
GNU Parallel

Page 1

NAME
parallel - build and execute shell command lines from standard input in parallel

SYNOPSIS
parallel [options] [command [arguments]] < list_of_arguments

parallel [options] [command [arguments]] (::: arguments | :::+ arguments | :::: argfile(s) | ::::+
argfile(s)) ...

parallel --semaphore [options] command

#!/usr/bin/parallel --shebang [options] [command [arguments]]

#!/usr/bin/parallel --shebang-wrap [options] [command [arguments]]

DESCRIPTION
STOP!

Read the Reader's guide below if you are new to GNU parallel.

GNU parallel is a shell tool for executing jobs in parallel using
 one or more computers. A job can be a
single command or a small
 script that has to be run for each of the lines in the input. The
 typical input
is a list of files, a list of hosts, a list of users, a
 list of URLs, or a list of tables. A job can also be a
command that
 reads from a pipe. GNU parallel can then split the input into
 blocks and pipe a block
into each command in parallel.

If you use xargs and tee today you will find GNU parallel very easy to
 use as GNU parallel is written
to have the same options as xargs. If
 you write loops in shell, you will find GNU parallel may be able
to
 replace most of the loops and make them run faster by running several
 jobs in parallel.

GNU parallel makes sure output from the commands is the same output as
 you would get had you
run the commands sequentially. This makes it
 possible to use output from GNU parallel as input for
other programs.

For each line of input GNU parallel will execute command with
 the line as arguments. If no command
is given, the line of input is
 executed. Several lines will be run in parallel. GNU parallel can
 often be
used as a substitute for xargs or cat | bash.

Reader's guide
Start by watching the intro videos for a quick introduction:

http://www.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then look at the EXAMPLEs after the list of OPTIONS (Use LESS=+/EXAMPLE\: man parallel).
That will give you an idea of what
 GNU parallel is capable of.

Then spend an hour walking through the tutorial (man
 parallel_tutorial). Your command line will love
you for it.

Finally you may want to look at the rest of this manual if you have
 special needs not already covered.

If you want to know the design decisions behind GNU parallel, try: man parallel_design. This is also
a good intro if you intend to
 change GNU parallel.

OPTIONS
command

Command to execute. If command or the following arguments contain
 replacement
strings (such as {}) every instance will be substituted
 with the input.

If command is given, GNU parallel solve the same tasks as xargs. If command is
not given GNU parallel will behave
 similar to cat | sh.

The command must be an executable, a script, a composed command, an
 alias, or a

GNU Parallel

Page 2

function.

Bash functions: export -f the function first or use env_parallel.

Bash, Csh, or Tcsh aliases: Use env_parallel.

Zsh, Fish, Ksh, and Pdksh functions and aliases: Use env_parallel.

The command cannot contain the character \257 (macron: Â¯).

{}

Input line. This replacement string will be replaced by a full line
 read from the input
source. The input source is normally stdin
 (standard input), but can also be given
with -a, :::, or ::::.

The replacement string {} can be changed with -I.

If the command line contains no replacement strings then {} will be
 appended to the
command line.

Replacement strings are normally quoted, so special characters are not
 parsed by
the shell. The exception is if the command starts with a
 replacement string; then the
string is not quoted.

{.}

Input line without extension. This replacement string will be replaced
 by the input
with the extension removed. If the input line contains . after the last / the last . till the
end of the string will
 be removed and {.} will be replaced with the
 remaining. E.g.
foo.jpg becomes foo, subdir/foo.jpg becomes subdir/foo, sub.dir/foo.jpg becomes
sub.dir/foo, sub.dir/bar remains sub.dir/bar. If the input line does not
 contain . it will
remain unchanged.

The replacement string {.} can be changed with --er.

To understand replacement strings see {}.

{/}

Basename of input line. This replacement string will be replaced by
 the input with the
directory part removed.

The replacement string {/} can be changed with --basenamereplace.

To understand replacement strings see {}.

{//}

Dirname of input line. This replacement string will be replaced by the
 dir of the input
line. See dirname(1).

The replacement string {//} can be changed with --dirnamereplace.

To understand replacement strings see {}.

{/.}

Basename of input line without extension. This replacement string will
 be replaced
by the input with the directory and extension part
 removed. It is a combination of {/}
and {.}.

The replacement string {/.} can be changed with --basenameextensionreplace.

To understand replacement strings see {}.

{#}

Sequence number of the job to run. This replacement string will be
 replaced by the
sequence number of the job being run. It contains the
 same number as
$PARALLEL_SEQ.

The replacement string {#} can be changed with --seqreplace.

GNU Parallel

Page 3

To understand replacement strings see {}.

{%}

Job slot number. This replacement string will be replaced by the job's
 slot number
between 1 and number of jobs to run in parallel. There
 will never be 2 jobs running at
the same time with the same job slot
 number.

The replacement string {%} can be changed with --slotreplace.

To understand replacement strings see {}.

{n}

Argument from input source n or the n'th argument. This
 positional replacement
string will be replaced by the input from input
 source n (when used with -a or ::::) or
with the n'th
 argument (when used with -N). If n is negative it refers to the n'th last
argument.

To understand replacement strings see {}.

{n.}

Argument from input source n or the n'th argument without
 extension. It is a
combination of {n} and {.}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 extension removed.

To understand positional replacement strings see {n}.

{n/}

Basename of argument from input source n or the n'th argument.
 It is a combination
of {n} and {/}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 directory (if any) removed.

To understand positional replacement strings see {n}.

{n//}

Dirname of argument from input source n or the n'th argument.
 It is a combination of
{n} and {//}.

This positional replacement string will be replaced by the dir of the
 input from input
source n (when used with -a or ::::) or with
 the n'th argument (when used with -N).
See dirname(1).

To understand positional replacement strings see {n}.

{n/.}

Basename of argument from input source n or the n'th argument
 without extension. It
is a combination of {n}, {/}, and {.}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 directory (if any) and extension removed.

To understand positional replacement strings see {n}.

{=perl expression=}

Replace with calculated perl expression. $_ will contain the
 same as {}. After
evaluating perl expression $_ will be used
 as the value. It is recommended to only
change $_ but you have full
 access to all of GNU parallel's internal functions and
data
 structures. A few convenience functions and data structures have been
 made:

GNU Parallel

Page 4

 Q(string)

shell quote a string

 pQ(string)

perl quote a string

 total_jobs()

number of jobs in total

 slot()

slot number of job

 seq()

sequence number of job

 @arg

the arguments

Example:

 seq 10 | parallel echo {} + 1 is {= '$_++' =}
 parallel csh -c {= '$_="mkdir ".Q($_)' =} ::: '12" dir'
 seq 50 | parallel echo job {#} of {= '$_=total_jobs()' =}

See also: --rpl --parens

{=n perl expression=}

Positional equivalent to {=perl expression=}. To understand
 positional replacement
strings see {n}.

See also: {=perl expression=} {n}.

::: arguments

Use arguments from the command line as input source instead of stdin
 (standard
input). Unlike other options for GNU parallel ::: is
 placed after the command and
before the arguments.

The following are equivalent:

 (echo file1; echo file2) | parallel gzip
 parallel gzip ::: file1 file2
 parallel gzip {} ::: file1 file2
 parallel --arg-sep ,, gzip {} ,, file1 file2
 parallel --arg-sep ,, gzip ,, file1 file2
 parallel ::: "gzip file1" "gzip file2"

To avoid treating ::: as special use --arg-sep to set the
 argument separator to
something else. See also --arg-sep.

If multiple ::: are given, each group will be treated as an input
 source, and all
combinations of input sources will be
 generated. E.g. ::: 1 2 ::: a b c will result in the
combinations
 (1,a) (1,b) (1,c) (2,a) (2,b) (2,c). This is useful for replacing
 nested
for-loops.

::: and :::: can be mixed. So these are equivalent:

 parallel echo {1} {2} {3} ::: 6 7 ::: 4 5 ::: 1 2 3
 parallel echo {1} {2} {3} :::: <(seq 6 7) <(seq 4 5) \
 :::: <(seq 1 3)
 parallel -a <(seq 6 7) echo {1} {2} {3} :::: <(seq 4 5) \
 :::: <(seq 1 3)
 parallel -a <(seq 6 7) -a <(seq 4 5) echo {1} {2} {3} \

GNU Parallel

Page 5

 ::: 1 2 3
 seq 6 7 | parallel -a - -a <(seq 4 5) echo {1} {2} {3} \
 ::: 1 2 3
 seq 4 5 | parallel echo {1} {2} {3} :::: <(seq 6 7) - \
 ::: 1 2 3

:::+ arguments

Like ::: but linked like --link to the previous input source.

Contrary to --link, values do not wrap: The shortest input source
 determines the
length.

Example:

 parallel echo ::: a b c :::+ 1 2 3 ::: X Y :::+ 11 22

:::: argfiles

Another way to write -a argfile1 -a argfile2 ...

::: and :::: can be mixed.

See -a, ::: and --link.

::::+ argfiles

Like :::: but linked like --link to the previous input source.

Contrary to --link, values do not wrap: The shortest input source
 determines the
length.

--null

-0

Use NUL as delimiter. Normally input lines will end in \n
 (newline). If they end in \0
(NUL), then use this option. It is useful
 for processing arguments that may contain \n
(newline).

--arg-file input-file

-a input-file

Use input-file as input source. If you use this option, stdin
 (standard input) is given to
the first process run. Otherwise, stdin
 (standard input) is redirected from /dev/null.

If multiple -a are given, each input-file will be treated as an
 input source, and all
combinations of input sources will be
 generated. E.g. The file foo contains 1 2, the
file bar
 contains a b c. -a foo -a bar will result in the combinations
 (1,a) (1,b) (1,c)
(2,a) (2,b) (2,c). This is useful for replacing
 nested for-loops.

See also --link and {n}.

--arg-file-sep sep-str

Use sep-str instead of :::: as separator string between command
 and argument files.
Useful if :::: is used for something else by the
 command.

See also: ::::.

--arg-sep sep-str

Use sep-str instead of ::: as separator string. Useful if :::
 is used for something else
by the command.

Also useful if you command uses ::: but you still want to read
 arguments from stdin
(standard input): Simply change --arg-sep to a
 string that is not in the command line.

See also: :::.

--bar

GNU Parallel

Page 6

Show progress as a progress bar. In the bar is shown: % of jobs
 completed,
estimated seconds left, and number of jobs started.

It is compatible with zenity:

 seq 1000 | parallel -j30 --bar '(echo {};sleep 0.1)' \
 2> >(zenity --progress --auto-kill) | wc

--basefile file

--bf file

file will be transferred to each sshlogin before a jobs is
 started. It will be removed if
--cleanup is active. The file may be
 a script to run or some common base data
needed for the jobs.
 Multiple --bf can be specified to transfer more basefiles. The file
will be transferred the same way as --transferfile.

--basenamereplace replace-str

--bnr replace-str

Use the replacement string replace-str instead of {/} for
 basename of input line.

--basenameextensionreplace replace-str

--bner replace-str

Use the replacement string replace-str instead of {/.} for basename of input line
without extension.

--bg

Run command in background thus GNU parallel will not wait for
 completion of the
command before exiting. This is the default if --semaphore is set.

See also: --fg, man sem.

Implies --semaphore.

--bibtex

--citation

Print the BibTeX entry for GNU parallel and silence citation
 notice.

If it is impossible for you to run --bibtex you can use --will-cite.

If you use --will-cite in scripts to be run by others you are
 making it harder for others
to see the citation notice. The
 development of GNU parallel is indirectly financed
through
 citations, so if your users do not know they should cite then you are
 making
it harder to finance development. However, if you pay 10000
 EUR, you should feel
free to use --will-cite in scripts.

--block size

--block-size size

Size of block in bytes to read at a time. The size can be postfixed
 with K, M, G, T, P,
E, k, m, g, t, p, or e which would multiply the
 size with 1024, 1048576, 1073741824,
1099511627776, 1125899906842624,
 1152921504606846976, 1000, 1000000,
1000000000, 1000000000000,
 1000000000000000, or 1000000000000000000
respectively.

