be found in the generated code.
The base class implements, for instance, the queue of incoming messages.

The constructor takes one parameter containing the name of the port instance in a String. This
string shall be passed further to the constructor of the base class as it can be found in the skeleton
code. The default argument for the test port name is a null pointer, which is used when the test port
object is a member of a port array.

In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor.
The port name is always set correctly when any other member function is
called.

WARNING

9.4.2. Parameter Setting Function

Test Port parameters shall contain information which is independent from the TTCN-3 test suite.
These values shall not be used in the test suite at all. You can define them as TTCN-3 constants or
module parameters, but these definitions are useless and redundant, and they must always be
present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is, some
options or extra information that is necessary for correct operation) or lower protocol layer
addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in the [TESTPORT_PARAMETERS]
section of the run-time configuration file (see section [TESTPORT_PARAMETERS] in Programmer’s
Technical Reference). The parameters are maintained for each test port instance separately;
wildcards can be used as well. In the latter case the parameter is passed to all Test Port matching
the wildcard.

Each Test Port parameter must have a name, which must be unique within the Test Port only. The
name must be a valid identifier, that is, it must begin with a letter and must contain
alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings. Quotation
marks must be used when specifying the parameter values in the configuration file. The
interpretation of parameter values is up to you: you can use some of them as symbolic values,
numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to the Test
Port by the runtime environment of the test executor using the function set_parameter. The default
implementation of this function does nothing and ignores all parameters.

Each parameter is passed to the Test Port one-by-one separately’”, the two arguments of

set_parameter contain the name and value of the corresponding parameter, respectively, in Strings.

It is warmly recommended that the Test Port parameter handling functions be fool-proof. For

21

https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide
https://gitlab.eclipse.org/eclipse/titan/titan.core/tree/master/usrguide/referenceguide

instance, the Test Port should produce a proper error message (for example by calling TtcnError) if
a mandatory parameter is missing instead of causing unreliable behavior later. Repeated setting of
the same parameter should produce warnings for the user (for example by using the function
TtenError.TtenWarning) and not memory leaks.

On the MTC, in both single and parallel modes, the handling of Test Port parameters
is a bit different from that on PTCs. The parameters are passed only to active ports,
but the component type of MTC (thus the set of active ports) depends on the runs on
clause of the test case that is currently being executed. It would be difficult for the
runtime environment to check at the beginning of each test case whether the
corresponding MTC component type has already been active during a previous test
case run. Therefore all Test Port parameters belonging to the active ports of the MTC
are passed to the set_parameter function at the beginning of every test case. The Test
Ports of MTC shall be prepared to receive the same parameters several times (with
the same values, of course) if more than one test case is being executed.

NOTE

If system related Test Port parameters are used in the run-time configuration file (that is, the
keyword system is used as component identifier), the parameters are passed to your Test Port
during the execution of TTCN-3 map operations, but before calling your user_map function. Please
note that in this case the port identifier of the configuration file refers to the port of the test system
interface that your port is mapped to and not the name of your TTCN-3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

9.4.3. Map and Unmap Functions

The run-time environment of the TTCN-3 executor knows nothing about the communication
towards SUT, thus, it is the user’s responsibility to establish and terminate the connection with SUT.
The TTCN-3 language uses two operations to control these connections, map and unmap.

For this purpose, the Test Port class provides two member functions, user_map and user_unmap. These
functions are called by the test executor environment when performing TTCN-3 map and unmap
operations, respectively.

The map and unmap operations take two pairs of component references and ports as arguments.
These operations are correct only if one of the arguments refer to a port of a TTCN-3 test
component while the other port corresponds to SUT. This aspect of correctness is verified by the
run-time environment, but the existence of a system port is not checked.

The port names of the system are converted to Strings and passed to functions user_map and
user_unmap as parameters. Unlike other identifiers, the underscore characters in these port names
are not translated.