GNU parallel tries to meet the block size but can be off by the
 length of one record.
For performance reasons size should be bigger
 than a two records. GNU parallel
will warn you and automatically
 increase the size if you choose a size that is too
small.

If you use -N, --block-size should be bigger than N+1 records.

size defaults to 1M.

GNU Parallel

Page 7

When using --pipepart a negative block size is not interpreted as a
 blocksize but as
the number of blocks each jobslot should have. So
 this will run 10*5 = 50 jobs in
total:

 parallel --pipepart -a myfile --block -10 -j5 wc

This is an efficient alternative to --round-robin because data is
 never read by GNU
parallel, but you can still have very few
 jobslots process a large amount of data.

See --pipe and --pipepart for use of this.

--cat

Create a temporary file with content. Normally --pipe/--pipepart
 will give data to the
program on stdin (standard input). With --cat
 GNU parallel will create a temporary
file with the name in {}, so
 you can do: parallel --pipe --cat wc {}.

Implies --pipe unless --pipepart is used.

See also --fifo.

--cleanup

Remove transferred files. --cleanup will remove the transferred
 files on the remote
computer after processing is done.

 find log -name '*gz' | parallel \
 --sshlogin server.example.com --transferfile {} \
 --return {.}.bz2 --cleanup "zcat {} | bzip -9 >{.}.bz2"

With --transferfile {} the file transferred to the remote computer
 will be removed on
the remote computer. Directories created will not
 be removed - even if they are
empty.

With --return the file transferred from the remote computer will be
 removed on the
remote computer. Directories created will not be
 removed - even if they are empty.

--cleanup is ignored when not used with --transferfile or --return.

--colsep regexp

-C regexp

Column separator. The input will be treated as a table with regexp
 separating the
columns. The n'th column can be access using {n} or {n.}. E.g. {3} is the 3rd column.

--colsep implies --trim rl.

regexp is a Perl Regular Expression:
 http://perldoc.perl.org/perlre.html

--compress

Compress temporary files. If the output is big and very compressible
 this will take up
less disk space in $TMPDIR and possibly be faster
 due to less disk I/O.

GNU parallel will try pzstd, lbzip2, pbzip2, zstd, pigz, lz4, lzop, plzip, lzip, lrz,
gzip, pxz, lzma, bzip2, xz, clzip, in that order, and use the first
 available.

--compress-program prg

--decompress-program prg

Use prg for (de)compressing temporary files. It is assumed that prg
 -dc will
decompress stdin (standard input) to stdout (standard
 output) unless
--decompress-program is given.

--delimiter delim

-d delim

Input items are terminated by delim. Quotes and backslash are not
 special; every
character in the input is taken literally. Disables
 the end-of-file string, which is treated

GNU Parallel

Page 8

like any other argument. The
 specified delimiter may be characters, C-style
character escapes such
 as \n, or octal or hexadecimal escape codes. Octal and
hexadecimal
 escape codes are understood as for the printf command. Multibyte

characters are not supported.

--dirnamereplace replace-str

--dnr replace-str

Use the replacement string replace-str instead of {//} for
 dirname of input line.

-E eof-str

Set the end of file string to eof-str. If the end of file string
 occurs as a line of input, the
rest of the input is not read. If
 neither -E nor -e is used, no end of file string is used.

--delay secs

Delay starting next job secs seconds. GNU parallel will pause secs seconds after
starting each job. secs can be less than 1
 second.

--dry-run

Print the job to run on stdout (standard output), but do not run the
 job. Use -v -v to
include the wrapping that GNU Parallel generates
 (for remote jobs, --tmux, --nice,
--pipe, --pipepart, --fifo and --cat). Do not count on this literaly, though, as the
 job
may be scheduled on another computer or the local computer if : is
 in the list.

--eof[=eof-str]

-e[eof-str]

This option is a synonym for the -E option. Use -E instead,
 because it is POSIX
compliant for xargs while this option is not.
 If eof-str is omitted, there is no end of file
string. If neither -E nor -e is used, no end of file string is used.

--env var

Copy environment variable var. This will copy var to the
 environment that the
command is run in. This is especially useful for
 remote execution.

In Bash var can also be a Bash function - just remember to export
 -f the function,
see command.

The variable '_' is special. It will copy all exported environment
 variables except for
the ones mentioned in ~/.parallel/ignored_vars.

To copy the full environment (both exported and not exported
 variables, arrays, and
functions) use env_parallel.

See also: --record-env.

--eta

Show the estimated number of seconds before finishing. This forces GNU parallel to
read all jobs before starting to find the number of
 jobs. GNU parallel normally only
reads the next job to run.

The estimate is based on the runtime of finished jobs, so the first
 estimate will only
be shown when the first job has finished.

Implies --progress.

See also: --bar, --progress.

--fg

Run command in foreground.

With --tmux and --tmuxpane GNU parallel will start tmux in
 the foreground.

With --semaphore GNU parallel will run the command in the
 foreground (opposite

GNU Parallel

Page 9

--bg), and wait for completion of the command
 before exiting.

See also --bg, man sem.

--fifo

Create a temporary fifo with content. Normally --pipe and --pipepart will give data to
the program on stdin (standard
 input). With --fifo GNU parallel will create a
temporary fifo
 with the name in {}, so you can do: parallel --pipe --fifo wc {}.

Beware: If data is not read from the fifo, the job will block forever.

Implies --pipe unless --pipepart is used.

See also --cat.

--filter-hosts

Remove down hosts. For each remote host: check that login through ssh
 works. If
not: do not use this host.

For performance reasons, this check is performed only at the start and
 every time
--sshloginfile is changed. If an host goes down after
 the first check, it will go
undetected until --sshloginfile is
 changed; --retries can be used to mitigate this.

Currently you can not put --filter-hosts in a profile,
 $PARALLEL, /etc/parallel/config
or similar. This is because GNU parallel uses GNU parallel to compute this, so you
will get an
 infinite loop. This will likely be fixed in a later release.

--gnu

Behave like GNU parallel. This option historically took precedence
 over --tollef. The
--tollef option is now retired, and therefore
 may not be used. --gnu is kept for
compatibility.

--group

Group output. Output from each jobs is grouped together and is only
 printed when
the command is finished. stdout (standard output) first
 followed by stderr (standard
error).

This takes in the order of 0.5ms per job and depends on the speed of
 your disk for
larger output. It can be disabled with -u, but this
 means output from different
commands can get mixed.

--group is the default. Can be reversed with -u.

See also: --line-buffer --ungroup

--help

-h

Print a summary of the options to GNU parallel and exit.

--halt-on-error val

--halt val

When should GNU parallel terminate? In some situations it makes no
 sense to run
all jobs. GNU parallel should simply give up as soon
 as a condition is met.

val defaults to never, which runs all jobs no matter what.

val can also take on the form of when,why.

when can be 'now' which means kill all running jobs and halt
 immediately, or it can
be 'soon' which means wait for all running jobs
 to complete, but start no new jobs.

why can be 'fail=X', 'fail=Y%', 'success=X', 'success=Y%',
 'done=X', or 'done=Y%'
where X is the number of jobs that has to fail,
 succeed, or be done before halting,
and Y is the percentage of jobs
 that has to fail, succeed, or be done before halting.

Example:

GNU Parallel

Page 10

 --halt now,fail=1

exit when the first job fails. Kill running
jobs.

 --halt soon,fail=3

exit when 3 jobs fail, but wait for running
jobs to complete.

 --halt soon,fail=3%

exit when 3% of the jobs have failed, but
wait for running jobs to complete.

 --halt now,success=1

exit when a job succeeds. Kill running
jobs.

 --halt soon,success=3

exit when 3 jobs succeeds, but wait for
running jobs to complete.

 --halt now,success=3%

exit when 3% of the jobs have
succeeded. Kill running jobs.

 --halt now,done=1

exit when one of the jobs finishes. Kill
running jobs.

 --halt soon,done=3

exit when 3 jobs finishes, but wait for
running jobs to complete.

 --halt now,done=3%

exit when 3% of the jobs have finished.
Kill running jobs.

For backwards compability these also work:

0 never

1 soon,fail=1

2 now,fail=1

-1

soon,success=1

-2

now,success=1

1-99%

soon,fail=1-99%

--header regexp

Use regexp as header. For normal usage the matched header (typically
 the first line:
--header '.*\n') will be split using --colsep
 (which will default to '\t') and column
names can be used as
 replacement variables: {column name}, {column name/},
{column
 name//}, {column name/.}, {column name.}, {=column name perl

GNU Parallel

Page 11

expression =}, ..

For --pipe the matched header will be prepended to each output.

--header : is an alias for --header '.*\n'.

If regexp is a number, it is a fixed number of lines.

--hostgroups

--hgrp

Enable hostgroups on arguments. If an argument contains '@' the string
 after '@' will
be removed and treated as a list of hostgroups on which
 this job is allowed to run. If
there is no --sshlogin with a
 corresponding group, the job will run on any hostgroup.

Example:

 parallel --hostgroups \
 --sshlogin @grp1/myserver1 -S @grp1+grp2/myserver2 \
 --sshlogin @grp3/myserver3 \
 echo ::: my_grp1_arg@grp1 arg_for_grp2@grp2
third@grp1+grp3

my_grp1_arg may be run on either myserver1 or myserver2, third may be run on
either myserver1 or myserver3,
 but arg_for_grp2 will only be run on myserver2.

See also: --sshlogin.

-I replace-str

Use the replacement string replace-str instead of {}.

--replace[=replace-str]

-i[replace-str]

This option is a synonym for -Ireplace-str if replace-str is
 specified, and for -I {}
otherwise. This option is deprecated;
 use -I instead.

--joblog logfile

Logfile for executed jobs. Save a list of the executed jobs to logfile in the following
TAB separated format: sequence number,
 sshlogin, start time as seconds since
epoch, run time in seconds,
 bytes in files transferred, bytes in files returned, exit
status,
 signal, and command run.

For --pipe bytes transferred and bytes returned are number of input
 and output of
bytes.

If logfile is prepended with '+' log lines will be appended to the
 logfile.

To convert the times into ISO-8601 strict do:

 cat logfile | perl -a -F"\t" -ne \
 'chomp($F[2]=`date -d \@$F[2] +%FT%T`); print
join("\t",@F)'

If the host is long, you can use column -t to pretty print it:

 cat joblog | column -t

See also --resume --resume-failed.

--jobs N

-j N

--max-procs N

-P N

Number of jobslots on each machine. Run up to N jobs in parallel. 0
 means as many

GNU Parallel

Page 12

as possible. Default is 100% which will run one job per
 CPU core on each machine.

If --semaphore is set, the default is 1 thus making a mutex.

--jobs +N

-j +N

--max-procs +N

-P +N

Add N to the number of CPU cores. Run this many jobs in parallel.
 See also
--use-cpus-instead-of-cores.

--jobs -N

-j -N

--max-procs -N

-P -N

Subtract N from the number of CPU cores. Run this many jobs in parallel.
 If the
evaluated number is less than 1 then 1 will be used. See also
--use-cpus-instead-of-cores.

--jobs N%

-j N%

--max-procs N%

-P N%

Multiply N% with the number of CPU cores. Run this many jobs in
 parallel. See also
--use-cpus-instead-of-cores.

--jobs procfile

-j procfile

--max-procs procfile

-P procfile

Read parameter from file. Use the content of procfile as parameter
 for -j. E.g. procfile
could contain the string 100% or +2 or
 10. If procfile is changed when a job
completes, procfile is
 read again and the new number of jobs is computed. If the
number is
 lower than before, running jobs will be allowed to finish but new jobs
 will
not be started until the wanted number of jobs has been reached.
 This makes it
possible to change the number of simultaneous running
 jobs while GNU parallel is
running.

--keep-order

-k

Keep sequence of output same as the order of input. Normally the
 output of a job will
be printed as soon as the job completes. Try this
 to see the difference:

 parallel -j4 sleep {}\; echo {} ::: 2 1 4 3
 parallel -j4 -k sleep {}\; echo {} ::: 2 1 4 3

If used with --onall or --nonall the output will grouped by
 sshlogin in sorted order.

If used with --pipe --roundrobin and the same input, the jobslots
 will get the same
blocks in the same order in every run.

-L max-lines

When used with --pipe: Read records of max-lines.

When used otherwise: Use at most max-lines nonblank input lines per
 command

GNU Parallel

Page 13

line. Trailing blanks cause an input line to be logically
 continued on the next input
line.

-L 0 means read one line, but insert 0 arguments on the command
 line.

Implies -X unless -m, --xargs, or --pipe is set.

--max-lines[=max-lines]

-l[max-lines]

When used with --pipe: Read records of max-lines.

When used otherwise: Synonym for the -L option. Unlike -L, the max-lines argument
is optional. If max-lines is not specified,
 it defaults to one. The -l option is deprecated
since the POSIX
 standard specifies -L instead.

-l 0 is an alias for -l 1.

Implies -X unless -m, --xargs, or --pipe is set.

--line-buffer

--lb

Buffer output on line basis. --group will keep the output together
 for a whole job.
--ungroup allows output to mixup with half a line
 coming from one job and half a line
coming from another
 job. --line-buffer fits between these two: GNU parallel will
 print
a full line, but will allow for mixing lines of different jobs.

--line-buffer takes more CPU power than than both --group and --ungroup, but can
be faster than --group if the CPU is not the
 limiting factor.

See also: --group --ungroup

--xapply

--link

Link input sources. Read multiple input sources like xapply. If
 multiple input sources
are given, one argument will be read from each
 of the input sources. The arguments
can be accessed in the command as {1} .. {n}, so {1} will be a line from the first input
source, and {6} will refer to the line with the same line number
 from the 6th input
source.

Compare these two:

 parallel echo {1} {2} ::: 1 2 3 ::: a b c
 parallel --link echo {1} {2} ::: 1 2 3 ::: a b c

Arguments will be recycled if one input source has more arguments than the others:

 parallel --link echo {1} {2} {3} \
 ::: 1 2 ::: I II III ::: a b c d e f g

See also --header, :::+, ::::+.

--load max-load

Do not start new jobs on a given computer unless the number of running
 processes
on the computer is less than max-load. max-load uses
 the same syntax as --jobs, so
100% for one per CPU is a valid
 setting. Only difference is 0 which is interpreted as
0.01.

--controlmaster

-M

Use ssh's ControlMaster to make ssh connections faster. Useful if jobs
 run remote
and are very fast to run. This is disabled for sshlogins
 that specify their own ssh
command.

GNU Parallel

Page 14

--xargs

Multiple arguments. Insert as many arguments as the command line
 length permits.

If {} is not used the arguments will be appended to the
 line. If {} is used multiple
times each {} will be replaced
 with all the arguments.

Support for --xargs with --sshlogin is limited and may fail.

See also -X for context replace. If in doubt use -X as that will
 most likely do what is
needed.

-m

Multiple arguments. Insert as many arguments as the command line
 length permits.
If multiple jobs are being run in parallel: distribute
 the arguments evenly among the
jobs. Use -j1 or --xargs to avoid this.

If {} is not used the arguments will be appended to the
 line. If {} is used multiple
times each {} will be replaced
 with all the arguments.

Support for -m with --sshlogin is limited and may fail.

See also -X for context replace. If in doubt use -X as that will
 most likely do what is
needed.

--memfree size

Minimum memory free when starting another job. The size can be
 postfixed with K,
M, G, T, P, k, m, g, t, or p which would multiply
 the size with 1024, 1048576,
1073741824, 1099511627776,
 1125899906842624, 1000, 1000000, 1000000000,
1000000000000, or
 1000000000000000, respectively.

If the jobs take up very different amount of RAM, GNU parallel will
 only start as
many as there is memory for. If less than size bytes
 are free, no more jobs will be
started. If less than 50% size bytes
 are free, the youngest job will be killed, and put
back on the queue
 to be run later.

--retries must be set to determine how many times GNU parallel
 should retry a
given job.

--minversion version

Print the version GNU parallel and exit. If the current version of
 GNU parallel is less
than version the exit code is
 255. Otherwise it is 0.

This is useful for scripts that depend on features only available from
 a certain version
of GNU parallel.

--nonall

--onall with no arguments. Run the command on all computers given
 with --sshlogin
but take no arguments. GNU parallel will log
 into --jobs number of computers in
parallel and run the job on the
 computer. -j adjusts how many computers to log into
in parallel.

This is useful for running the same command (e.g. uptime) on a list of
 servers.

--onall

Run all the jobs on all computers given with --sshlogin. GNU parallel will log into
--jobs number of computers in parallel
 and run one job at a time on the computer.
The order of the jobs will
 not be changed, but some computers may finish before
others.

When using --group the output will be grouped by each server, so
 all the output from
one server will be grouped together.

--joblog will contain an entry for each job on each server, so
 there will be several job
sequence 1.

GNU Parallel

Page 15

--output-as-files

--outputasfiles

--files

Instead of printing the output to stdout (standard output) the output
 of each job is
saved in a file and the filename is then printed.

See also: --results

--pipe

--spreadstdin

Spread input to jobs on stdin (standard input). Read a block of data
 from stdin
(standard input) and give one block of data as input to one
 job.

The block size is determined by --block. The strings --recstart
 and --recend tell
GNU parallel how a record starts and/or
 ends. The block read will have the final
partial record removed before
 the block is passed on to the job. The partial record
will be
 prepended to next block.

If --recstart is given this will be used to split at record start.

If --recend is given this will be used to split at record end.

If both --recstart and --recend are given both will have to
 match to find a split
position.

If neither --recstart nor --recend are given --recend
 defaults to '\n'. To have no
record separator use --recend "".

--files is often used with --pipe.

--pipe maxes out at around 1 GB/s input, and 100 MB/s output. If
 performance is
important use --pipepart.

See also: --recstart, --recend, --fifo, --cat, --pipepart, --files.

--pipepart

Pipe parts of a physical file. --pipepart works similar to --pipe, but is much faster.

--pipepart has a few limitations:

The file must be a normal file or a block device (technically it must
 be
seekable) and must be given using -a or ::::. The file cannot
 be a pipe or a fifo
as they are not seekable.

If using a block device with lot of NUL bytes, remember to set --recend ''.

Record counting (-N) and line counting (-L/-l) do not work.

--plain

Ignore any --profile, $PARALLEL, and ~/.parallel/config to get full
 control on the
command line (used by GNU parallel internally when
 called with --sshlogin).

--plus (alpha testing)

Activate additional replacement strings: {+/} {+.} {+..} {+...} {..}
 {...} {/..} {/...} {##}. The
idea being that '{+foo}' matches the opposite of
 '{foo}' and {} = {+/}/{/} = {.}.{+.} =
{+/}/{/.}.{+.} = {..}.{+..} =
 {+/}/{/..}.{+..} = {...}.{+...} = {+/}/{/...}.{+...}

{##} is the number of jobs to be run. It is incompatible with -X/-m/--xargs.

The following dynamic replacement strings are also activated. They are
 inspired by
bash's parameter expansion:

 {:-str} str if the value is empty
 {:num} remove the first num characters
 {:num1:num2} characters from num1 to num2
 {#str} remove prefix str

GNU Parallel

Page 16

 {%str} remove postfix str
 {/str1/str2} replace str1 with str2
 {^str} uppercase str if found at the start
 {^^str} uppercase str
 {,str} lowercase str if found at the start
 {,,str} lowercase str

--progress

Show progress of computations. List the computers involved in the task
 with number
of CPU cores detected and the max number of jobs to
 run. After that show progress
for each computer: number of running
 jobs, number of completed jobs, and
percentage of all jobs done by
 this computer. The percentage will only be available
after all jobs
 have been scheduled as GNU parallel only read the next job when

ready to schedule it - this is to avoid wasting time and memory by
 reading everything
at startup.

By sending GNU parallel SIGUSR2 you can toggle turning on/off --progress on a
running GNU parallel process.

See also --eta and --bar.

--max-args=max-args

-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the -s option)
 is exceeded, unless the -x
option is given, in which case
 GNU parallel will exit.

-n 0 means read one argument, but insert 0 arguments on the command
 line.

Implies -X unless -m is set.

--max-replace-args=max-args

-N max-args

Use at most max-args arguments per command line. Like -n but
 also makes
replacement strings {1} .. {max-args} that
 represents argument 1 .. max-args. If too
few args the {n} will
 be empty.

-N 0 means read one argument, but insert 0 arguments on the command
 line.

This will set the owner of the homedir to the user:

 tr ':' '\n' < /etc/passwd | parallel -N7 chown {1} {6}

Implies -X unless -m or --pipe is set.

When used with --pipe -N is the number of records to read. This
 is somewhat slower
than --block.

--max-line-length-allowed

Print the maximal number of characters allowed on the command line and
 exit (used
by GNU parallel itself to determine the line length
 on remote computers).

--number-of-cpus

Print the number of physical CPUs and exit (used by GNU parallel
 itself to
determine the number of physical CPUs on remote computers).

--number-of-cores

Print the number of CPU cores and exit (used by GNU parallel itself
 to determine
the number of CPU cores on remote computers).

--no-keep-order

GNU Parallel

Page 17

Overrides an earlier --keep-order (e.g. if set in ~/.parallel/config).

--nice niceness

Run the command at this niceness. For simple commands you can just add nice in
front of the command. But if the command consists of more
 sub commands (Like:
ls|wc) then prepending nice will not always
 work. --nice will make sure all sub
commands are niced - even on
 remote servers.

--interactive

-p

Prompt the user about whether to run each command line and read a line
 from the
terminal. Only run the command line if the response starts
 with 'y' or 'Y'. Implies -t.

--parens parensstring

Define start and end parenthesis for {= perl expression =}. The
 left and the right
parenthesis can be multiple characters and are
 assumed to be the same length. The
default is {==} giving {= as
 the start parenthesis and =} as the end parenthesis.

Another useful setting is ,,,, which would make both parenthesis ,,:

 parallel --parens ,,,, echo foo is ,,s/I/O/g,, ::: FII

See also: --rpl {= perl expression =}

--profile profilename

-J profilename

Use profile profilename for options. This is useful if you want to
 have multiple
profiles. You could have one profile for running jobs in
 parallel on the local computer
and a different profile for running jobs
 on remote computers. See the section
PROFILE FILES for examples.

profilename corresponds to the file ~/.parallel/profilename.

You can give multiple profiles by repeating --profile. If parts of
 the profiles conflict,
the later ones will be used.

Default: config

--quote

-q

Quote command. This will quote the command line so special
 characters are not
interpreted by the shell. See the section
 QUOTING. Most people will never need this.
Quoting is disabled by
 default.

--no-run-if-empty

-r

If the stdin (standard input) only contains whitespace, do not run the command.

If used with --pipe this is slow.

--noswap

Do not start new jobs on a given computer if there is both swap-in and
 swap-out
activity.

The swap activity is only sampled every 10 seconds as the sampling
 takes 1 second
to do.

Swap activity is computed as (swap-in)*(swap-out) which in practice is
 a good value:
swapping out is not a problem, swapping in is not a
 problem, but both swapping in
and out usually indicates a problem.

--memfree may give better results, so try using that first.

GNU Parallel

Page 18

--record-env

Record current environment variables in ~/.parallel/ignored_vars. This
 is useful
before using --env _.

See also --env.

--recstart startstring

--recend endstring

If --recstart is given startstring will be used to split at record start.

If --recend is given endstring will be used to split at record end.

If both --recstart and --recend are given the combined string endstringstartstring will
have to match to find a split
 position. This is useful if either startstring or endstring

match in the middle of a record.

If neither --recstart nor --recend are given then --recend
 defaults to '\n'. To have no
record separator use --recend "".

--recstart and --recend are used with --pipe.

Use --regexp to interpret --recstart and --recend as regular
 expressions. This is
slow, however.

--regexp

Use --regexp to interpret --recstart and --recend as regular
 expressions. This is
slow, however.

--remove-rec-sep

--removerecsep

--rrs

Remove the text matched by --recstart and --recend before piping
 it to the
command.

Only used with --pipe.

--results name

--res name

Save the output into files.