22

in TTCN-3 it is not allowed to map a test component port to several system ports at
the same time. The run-time environment, however, is not so strict and allows this
to handle transient states during configuration changes. In this case messages can

NOTE not be sent to SUT even with explicit addressing, but the reception of messages is
permitted. When putting messages into the input queue of the port, it is not
important for the test executor (even for the TTCN-3 language) which port of the
system the message is received from.

The execution of TTCN-3 test component that requested the mapping or unmapping is suspended
until your user_map or user_unmap functions finish. Therefore it is not allowed to block unnecessarily
the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of the
physical connection towards the SUT, the function TTCN_error shall be used to indicate the failure. If
the error occurs within user_map the run-time environment will assume that the connection with
SUT is not established thus it will not call user_unmap to destroy the mapping during the error
recovery procedure. If user_map fails, it is the Test Port writer’s responsibility to release all allocated
resources and bring the object variables into a stable state before calling TtcnError. Within
user_unmap the errors should be handled in a more robust way. After a minor failure it is better to
issue a warning and continue the connection termination instead of panicking. TtcnError shall be
called only to indicate critical errors. If user_unmap is interrupted with an error the run-time
environment assumes that the mapping has been terminated, that is, user_unmap will not be called
again.

if either user_map or user_unmap fails, the error is indicated on the initiator test
NOTE component as well; that is, the respective map or unmap operation will also fail and
error recovery procedure will start on that component.

Parameters of the Map and Unmap Functions

Parameters can be sent to the user_map and user_unmap functions from TTCN-3 code using the param
clause of the map and unmap operations.

The user_map and user_unmap functions have a parameter of type Map_Params, which contains the
string representations of the in and inout parameters of the map/unmap operation. The string
representations of out parameters are empty strings (as these are considered as being unbound at the
beginning of the map/unmap operation). After the user_map or user_unmap function ends and the
mapping/unmapping is concluded, the final values (string representations) of out and inout
parameters in the Map_Params object are sent back to the mapping/unmapping requestor.

The following member functions can be used to obtain or set data in the Map_Params object:

public int get_nof_params()

Returns the number of parameters in the object. This will either be zero (if the map or unmap
operation had no param clause) or the number of parameters specified in the system port type
definition’s map param or unmap param clause.

23

public TitanCharString get_param(final int index)

Returns the string representation of the parameter at index p_index. This method shall be used to
retrieve the values of in and inout parameters. The parameter indices start at 0. The order of the
parameters is the same as their order of declaration. Default values of parameters are
automatically set by the runtime environment before the user_map/user_unmap call. The string
representations retrieved with this function can be converted back to the parameter’s TTCN-3 type
with the predefined function string_to_ttcn.

public void set_param(final int index, final TitanCharString param)

Sets the string representation of the parameter at index p_index to the string p_param. This method
shall be used to set the final values of out and inout parameters. The string representation of a
TTCN-3 value can be obtained using the predefined function ttcn_to_string. If the final value of an
out or inout parameter is an empty string, then the variable used as parameter will remain
unchanged. Otherwise its new value will be calculated by applying string_to_ttcn on the string
value set in the user_map or user_unmap function (this could cause dynamic test case errors if the
string representation is invalid).

Usage example:

Port type:

type port MyPort message {

map param(in MyInParType in_par, inout MyInOutParType inout_par, out MyOutParType
out_par)

}

user_map function in port implementation:

24

@0verride
protected void user_map(final String system_port, final Map_Params params) {
if (params.get_nof_params() == @) {
// there were no map parameters

// do mapping

+ else {
// there were map parameters
// extract 'in' and 'out' parameters
MyInParType in_par = new MyInParType();
TitanCharString.string_to_ttcn(params.get_param(@), in_par);
MyInOutParType inout_par = new MyInQutParType();

TitanCharString.string_to_ttcn(params.get_param(1), inout_par);
MyOutParType out_par = new MyOutParType(); // remains unbound

// do mapping

// update 'out' and 'inout' parameters
params.set_param(1, TitanCharString.ttcn_to_string(inout_par));
params.set_param(2, TitanCharString.ttcn_to_string(out_par));
}
}

9.4.4. Start and