Simple string output dir

If name does not contain replacement strings and does not end in .csv/.tsv, the
output will be stored in a directory tree rooted at name. Within this directory tree,
each command will result in
 three files: name/<ARGS>/stdout and name
/<ARGS>/stderr, name/<ARGS>/seq, where <ARGS> is a sequence of directories

representing the header of the input source (if using --header :)
 or the number of the
input source and corresponding values.

E.g:

 parallel --header : --results foo echo {a} {b} \
 ::: a I II ::: b III IIII

will generate the files:

 foo/a/II/b/III/seq
 foo/a/II/b/III/stderr
 foo/a/II/b/III/stdout
 foo/a/II/b/IIII/seq
 foo/a/II/b/IIII/stderr
 foo/a/II/b/IIII/stdout
 foo/a/I/b/III/seq

GNU Parallel

Page 19

 foo/a/I/b/III/stderr
 foo/a/I/b/III/stdout
 foo/a/I/b/IIII/seq
 foo/a/I/b/IIII/stderr
 foo/a/I/b/IIII/stdout

and

 parallel --results foo echo {1} {2} ::: I II ::: III IIII

will generate the files:

 foo/1/II/2/III/seq
 foo/1/II/2/III/stderr
 foo/1/II/2/III/stdout
 foo/1/II/2/IIII/seq
 foo/1/II/2/IIII/stderr
 foo/1/II/2/IIII/stdout
 foo/1/I/2/III/seq
 foo/1/I/2/III/stderr
 foo/1/I/2/III/stdout
 foo/1/I/2/IIII/seq
 foo/1/I/2/IIII/stderr
 foo/1/I/2/IIII/stdout

CSV file output

If name ends in .csv/.tsv the output will be a CSV-file
 named name.

.csv gives a comma separated value file. .tsv gives a TAB
 separated value file.

-.csv/-.tsv are special: It will give the file on stdout
 (standard output).

Replacement string output file

If name contains a replacement string and the replaced result does
 not end in /, then
the standard output will be stored in a file named
 by this result. Standard error will be
stored in the same file name
 with '.err' added, and the sequence number will be
stored in the same
 file name with '.seq' added.

E.g.

 parallel --results my_{} echo ::: foo bar baz

will generate the files:

 my_bar
 my_bar.err
 my_bar.seq
 my_baz
 my_baz.err
 my_baz.seq
 my_foo
 my_foo.err
 my_foo.seq

Replacement string output dir

If name contains a replacement string and the replaced result ends
 in /, then output
files will be stored in the resulting dir.

E.g.

 parallel --results my_{}/ echo ::: foo bar baz

will generate the files:

GNU Parallel

Page 20

 my_bar/seq
 my_bar/stderr
 my_bar/stdout
 my_baz/seq
 my_baz/stderr
 my_baz/stdout
 my_foo/seq
 my_foo/stderr
 my_foo/stdout

See also --files, --tag, --header, --joblog.

--resume

Resumes from the last unfinished job. By reading --joblog or the --results dir GNU
parallel will figure out the last unfinished
 job and continue from there. As GNU
parallel only looks at the
 sequence numbers in --joblog then the input, the
command, and --joblog all have to remain unchanged; otherwise GNU parallel
 may
run wrong commands.

See also --joblog, --results, --resume-failed, --retries.

--resume-failed

Retry all failed and resume from the last unfinished job. By reading --joblog GNU
parallel will figure out the failed jobs and run
 those again. After that it will resume
last unfinished job and
 continue from there. As GNU parallel only looks at the
sequence
 numbers in --joblog then the input, the command, and --joblog
 all have to
remain unchanged; otherwise GNU parallel may run wrong
 commands.

See also --joblog, --resume, --retry-failed, --retries.

--retry-failed

Retry all failed jobs in joblog. By reading --joblog GNU parallel will figure out the
failed jobs and run those again.

--retry-failed ignores the command and arguments on the command
 line: It only
looks at the joblog.

Differences between --resume, --resume-failed, --retry-failed

In this example exit {= $_%=2 =} will cause every other job to fail.

 timeout -k 1 4 parallel --joblog log -j10 \
 'sleep {}; exit {= $_%=2 =}' ::: {10..1}

4 jobs completed. 2 failed:

 Seq	 [...]	 Exitval	 Signal	 Command
 10	 [...]	 1	 0	 sleep 1; exit 1
 9	 [...]	 0	 0	 sleep 2; exit 0
 8	 [...]	 1	 0	 sleep 3; exit 1
 7	 [...]	 0	 0	 sleep 4; exit 0

--resume does not care about the Exitval, but only looks at Seq. If
 the Seq is run, it
will not be run again. So if needed, you can change
 the command for the seqs not
run yet:

 parallel --resume --joblog log -j10 \
 'sleep .{}; exit {= $_%=2 =}' ::: {10..1}

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 1	 [...]	 0	 0	 sleep .10; exit 0

GNU Parallel

Page 21

 6	 [...]	 1	 0	 sleep .5; exit 1
 5	 [...]	 0	 0	 sleep .6; exit 0
 4	 [...]	 1	 0	 sleep .7; exit 1
 3	 [...]	 0	 0	 sleep .8; exit 0
 2	 [...]	 1	 0	 sleep .9; exit 1

--resume-failed cares about the Exitval, but also only looks at Seq
 to figure out
which commands to run. Again this means you can change
 the command, but not
the arguments. It will run the failed seqs and
 the seqs not yet run:

 parallel --resume-failed --joblog log -j10 \
 'echo {};sleep .{}; exit {= $_%=3 =}' ::: {10..1}

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 10	 [...]	 1	 0	 echo 1;sleep .1; exit 1
 8	 [...]	 0	 0	 echo 3;sleep .3; exit 0
 6	 [...]	 2	 0	 echo 5;sleep .5; exit 2
 4	 [...]	 1	 0	 echo 7;sleep .7; exit 1
 2	 [...]	 0	 0	 echo 9;sleep .9; exit 0

--retry-failed cares about the Exitval, but takes the command from
 the joblog. It
ignores any arguments or commands given on the command
 line:

 parallel --retry-failed --joblog log -j10 this part is
ignored

 Seq	 [...]	 Exitval	 Signal	 Command
 [... as above ...]
 10	 [...]	 1	 0	 echo 1;sleep .1; exit 1
 6	 [...]	 2	 0	 echo 5;sleep .5; exit 2
 4	 [...]	 1	 0	 echo 7;sleep .7; exit 1

See also --joblog, --resume, --resume-failed, --retries.

--retries n

If a job fails, retry it on another computer on which it has not
 failed. Do this n times. If
there are fewer than n computers in --sshlogin GNU parallel will re-use all the
computers. This is
 useful if some jobs fail for no apparent reason (such as network

failure).

--return filename

Transfer files from remote computers. --return is used with --sshlogin when the
arguments are files on the remote computers. When
 processing is done the file
filename will be transferred
 from the remote computer using rsync and will be put
relative to
 the default login dir. E.g.

 echo foo/bar.txt | parallel --return {.}.out \
 --sshlogin server.example.com touch {.}.out

This will transfer the file $HOME/foo/bar.out from the computer server.example.com
to the file foo/bar.out after running touch foo/bar.out on server.example.com.

 parallel -S server --trc out/./{}.out touch {}.out :::
in/file

This will transfer the file in/file.out from the computer server.example.com to the files
out/in/file.out after running touch in/file.out on server.

 echo /tmp/foo/bar.txt | parallel --return {.}.out \

GNU Parallel

Page 22

 --sshlogin server.example.com touch {.}.out

This will transfer the file /tmp/foo/bar.out from the computer server.example.com to
the file /tmp/foo/bar.out after running touch /tmp/foo/bar.out on
server.example.com.

Multiple files can be transferred by repeating the option multiple
 times:

 echo /tmp/foo/bar.txt | parallel \
 --sshlogin server.example.com \
 --return {.}.out --return {.}.out2 touch {.}.out {.}.out2

--return is often used with --transferfile and --cleanup.

--return is ignored when used with --sshlogin : or when not used
 with --sshlogin.

--round-robin

--round

Normally --pipe will give a single block to each instance of the
 command. With
--round-robin all blocks will at random be written to
 commands already running.
This is useful if the command takes a long
 time to initialize.

--keep-order will not work with --round-robin as it is
 impossible to track which input
block corresponds to which output.

--round-robin implies --pipe, except if --pipepart is given.

--rpl 'tag perl expression' (alpha testing)

Use tag as a replacement string for perl expression. This makes
 it possible to define
your own replacement strings. GNU parallel's
 7 replacement strings are
implemented as:

 --rpl '{} '
 --rpl '{#} 1 $_=$job->seq()'
 --rpl '{%} 1 $_=$job->slot()'
 --rpl '{/} s:.*/::'
 --rpl '{//} $Global::use{"File::Basename"} ||=
 eval "use File::Basename; 1;"; $_ = dirname($_);'
 --rpl '{/.} s:.*/::; s:\.[^/.]+$::;'
 --rpl '{.} s:\.[^/.]+$::'

The --plus replacement strings are implemented as:

 --rpl '{+/} s:/[^/]*$::'
 --rpl '{+.} s:.*\.::'
 --rpl '{+..} s:.*\.([^.]*\.):$1:'
 --rpl '{+...} s:.*\.([^.]*\.[^.]*\.):$1:'
 --rpl '{..} s:\.[^/.]+$::; s:\.[^/.]+$::'
 --rpl '{...} s:\.[^/.]+$::; s:\.[^/.]+$::; s:\.[^/.]+$::'
 --rpl '{/..} s:.*/::; s:\.[^/.]+$::; s:\.[^/.]+$::'
 --rpl '{/...}
s:.*/::;s:\.[^/.]+$::;s:\.[^/.]+$::;s:\.[^/.]+$::'
 --rpl '{##} $_=total_jobs()'
 --rpl '{:-(.+?)} $_ ||= $$1'
 --rpl '{:(\d+?)} substr($_,0,$$1) = ""'
 --rpl '{:(\d+?):(\d+?)} $_ = substr($_,$$1,$$2);'
 --rpl '{#([^#].*?)} s/^$$1//;'
 --rpl '{%(.+?)} s/$$1$//;'
 --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;'
 --rpl '{^(.+?)} s/^($$1)/uc($1)/e;'
 --rpl '{^^(.+?)} s/($$1)/uc($1)/eg;'

GNU Parallel

Page 23

 --rpl '{,(.+?)} s/^($$1)/lc($1)/e;'
 --rpl '{,,(.+?)} s/($$1)/lc($1)/eg;'

If the user defined replacement string starts with '{' it can also be
 used as a positional
replacement string (like {2.}).

It is recommended to only change $_ but you have full access to all
 of GNU parallel
's internal functions and data structures.

Here are a few examples:

 Is the job sequence even or odd?
 --rpl '{odd} $_ = seq() % 2 ? "odd" : "even"'
 Pad job sequence with leading zeros to get equal width
 --rpl '{0#} $f=1+int("".(log(total_jobs())/log(10)));
 $_=sprintf("%0${f}d",seq())'
 Job sequence counting from 0
 --rpl '{#0} $_ = seq() - 1'
 Job slot counting from 2
 --rpl '{%1} $_ = slot() + 1'
 Remove all extensions
 --rpl '{:} s:(\.[^/]+)*$::'

You can have dynamic replacement strings by including parenthesis in
 the
replacement string and adding a regular expression between the
 parenthesis. The
matching string will be inserted as $$1:

 parallel --rpl '{%(.*?)} s/$$1//' echo {%.tar.gz} :::
my.tar.gz
 parallel --rpl '{:%(.+?)} s:$$1(\.[^/]+)*$::' \
 echo {:%_file} ::: my_file.tar.gz
 parallel -n3 --rpl '{/:%(.*?)} s:.*/(.*)$$1(\.[^/]+)*$:$1:'
\
 echo job {#}: {2} {2.} {3/:%_1} ::: a/b.c c/d.e f/g_1.h.i

You can even use multiple matches:

 parallel --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;'
 echo {/replacethis/withthis} {/b/C} ::: a_replacethis_b

 parallel --rpl '{(.*?)/(.*?)} $_="$$2$_$$1"' \
 echo {swap/these} ::: -middle-

See also: {= perl expression =} --parens

--max-chars=max-chars

-s max-chars

Use at most max-chars characters per command line, including the
 command and
initial-arguments and the terminating nulls at the ends of
 the argument strings. The
largest allowed value is system-dependent,
 and is calculated as the argument length
limit for exec, less the size
 of your environment. The default value is the maximum.

Implies -X unless -m is set.

--show-limits

Display the limits on the command-line length which are imposed by the
 operating
system and the -s option. Pipe the input from /dev/null
 (and perhaps specify
--no-run-if-empty) if you don't want GNU parallel
 to do anything.

--semaphore

Work as a counting semaphore. --semaphore will cause GNU parallel to start

GNU Parallel

Page 24

command in the background. When the number of
 jobs given by --jobs is reached,
GNU parallel will wait for one of
 these to complete before starting another
command.

--semaphore implies --bg unless --fg is specified.

--semaphore implies --semaphorename `tty` unless --semaphorename is
specified.

Used with --fg, --wait, and --semaphorename.

The command sem is an alias for parallel --semaphore.

See also man sem.

--semaphorename name

--id name

Use name as the name of the semaphore. Default is the name of the
 controlling tty
(output from tty).

The default normally works as expected when used interactively, but
 when used in a
script name should be set. $$ or my_task_name
 are often a good value.

The semaphore is stored in ~/.parallel/semaphores/

Implies --semaphore.

See also man sem.

--semaphoretimeout secs

--st secs

If secs > 0: If the semaphore is not released within secs seconds, take it anyway.

If secs < 0: If the semaphore is not released within secs seconds, exit.

Implies --semaphore.

See also man sem.

--seqreplace replace-str

Use the replacement string replace-str instead of {#} for
 job sequence number.

--shebang

--hashbang

GNU parallel can be called as a shebang (#!) command as the first
 line of a script.
The content of the file will be treated as
 inputsource.

Like this:

 #!/usr/bin/parallel --shebang -r traceroute

 qubes-os.org
 debian.org
 freenetproject.org

--shebang must be set as the first option.

On FreeBSD env is needed:

 #!/usr/bin/env -S parallel --shebang -r traceroute

 qubes-os.org
 debian.org
 freenetproject.org

There are many limitations of shebang (#!) depending on your operating
 system. See
details on http://www.in-ulm.de/~mascheck/various/shebang/

GNU Parallel

Page 25

--shebang-wrap

GNU parallel can parallelize scripts by wrapping the shebang
 line. If the program
can be run like this:

 cat arguments | parallel the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap /original/parser
--options

E.g.

 #!/usr/bin/parallel --shebang-wrap /usr/bin/python

If the program can be run like this:

 cat data | parallel --pipe the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap --pipe /orig/parser
--opts

E.g.

 #!/usr/bin/parallel --shebang-wrap --pipe /usr/bin/perl -w

--shebang-wrap must be set as the first option.

--shellquote

Does not run the command but quotes it. Useful for making quoted
 composed
commands for GNU parallel.

--shuf

Shuffle jobs. When having multiple input sources it is hard to
 randomize jobs. --shuf
will generate all jobs, and shuffle them before
 running them. This is useful to get a
quick preview of the results
 before running the full batch.

--skip-first-line

Do not use the first line of input (used by GNU parallel itself
 when called with
--shebang).

--sql DBURL (obsolete)

Use --sqlmaster instead.

--sqlmaster DBURL

Submit jobs via SQL server. DBURL must point to a table, which will
 contain the
same information as --joblog, the values from the input
 sources (stored in columns
V1 .. Vn), and the output (stored in
 columns Stdout and Stderr).

If DBURL is prepended with '+' GNU parallel assumes the table is
 already made
with the correct columns and appends the jobs to it.

If DBURL is not prepended with '+' the table will be dropped and
 created with the
correct amount of V-columns unless

--sqlmaster does not run any jobs, but it creates the values for
 the jobs to be run.
One or more --sqlworker must be run to actually
 execute the jobs.

If --wait is set, GNU parallel will wait for the jobs to
 complete.

The format of a DBURL is:

 [sql:]vendor://[[user][:pwd]@][host][:port]/[db]/table

GNU Parallel

Page 26

E.g.

 sql:mysql://hr:hr@localhost:3306/hrdb/jobs
 mysql://scott:tiger@my.example.com/pardb/paralleljobs
 sql:oracle://scott:tiger@ora.example.com/xe/parjob
 postgresql://scott:tiger@pg.example.com/pgdb/parjob
 pg:///parjob
 sqlite3:///pardb/parjob

It can also be an alias from ~/.sql/aliases:

 :myalias mysql:///mydb/paralleljobs

--sqlandworker DBURL

Shorthand for: --sqlmaster DBURL --sqlworker DBURL.

--sqlworker DBURL

Execute jobs via SQL server. Read the input sources variables from the
 table
pointed to by DBURL. The command on the command line
 should be the same as
given by --sqlmaster.

If you have more than one --sqlworker jobs may be run more than
 once.

--ssh sshcommand

GNU parallel defaults to using ssh for remote access. This can
 be overridden with
--ssh. It can also be set on a per server
 basis (see --sshlogin).

--sshdelay secs

Delay starting next ssh by secs seconds. GNU parallel will pause secs seconds
after starting each ssh. secs can be less than 1
 seconds.

-S [@hostgroups/][ncores/]sshlogin[,[@hostgroups/][ncores/]sshlogin[,...]]

-S @hostgroup

--sshlogin [@hostgroups/][ncores/]sshlogin[,[@hostgroups/][ncores/]sshlogin[,...]]

--sshlogin @hostgroup

Distribute jobs to remote computers. The jobs will be run on a list of
 remote
computers.

If hostgroups is given, the sshlogin will be added to that
 hostgroup. Multiple
hostgroups are separated by '+'. The sshlogin
 will always be added to a hostgroup
named the same as sshlogin.

If only the @hostgroup is given, only the sshlogins in that
 hostgroup will be used.
Multiple @hostgroup can be given.

GNU parallel will determine the number of CPU cores on the remote
 computers and
run the number of jobs as specified by -j. If the
 number ncores is given GNU parallel
will use this number for
 number of CPU cores on the host. Normally ncores will not
be
 needed.

An sshlogin is of the form:

 [sshcommand [options]] [username@]hostname

The sshlogin must not require a password (ssh-agent, ssh-copy-id, and sshpass
may help with that).

The sshlogin ':' is special, it means 'no ssh' and will therefore run
 on the local
computer.

The sshlogin '..' is special, it read sshlogins from ~/.parallel/sshloginfile

The sshlogin '-' is special, too, it read sshlogins from stdin
 (standard input).

GNU Parallel

Page 27

To specify more sshlogins separate the sshlogins by comma, newline (in
 the same
string), or repeat the options multiple times.

For examples: see --sshloginfile.

The remote host must have GNU parallel installed.

--sshlogin is known to cause problems with -m and -X.

--sshlogin is often used with --transferfile, --return, --cleanup, and --trc.

--sshloginfile filename

--slf filename

File with sshlogins. The file consists of sshlogins on separate
 lines. Empty lines and
lines starting with '#' are ignored. Example:

 server.example.com
 username@server2.example.com
 8/my-8-core-server.example.com
 2/my_other_username@my-dualcore.example.net
 # This server has SSH running on port 2222
 ssh -p 2222 server.example.net
 4/ssh -p 2222 quadserver.example.net
 # Use a different ssh program
 myssh -p 2222 -l myusername hexacpu.example.net
 # Use a different ssh program with default number of cores
 //usr/local/bin/myssh -p 2222 -l myusername hexacpu
 # Use a different ssh program with 6 cores
 6//usr/local/bin/myssh -p 2222 -l myusername hexacpu
 # Assume 16 cores on the local computer
 16/:
 # Put server1 in hostgroup1
 @hostgroup1/server1
 # Put myusername@server2 in hostgroup1+hostgroup2
 @hostgroup1+hostgroup2/myusername@server2
 # Force 4 cores and put 'ssh -p 2222 server3' in hostgroup1
 @hostgroup1/4/ssh -p 2222 server3

When using a different ssh program the last argument must be the hostname.

Multiple --sshloginfile are allowed.

GNU parallel will first look for the file in current dir; if that
 fails it look for the file in
~/.parallel.

The sshloginfile '..' is special, it read sshlogins from
 ~/.parallel/sshloginfile

The sshloginfile '.' is special, it read sshlogins from
 /etc/parallel/sshloginfile

The sshloginfile '-' is special, too, it read sshlogins from stdin
 (standard input).

If the sshloginfile is changed it will be re-read when a job finishes
 though at most
once per second. This makes it possible to add and
 remove hosts while running.

This can be used to have a daemon that updates the sshloginfile to
 only contain
servers that are up:

 cp original.slf tmp2.slf
 while [1] ; do
 nice parallel --nonall -j0 -k --slf original.slf \
 --tag echo | perl 's/\t$//' > tmp.slf
 if diff tmp.slf tmp2.slf; then
 mv tmp.slf tmp2.slf
 fi
 sleep 10

GNU Parallel

Page 28

 done &
 parallel --slf tmp2.slf ...

--slotreplace replace-str

Use the replacement string replace-str instead of {%} for
 job slot number.

--silent

Silent. The job to be run will not be printed. This is the default.
 Can be reversed with
-v.

--tty

Open terminal tty. If GNU parallel is used for starting an
 interactive program then
this option may be needed. It will start only
 one job at a time (i.e. -j1), not buffer the
output (i.e. -u),
 and it will open a tty for the job. When the job is done, the next job

will get the tty.

You can of course override -j1 and -u.

--tag

Tag lines with arguments. Each output line will be prepended with the
 arguments
and TAB (\t). When combined with --onall or --nonall
 the lines will be prepended
with the sshlogin instead.

--tag is ignored when using -u.

--tagstring str

Tag lines with a string. Each output line will be prepended with str and TAB (\t). str
can contain replacement strings such as {}.

--tagstring is ignored when using -u, --onall, and --nonall.

--tee (alpha testing)

Pipe all data to all jobs. Used with --pipe/--pipepart and :::.

 seq 1000 | parallel --pipe --tee -v wc {} ::: -w -l -c

How many numbers in 1..1000 contain 0..9, and how many bytes do they
 fill:

 seq 1000 | parallel --pipe --tee --tag \
 'grep {1} | wc {2}' ::: {0..9} ::: -l -c

How many words contain a..z and how many bytes do they fill?

 parallel -a /usr/share/dict/words --pipepart --tee --tag \
 'grep {1} | wc {2}' ::: {a..z} ::: -l -c

--termseq sequence

Termination sequence. When a job is killed due to --timeout, --memfree, --halt, or
abnormal termination of GNU parallel, sequence determines how the job is killed.
The default is:

 TERM,200,TERM,100,TERM,50,KILL,25

which sends a TERM signal, waits 200 ms, sends another TERM signal,
 waits 100
ms, sends another TERM signal, waits 50 ms, sends a KILL
 signal, waits 25 ms, and
exits. GNU parallel detects if a process
 dies before the waiting time is up.

--tmpdir dirname

Directory for temporary files. GNU parallel normally buffers output
 into temporary
files in /tmp. By setting --tmpdir you can use a
 different dir for the files. Setting

GNU Parallel

Page 29

--tmpdir is equivalent to
 setting $TMPDIR.

--tmux

Use tmux for output. Start a tmux session and run each job in a
 window in that
session. No other output will be produced.

--tmuxpane

Use tmux for output but put output into panes in the first window.
 Useful if you want
to monitor the progress of less than 100 concurrent
 jobs.

--timeout secs

Time out for command. If the command runs for longer than secs
 seconds it will get
killed as per --termseq.

If secs is followed by a % then the timeout will dynamically be
 computed as a
percentage of the median average runtime of successful
 jobs. Only values > 100%
will make sense.

--verbose

-t

Print the job to be run on stderr (standard error).

See also -v, -p.

--transfer

Transfer files to remote computers. Shorthand for: --transferfile {}.

--transferfile filename

--tf filename

--transferfile is used with --sshlogin to transfer files to the
 remote computers. The
files will be transferred using rsync and
 will be put relative to the default work dir. If
the path contains /./
 the remaining path will be relative to the work dir. E.g.

 echo foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc

This will transfer the file foo/bar.txt to the computer server.example.com to the file
$HOME/foo/bar.txt before running wc foo/bar.txt on server.example.com.

 echo /tmp/foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc

This will transfer the file /tmp/foo/bar.txt to the computer server.example.com to the
file /tmp/foo/bar.txt before running wc /tmp/foo/bar.txt on server.example.com.

 echo /tmp/./foo/bar.txt | parallel --transferfile {} \
 --sshlogin server.example.com wc {= s:.*/./:./: =}

This will transfer the file /tmp/foo/bar.txt to the computer server.example.com to the
file foo/bar.txt before running wc ./foo/bar.txt on server.example.com.

--transferfile is often used with --return and --cleanup. A
 shorthand for
--transferfile {} is --transfer.

--transferfile is ignored when used with --sshlogin : or when
 not used with
--sshlogin.

--trc filename

Transfer, Return, Cleanup. Shorthand for:

--transferfile {} --return filename --cleanup

GNU Parallel

Page 30

--trim <n|l|r|lr|rl>

Trim white space in input.

n

No trim. Input is not modified. This is the default.

l

Left trim. Remove white space from start of input. E.g. " a bc " -> "a bc ".

r

Right trim. Remove white space from end of input. E.g. " a bc " -> " a bc".

lr

rl

Both trim. Remove white space from both start and end of input. E.g. "
 a bc "
-> "a bc". This is the default if --colsep is used.

--ungroup

-u

Ungroup output. Output is printed as soon as possible and by passes
 GNU parallel
internal processing. This may cause output from
 different commands to be mixed
thus should only be used if you do not
 care about the output. Compare these:

 seq 4 | parallel -j0 \
 'sleep {};echo -n start{};sleep {};echo {}end'
 seq 4 | parallel -u -j0 \
 'sleep {};echo -n start{};sleep {};echo {}end'

It also disables --tag. GNU parallel outputs faster with -u. Compare the speed of
these:

 parallel seq ::: 300000000 >/dev/null
 parallel -u seq ::: 300000000 >/dev/null
 parallel --line-buffer seq ::: 300000000 >/dev/null

Can be reversed with --group.

See also: --line-buffer --group

--extensionreplace replace-str

--er replace-str

Use the replacement string replace-str instead of {.} for input
 line without extension.

--use-cpus-instead-of-cores

Count the number of physical CPUs instead of CPU cores. When computing
 how
many jobs to run simultaneously relative to the number of CPU cores
 you can ask
GNU parallel to instead look at the number of physical
 CPUs. This will make sense
for computers that have hyperthreading as
 two jobs running on one CPU with
hyperthreading will run slower than
 two jobs running on two physical CPUs. Some
multi-core CPUs can run
 faster if only one thread is running per physical CPU. Most
users will
 not need this option.

-v

Verbose. Print the job to be run on stdout (standard output). Can be reversed
 with
--silent. See also -t.

Use -v -v to print the wrapping ssh command when running remotely.

--version

GNU Parallel

Page 31

-V

Print the version GNU parallel and exit.

--workdir mydir

--wd mydir

Files transferred using --transferfile and --return will be
 relative to mydir on remote
computers, and the command will be
 executed in the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp/ on the
remote computers. If --cleanup is given
 these dirs will be removed.

The special mydir value . uses the current working dir. If the
 current working dir is
beneath your home dir, the value . is
 treated as the relative path to your home dir.
This means that if your
 home dir is different on remote computers (e.g. if your login is
different) the relative path will still be relative to your home dir.

To see the difference try:

 parallel -S server pwd ::: ""
 parallel --wd . -S server pwd ::: ""
 parallel --wd ... -S server pwd ::: ""

mydir can contain GNU parallel's replacement strings.

--wait

Wait for all commands to complete.

Used with --semaphore or --sqlmaster.

See also man sem.

-X

Multiple arguments with context replace. Insert as many arguments as
 the command
line length permits. If multiple jobs are being run in
 parallel: distribute the arguments
evenly among the jobs. Use -j1
 to avoid this.

If {} is not used the arguments will be appended to the line. If {} is used as part of a
word (like pic{}.jpg) then the whole
 word will be repeated. If {} is used multiple times
each {} will
 be replaced with the arguments.

Normally -X will do the right thing, whereas -m can give
 unexpected results if {} is
used as part of a word.

Support for -X with --sshlogin is limited and may fail.

See also -m.

--exit

-x

Exit if the size (see the -s option) is exceeded.

EXAMPLE: Working as xargs -n1. Argument appending
GNU parallel can work similar to xargs -n1.

To compress all html files using gzip run:

 find . -name '*.html' | parallel gzip --best

If the file names may contain a newline use -0. Substitute FOO BAR with
 FUBAR in all files in this dir
and subdirs:

 find . -type f -print0 | parallel -q0 perl -i -pe 's/FOO BAR/FUBAR/g'

GNU Parallel

Page 32

Note -q is needed because of the space in 'FOO BAR'.

EXAMPLE: Reading arguments from command line
GNU parallel can take the arguments from command line instead of
 stdin (standard input). To
compress all html files in the current dir
 using gzip run:

 parallel gzip --best ::: *.html

To convert *.wav to *.mp3 using LAME running one process per CPU core
 run:

 parallel lame {} -o {.}.mp3 ::: *.wav

EXAMPLE: Inserting multiple arguments
When moving a lot of files like this: mv *.log destdir you will
 sometimes get the error:

 bash: /bin/mv: Argument list too long

because there are too many files. You can instead do:

 ls | grep -E '\.log$' | parallel mv {} destdir

This will run mv for each file. It can be done faster if mv gets
 as many arguments that will fit on the
line:

 ls | grep -E '\.log$' | parallel -m mv {} destdir

EXAMPLE: Context replace
To remove the files pict0000.jpg .. pict9999.jpg you could do:

 seq -w 0 9999 | parallel rm pict{}.jpg

You could also do:

 seq -w 0 9999 | perl -pe 's/(.*)/pict$1.jpg/' | parallel -m rm

The first will run rm 10000 times, while the last will only run rm as many times needed to keep the
command line length short
 enough to avoid Argument list too long (it typically runs 1-2 times).

You could also run:

 seq -w 0 9999 | parallel -X rm pict{}.jpg

This will also only run rm as many times needed to keep the command
 line length short enough.

EXAMPLE: Compute intensive jobs and substitution
If ImageMagick is installed this will generate a thumbnail of a jpg
 file:

 convert -geometry 120 foo.jpg thumb_foo.jpg

This will run with number-of-cpu-cores jobs in parallel for all jpg
 files in a directory:

 ls *.jpg | parallel convert -geometry 120 {} thumb_{}

To do it recursively use find:

 find . -name '*.jpg' | parallel convert -geometry 120 {} {}_thumb.jpg

GNU Parallel

Page 33

Notice how the argument has to start with {} as {} will include path
 (e.g. running convert -geometry
120 ./foo/bar.jpg
 thumb_./foo/bar.jpg would clearly be wrong). The command will
 generate files like
./foo/bar.jpg_thumb.jpg.

Use {.} to avoid the extra .jpg in the file name. This command will
 make files like ./foo/bar_thumb.jpg:

 find . -name '*.jpg' | parallel convert -geometry 120 {} {.}_thumb.jpg

EXAMPLE: Substitution and redirection
This will generate an uncompressed version of .gz-files next to the .gz-file:

 parallel zcat {} ">"{.} ::: *.gz

Quoting of > is necessary to postpone the redirection. Another
 solution is to quote the whole
command:

 parallel "zcat {} >{.}" ::: *.gz

Other special shell characters (such as * ; $ > < | >> <<) also need
 to be put in quotes, as they may
otherwise be interpreted by the shell
 and not given to GNU parallel.

EXAMPLE: Composed commands
A job can consist of several commands. This will print the number of
 files in each directory:

 ls | parallel 'echo -n {}" "; ls {}|wc -l'

To put the output in a file called <name>.dir:

 ls | parallel '(echo -n {}" "; ls {}|wc -l) >{}.dir'

Even small shell scripts can be run by GNU parallel:

 find . | parallel 'a={}; name=${a##*/};' \
 'upper=$(echo "$name" | tr "[:lower:]" "[:upper:]");'\
 'echo "$name - $upper"'

 ls | parallel 'mv {} "$(echo {} | tr "[:upper:]" "[:lower:]")"'

Given a list of URLs, list all URLs that fail to download. Print the
 line number and the URL.

 cat urlfile | parallel "wget {} 2>/dev/null || grep -n {} urlfile"

Create a mirror directory with the same filenames except all files and
 symlinks are empty files.

 cp -rs /the/source/dir mirror_dir
 find mirror_dir -type l | parallel -m rm {} '&&' touch {}

Find the files in a list that do not exist

 cat file_list | parallel 'if [! -e {}] ; then echo {}; fi'

EXAMPLE: Composed command with multiple input sources
You have a dir with files named as 24 hours in 5 minute intervals:
 00:00, 00:05, 00:10 .. 23:55. You
want to find the files missing:

 parallel [-f {1}:{2}] "||" echo {1}:{2} does not exist \
 ::: {00..23} ::: {00..55..5}

GNU Parallel

Page 34

EXAMPLE: Calling Bash functions
If the composed command is longer than a line, it becomes hard to
 read. In Bash you can use
functions. Just remember to export -f the
 function.

 doit() {
 echo Doing it for $1
 sleep 2
 echo Done with $1
 }
 export -f doit
 parallel doit ::: 1 2 3

 doubleit() {
 echo Doing it for $1 $2
 sleep 2
 echo Done with $1 $2
 }
 export -f doubleit
 parallel doubleit ::: 1 2 3 ::: a b

To do this on remote servers you need to transfer the function using --env:

 parallel --env doit -S server doit ::: 1 2 3
 parallel --env doubleit -S server doubleit ::: 1 2 3 ::: a b

If your environment (aliases, variables, and functions) is small you
 can copy the full environment
without having to export -f
 anything. See env_parallel.

EXAMPLE: Function tester
To test a program with different parameters:

 tester() {
 if (eval "$@") >&/dev/null; then
 perl -e 'printf "\033[30;102m[OK]\033[0m @ARGV\n"' "$@"
 else
 perl -e 'printf "\033[30;101m[FAIL]\033[0m @ARGV\n"' "$@"
 fi
 }
 export -f tester
 parallel tester my_program ::: arg1 arg2
 parallel tester exit ::: 1 0 2 0

If my_program fails a red FAIL will be printed followed by the failing
 command; otherwise a green OK
will be printed followed by the command.

EXAMPLE: Log rotate
Log rotation renames a logfile to an extension with a higher number:
 log.1 becomes log.2, log.2
becomes log.3, and so on. The oldest log is
 removed. To avoid overwriting files the process starts
backwards from
 the high number to the low number. This will keep 10 old versions of
 the log:

 seq 9 -1 1 | parallel -j1 mv log.{} log.'{= $_++ =}'
 mv log log.1

EXAMPLE: Removing file extension when processing files
When processing files removing the file extension using {.} is
 often useful.

GNU Parallel

Page 35

Create a directory for each zip-file and unzip it in that dir:

 parallel 'mkdir {.}; cd {.}; unzip ../{}' ::: *.zip

Recompress all .gz files in current directory using bzip2 running 1
 job per CPU core in parallel:

 parallel "zcat {} | bzip2 >{.}.bz2 && rm {}" ::: *.gz

Convert all WAV files to MP3 using LAME:

 find sounddir -type f -name '*.wav' | parallel lame {} -o {.}.mp3

Put all converted in the same directory:

 find sounddir -type f -name '*.wav' | \
 parallel lame {} -o mydir/{/.}.mp3

EXAMPLE: Removing strings from the argument
If you have directory with tar.gz files and want these extracted in
 the corresponding dir (e.g foo.tar.gz
will be extracted in the dir
 foo) you can do:

 parallel --plus 'mkdir {..}; tar -C {..} -xf {}' ::: *.tar.gz

If you want to remove a different ending, you can use {%string}:

 parallel --plus echo {%_beta} ::: mycode_beta keep_beta_here

You can also remove a starting string with {#string}

 parallel --plus echo {#beta_} ::: beta_mycode keep_beta_here

To remove a string anywhere you can use regular expressions with
 {/regexp/replacement} and leave
the replacement empty:

 parallel --plus echo {/beta_/} ::: beta_mycode remove_beta_here

EXAMPLE: Download 24 images for each of the past 30 days
Let us assume a website stores images like:

 http://www.example.com/path/to/YYYYMMDD_##.jpg

where YYYYMMDD is the date and ## is the number 01-24. This will
 download images for the past 30
days:

 getit() {
 date=$(date -d "today -$1 days" +%Y%m%d)
 num=$2
 echo wget http://www.example.com/path/to/${date}_${num}.jpg
 }
 export -f getit

 parallel getit ::: $(seq 30) ::: $(seq -w 24)

$(date -d "today -$1 days" +%Y%m%d) will give the dates in
 YYYYMMDD with $1 days subtracted.

GNU Parallel

Page 36

EXAMPLE: Copy files as last modified date (ISO8601) with added random digits
 find . | parallel cp {} '../destdir/{= $a=int(10000*rand); $_=pQ($_);
 $_=`date -r "$_" +%FT%T"$a"`; chomp; =}'

{= and =} mark a perl expression. pQ quotes the
 string. date +%FT%T is the date in ISO8601 with
time.

EXAMPLE: Digtal clock with "blinking" :
The : in a digital clock blinks. To make every other line have a ':'
 and the rest a ' ' a perl expression is
used to look at the 3rd input
 source. If the value modudo 2 is 1: Use ":" otherwise use " ":

 parallel -k echo {1}'{=3 $_=$_%2?":":" "=}'{2}{3} \
 ::: {0..12} ::: {0..5} ::: {0..9}

EXAMPLE: Aggregating content of files
This:

 parallel --header : echo x{X}y{Y}z{Z} \> x{X}y{Y}z{Z} \
 ::: X {1..5} ::: Y {01..10} ::: Z {1..5}

will generate the files x1y01z1 .. x5y10z5. If you want to aggregate
 the output grouping on x and z
you can do this:

 parallel eval 'cat {=s/y01/y*/=} > {=s/y01//=}' ::: *y01*

For all values of x and z it runs commands like:

 cat x1y*z1 > x1z1

So you end up with x1z1 .. x5z5 each containing the content of all
 values of y.

EXAMPLE: Breadth first parallel web crawler/mirrorer
This script below will crawl and mirror a URL in parallel. It
 downloads first pages that are 1 click down,
then 2 clicks down, then
 3; instead of the normal depth first, where the first link link on
 each page is
fetched first.

Run like this:

 PARALLEL=-j100 ./parallel-crawl http://gatt.org.yeslab.org/

Remove the wget part if you only want a web crawler.

It works by fetching a page from a list of URLs and looking for links
 in that page that are within the
same starting URL and that have not
 already been seen. These links are added to a new queue.
When all the
 pages from the list is done, the new queue is moved to the list of
 URLs and the process
is started over until no unseen links are found.

 #!/bin/bash

 # E.g. http://gatt.org.yeslab.org/
 URL=$1
 # Stay inside the start dir
 BASEURL=$(echo $URL | perl -pe 's:#.*::; s:(//.*/)[^/]*:$1:')
 URLLIST=$(mktemp urllist.XXXX)
 URLLIST2=$(mktemp urllist.XXXX)
 SEEN=$(mktemp seen.XXXX)

GNU Parallel

Page 37

 # Spider to get the URLs
 echo $URL >$URLLIST
 cp $URLLIST $SEEN

 while [-s $URLLIST] ; do
 cat $URLLIST |
 parallel lynx -listonly -image_links -dump {} \; \
 wget -qm -l1 -Q1 {} \; echo Spidered: {} \>\&2 |
 perl -ne 's/#.*//; s/\s+\d+.\s(\S+)$/$1/ and
 do { $seen{$1}++ or print }' |
 grep -F $BASEURL |
 grep -v -x -F -f $SEEN | tee -a $SEEN > $URLLIST2
 mv $URLLIST2 $URLLIST
 done

 rm -f $URLLIST $URLLIST2 $SEEN

EXAMPLE: Process files from a tar file while unpacking
If the files to be processed are in a tar file then unpacking one file
 and processing it immediately may
be faster than first unpacking all
 files.

 tar xvf foo.tgz | perl -ne 'print $l;$l=$_;END{print $l}' | \
 parallel echo

The Perl one-liner is needed to make sure the file is complete before
 handing it to GNU parallel.

EXAMPLE: Rewriting a for-loop and a while-read-loop
for-loops like this:

 (for x in `cat list` ; do
 do_something $x
 done) | process_output

and while-read-loops like this:

 cat list | (while read x ; do
 do_something $x
 done) | process_output

can be written like this:

 cat list | parallel do_something | process_output

For example: Find which host name in a list has IP address 1.2.3 4:

 cat hosts.txt | parallel -P 100 host | grep 1.2.3.4

If the processing requires more steps the for-loop like this:

 (for x in `cat list` ; do
 no_extension=${x%.*};
 do_step1 $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

and while-loops like this:

GNU Parallel

Page 38

 cat list | (while read x ; do
 no_extension=${x%.*};
 do_step1 $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

can be written like this:

 cat list | parallel "do_step1 {} scale {.}.jpg ; do_step2 <{} {.}" |\
 process_output

If the body of the loop is bigger, it improves readability to use a function:

 (for x in `cat list` ; do
 do_something $x
 [... 100 lines that do something with $x ...]
 done) | process_output

 cat list | (while read x ; do
 do_something $x
 [... 100 lines that do something with $x ...]
 done) | process_output

can both be rewritten as:

 doit() {
 x=$1
 do_something $x
 [... 100 lines that do something with $x ...]
 }
 export -f doit
 cat list | parallel doit

EXAMPLE: Rewriting nested for-loops
Nested for-loops like this:

 (for x in `cat xlist` ; do
 for y in `cat ylist` ; do
 do_something $x $y
 done
 done) | process_output

can be written like this:

 parallel do_something {1} {2} :::: xlist ylist | process_output

Nested for-loops like this:

 (for colour in red green blue ; do
 for size in S M L XL XXL ; do
 echo $colour $size
 done
 done) | sort

can be written like this:

GNU Parallel

Page 39

 parallel echo {1} {2} ::: red green blue ::: S M L XL XXL | sort

EXAMPLE: Finding the lowest difference between files
diff is good for finding differences in text files. diff | wc -l
 gives an indication of the size of the
difference. To find the
 differences between all files in the current dir do:

 parallel --tag 'diff {1} {2} | wc -l' ::: * ::: * | sort -nk3

This way it is possible to see if some files are closer to other
 files.

EXAMPLE: for-loops with column names
When doing multiple nested for-loops it can be easier to keep track of
 the loop variable if is is named
instead of just having a number. Use --header : to let the first argument be an named alias for the

positional replacement string:

 parallel --header : echo {colour} {size} \
 ::: colour red green blue ::: size S M L XL XXL

This also works if the input file is a file with columns:

 cat addressbook.tsv | \
 parallel --colsep '\t' --header : echo {Name} {E-mail address}

EXAMPLE: Count the differences between all files in a dir
Using --results the results are saved in /tmp/diffcount*.

 parallel --results /tmp/diffcount "diff -U 0 {1} {2} | \
 tail -n +3 |grep -v '^@'|wc -l" ::: * ::: *

To see the difference between file A and file B look at the file
 '/tmp/diffcount/1/A/2/B'.

EXAMPLE: Speeding up fast jobs
Starting a job on the local machine takes around 10 ms. This can be a
 big overhead if the job takes
very few ms to run. Often you can group
 small jobs together using -X which will make the overhead
less
 significant. Compare the speed of these:

 seq -w 0 9999 | parallel touch pict{}.jpg
 seq -w 0 9999 | parallel -X touch pict{}.jpg

If your program cannot take multiple arguments, then you can use GNU parallel to spawn multiple
GNU parallels:

 seq -w 0 999999 | parallel -j10 --pipe parallel -j0 touch pict{}.jpg

If -j0 normally spawns 252 jobs, then the above will try to spawn
 2520 jobs. On a normal GNU/Linux
system you can spawn 32000 jobs using
 this technique with no problems. To raise the 32000 jobs
limit raise
 /proc/sys/kernel/pid_max to 4194303.

EXAMPLE: Using shell variables
When using shell variables you need to quote them correctly as they
 may otherwise be interpreted by
the shell.

Notice the difference between:

 ARR=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: ${ARR[@]} # This is probably not what you want

GNU Parallel

Page 40

and:

 ARR=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: "${ARR[@]}"

When using variables in the actual command that contains special
 characters (e.g. space) you can
quote them using '"$VAR"' or using
 "'s and -q:

 VAR="My brother's 12\" records are worth <\$\$\$>"
 parallel -q echo "$VAR" ::: '!'
 export VAR
 parallel echo '"$VAR"' ::: '!'

If $VAR does not contain ' then "'$VAR'" will also work
 (and does not need export):

 VAR="My 12\" records are worth <\$\$\$>"
 parallel echo "'$VAR'" ::: '!'

If you use them in a function you just quote as you normally would do:

 VAR="My brother's 12\" records are worth <\$\$\$>"
 export VAR
 myfunc() { echo "$VAR" "$1"; }
 export -f myfunc
 parallel myfunc ::: '!'

EXAMPLE: Group output lines
When running jobs that output data, you often do not want the output
 of multiple jobs to run together.
GNU parallel defaults to grouping
 the output of each job, so the output is printed when the job

finishes. If you want full lines to be printed while the job is
 running you can use --line-buffer. If you
want output to be
 printed as soon as possible you can use -u.

Compare the output of:

 parallel traceroute ::: qubes-os.org debian.org freenetproject.org
 parallel --line-buffer traceroute ::: \
 qubes-os.org debian.org freenetproject.org
 parallel -u traceroute ::: qubes-os.org debian.org freenetproject.org

EXAMPLE: Tag output lines
GNU parallel groups the output lines, but it can be hard to see
 where the different jobs begin. --tag
prepends the argument to make
 that more visible:

 parallel --tag traceroute ::: \
 qubes-os.org debian.org freenetproject.org

--tag works with --line-buffer but not with -u:

 parallel --tag --line-buffer traceroute \
 ::: qubes-os.org debian.org freenetproject.org

Check the uptime of the servers in ~/.parallel/sshloginfile:

 parallel --tag -S .. --nonall uptime

GNU Parallel

Page 41

EXAMPLE: Keep order of output same as order of input
Normally the output of a job will be printed as soon as it
 completes. Sometimes you want the order of
the output to remain the
 same as the order of the input. This is often important, if the output
 is used as
input for another system. -k will make sure the order of
 output will be in the same order as input even
if later jobs end
 before earlier jobs.

Append a string to every line in a text file:

 cat textfile | parallel -k echo {} append_string

If you remove -k some of the lines may come out in the wrong order.

Another example is traceroute:

 parallel traceroute ::: qubes-os.org debian.org freenetproject.org

will give traceroute of qubes-os.org, debian.org and
 freenetproject.org, but it will be sorted according
to which job
 completed first.

To keep the order the same as input run:

 parallel -k traceroute ::: qubes-os.org debian.org freenetproject.org

This will make sure the traceroute to qubes-os.org will be printed
 first.

A bit more complex example is downloading a huge file in chunks in
 parallel: Some internet
connections will deliver more data if you
 download files in parallel. For downloading files in parallel
see:
 "EXAMPLE: Download 10 images for each of the past 30 days". But if you
 are downloading a big
file you can download the file in chunks in
 parallel.

To download byte 10000000-19999999 you can use curl:

 curl -r 10000000-19999999 http://example.com/the/big/file >file.part

To download a 1 GB file we need 100 10MB chunks downloaded and
 combined in the correct order.

 seq 0 99 | parallel -k curl -r \
 {}0000000-{}9999999 http://example.com/the/big/file > file

EXAMPLE: Parallel grep
grep -r greps recursively through directories. On multicore CPUs
 GNU parallel can often speed this
up.

 find . -type f | parallel -k -j150% -n 1000 -m grep -H -n STRING {}

This will run 1.5 job per core, and give 1000 arguments to grep.

EXAMPLE: Grepping n lines for m regular expressions.
The simplest solution to grep a big file for a lot of regexps is:

 grep -f regexps.txt bigfile

Or if the regexps are fixed strings:

 grep -F -f regexps.txt bigfile

There are 3 limiting factors: CPU, RAM, and disk I/O.

GNU Parallel

Page 42

RAM is easy to measure: If the grep process takes up most of your
 free memory (e.g. when running
top), then RAM is a limiting factor.

CPU is also easy to measure: If the grep takes >90% CPU in top,
 then the CPU is a limiting factor,
and parallelization will speed this
 up.

It is harder to see if disk I/O is the limiting factor, and depending
 on the disk system it may be faster or
slower to parallelize. The only
 way to know for certain is to test and measure.

Limiting factor: RAM
The normal grep -f regexs.txt bigfile works no matter the size of
 bigfile, but if regexps.txt is so big it
cannot fit into memory, then
 you need to split this.

grep -F takes around 100 bytes of RAM and grep takes about 500
 bytes of RAM per 1 byte of
regexp. So if regexps.txt is 1% of your
 RAM, then it may be too big.

If you can convert your regexps into fixed strings do that. E.g. if
 the lines you are looking for in bigfile
all looks like:

 ID1 foo bar baz Identifier1 quux
 fubar ID2 foo bar baz Identifier2

then your regexps.txt can be converted from:

 ID1.*Identifier1
 ID2.*Identifier2

into:

 ID1 foo bar baz Identifier1
 ID2 foo bar baz Identifier2

This way you can use grep -F which takes around 80% less memory and
 is much faster.

If it still does not fit in memory you can do this:

 parallel --pipepart -a regexps.txt --block 1M grep -Ff - -n bigfile |
 sort -un | perl -pe 's/^\d+://'

The 1M should be your free memory divided by the number of cores and
 divided by 200 for grep -F
and by 1000 for normal grep. On
 GNU/Linux you can do:

 free=$(awk '/^((Swap)?Cached|MemFree|Buffers):/ { sum += $2 }
 END { print sum }' /proc/meminfo)
 percpu=$((free / 200 / $(parallel --number-of-cores)))k

 parallel --pipepart -a regexps.txt --block $percpu --compress \
 grep -F -f - -n bigfile |
 sort -un | perl -pe 's/^\d+://'

If you can live with duplicated lines and wrong order, it is faster to do:

 parallel --pipepart -a regexps.txt --block $percpu --compress \
 grep -F -f - bigfile

Limiting factor: CPU
If the CPU is the limiting factor parallelization should be done on
 the regexps:

GNU Parallel

Page 43

 cat regexp.txt | parallel --pipe -L1000 --round-robin --compress \
 grep -f - -n bigfile |
 sort -un | perl -pe 's/^\d+://'

The command will start one grep per CPU and read bigfile one
 time per CPU, but as that is done in
parallel, all reads except the
 first will be cached in RAM. Depending on the size of regexp.txt it
 may be
faster to use --block 10m instead of -L1000.

Some storage systems perform better when reading multiple chunks in
 parallel. This is true for some
RAID systems and for some network file
 systems. To parallelize the reading of bigfile:

 parallel --pipepart --block 100M -a bigfile -k --compress \
 grep -f regexp.txt

This will split bigfile into 100MB chunks and run grep on each of
 these chunks. To parallelize both
reading of bigfile and regexp.txt
 combine the two using --fifo:

 parallel --pipepart --block 100M -a bigfile --fifo cat regexp.txt \
 \| parallel --pipe -L1000 --round-robin grep -f - {}

If a line matches multiple regexps, the line may be duplicated.

Bigger problem
If the problem is too big to be solved by this, you are probably ready
 for Lucene.

EXAMPLE: Using remote computers
To run commands on a remote computer SSH needs to be set up and you
 must be able to login
without entering a password (The commands ssh-copy-id, ssh-agent, and sshpass may help you
do that).

If you need to login to a whole cluster, you typically do not want to
 accept the host key for every host.
You want to accept them the first
 time and be warned if they are ever changed. To do that:

 # Add the servers to the sshloginfile
 (echo servera; echo serverb) > .parallel/my_cluster
 # Make sure .ssh/config exist
 touch .ssh/config
 cp .ssh/config .ssh/config.backup
 # Disable StrictHostKeyChecking temporarily
 (echo 'Host *'; echo StrictHostKeyChecking no) >> .ssh/config
 parallel --slf my_cluster --nonall true
 # Remove the disabling of StrictHostKeyChecking
 mv .ssh/config.backup .ssh/config

The servers in .parallel/my_cluster are now added in .ssh/known_hosts.

To run echo on server.example.com:

 seq 10 | parallel --sshlogin server.example.com echo

To run commands on more than one remote computer run:

 seq 10 | parallel --sshlogin server.example.com,server2.example.net echo

Or:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin server2.example.net echo

GNU Parallel

Page 44

If the login username is foo on server2.example.net use:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin foo@server2.example.net echo

If your list of hosts is server1-88.example.net with login foo:

 seq 10 | parallel -Sfoo@server{1..88}.example.net echo

To distribute the commands to a list of computers, make a file mycomputers with all the computers:

 server.example.com
 foo@server2.example.com
 server3.example.com

Then run:

 seq 10 | parallel --sshloginfile mycomputers echo

To include the local computer add the special sshlogin ':' to the list:

 server.example.com
 foo@server2.example.com
 server3.example.com
 :

GNU parallel will try to determine the number of CPU cores on each
 of the remote computers, and
run one job per CPU core - even if the
 remote computers do not have the same number of CPU
cores.

If the number of CPU cores on the remote computers is not identified
 correctly the number of CPU
cores can be added in front. Here the
 computer has 8 CPU cores.

 seq 10 | parallel --sshlogin 8/server.example.com echo

EXAMPLE: Transferring of files
To recompress gzipped files with bzip2 using a remote computer run:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer "zcat {} | bzip2 -9 >{.}.bz2"

This will list the .gz-files in the logs directory and all
 directories below. Then it will transfer the files to
server.example.com to the corresponding directory in $HOME/logs. On server.example.com the file
will be recompressed
 using zcat and bzip2 resulting in the corresponding file with .gz replaced with
.bz2.

If you want the resulting bz2-file to be transferred back to the local
 computer add --return {.}.bz2:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

After the recompressing is done the .bz2-file is transferred back to
 the local computer and put next to
the original .gz-file.

If you want to delete the transferred files on the remote computer add --cleanup. This will remove both
the file transferred to the remote
 computer and the files transferred from the remote computer:

GNU Parallel

Page 45

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

If you want run on several computers add the computers to --sshlogin
 either using ',' or multiple
--sshlogin:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

You can add the local computer using --sshlogin :. This will disable the
 removing and transferring for
the local computer only:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

Often --transfer, --return and --cleanup are used together. They can be
 shortened to --trc:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

With the file mycomputers containing the list of computers it becomes:

 find logs/ -name '*.gz' | parallel --sshloginfile mycomputers \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

If the file ~/.parallel/sshloginfile contains the list of computers
 the special short hand -S .. can be used:

 find logs/ -name '*.gz' | parallel -S .. \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

EXAMPLE: Distributing work to local and remote computers
Convert *.mp3 to *.ogg running one process per CPU core on local computer and server2:

 parallel --trc {.}.ogg -S server2,: \
 'mpg321 -w - {} | oggenc -q0 - -o {.}.ogg' ::: *.mp3

EXAMPLE: Running the same command on remote computers
To run the command uptime on remote computers you can do:

 parallel --tag --nonall -S server1,server2 uptime

--nonall reads no arguments. If you have a list of jobs you want
 run on each computer you can do:

 parallel --tag --onall -S server1,server2 echo ::: 1 2 3

Remove --tag if you do not want the sshlogin added before the
 output.

GNU Parallel

Page 46

If you have a lot of hosts use '-j0' to access more hosts in parallel.

EXAMPLE: Using remote computers behind NAT wall
If the workers are behind a NAT wall, you need some trickery to get to
 them.

If you can ssh to a jumphost, and reach the workers from there,
 then the obvious solution would be
this, but it does not work:

 parallel --ssh 'ssh jumphost ssh' -S host1 echo ::: DOES NOT WORK

It does not work because the command is dequoted by ssh twice where
 as GNU parallel only
expects it to be dequoted once.

So instead put this in ~/.ssh/config:

 Host host1 host2 host3
 ProxyCommand ssh jumphost.domain nc -w 1 %h 22

It requires nc(netcat) to be installed on jumphost. With this you
 can simply:

 parallel -S host1,host2,host3 echo ::: This does work

No jumphost, but port forwards
If there is no jumphost but each server has port 22 forwarded from the
 firewall (e.g. the firewall's port
22001 = port 22 on host1, 22002 = host2,
 22003 = host3) then you can use ~/.ssh/config:

 Host host1.v
 Port 22001
 Host host2.v
 Port 22002
 Host host3.v
 Port 22003
 Host *.v
 Hostname firewall

And then use host{1..3}.v as normal hosts:

 parallel -S host1.v,host2.v,host3.v echo ::: a b c

No jumphost, no port forwards
If ports cannot be forwarded, you need some sort of VPN to traverse
 the NAT-wall. TOR is one
options for that, as it is very easy to get
 working.

You need to install TOR and setup a hidden service. In torrc put:

 HiddenServiceDir /var/lib/tor/hidden_service/
 HiddenServicePort 22 127.0.0.1:22

Then start TOR: /etc/init.d/tor restart

The TOR hostname is now in /var/lib/tor/hidden_service/hostname and
 is something similar to
izjafdceobowklhz.onion. Now you simply
 prepend torsocks to ssh:

 parallel --ssh 'torsocks ssh' -S izjafdceobowklhz.onion \
 -S zfcdaeiojoklbwhz.onion,auclucjzobowklhi.onion echo ::: a b c

If not all hosts are accessible through TOR:

GNU Parallel

Page 47

 parallel -S 'torsocks ssh izjafdceobowklhz.onion,host2,host3' \
 echo ::: a b c

See more ssh tricks on https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Proxies_and_Jump_Hosts

EXAMPLE: Parallelizing rsync
rsync is a great tool, but sometimes it will not fill up the
 available bandwidth. This is often a problem
when copying several big
 files over high speed connections.

The following will start one rsync per big file in src-dir to dest-dir on the server fooserver:

 cd src-dir; find . -type f -size +100000 | \
 parallel -v ssh fooserver mkdir -p /dest-dir/{//}\; \
 rsync -s -Havessh {} fooserver:/dest-dir/{}

The dirs created may end up with wrong permissions and smaller files
 are not being transferred. To
fix those run rsync a final time:

 rsync -Havessh src-dir/ fooserver:/dest-dir/

If you are unable to push data, but need to pull them and the files
 are called digits.png (e.g.
000000.png) you might be able to do:

 seq -w 0 99 | parallel rsync -Havessh fooserver:src/*{}.png destdir/

EXAMPLE: Use multiple inputs in one command
Copy files like foo.es.ext to foo.ext:

 ls *.es.* | perl -pe 'print; s/\.es//' | parallel -N2 cp {1} {2}

The perl command spits out 2 lines for each input. GNU parallel
 takes 2 inputs (using -N2) and
replaces {1} and {2} with the inputs.

Count in binary:

 parallel -k echo ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1

Print the number on the opposing sides of a six sided die:

 parallel --link -a <(seq 6) -a <(seq 6 -1 1) echo
 parallel --link echo :::: <(seq 6) <(seq 6 -1 1)

Convert files from all subdirs to PNG-files with consecutive numbers
 (useful for making input PNG's
for ffmpeg):

 parallel --link -a <(find . -type f | sort) \
 -a <(seq $(find . -type f|wc -l)) convert {1} {2}.png

Alternative version:

 find . -type f | sort | parallel convert {} {#}.png

EXAMPLE: Use a table as input
Content of table_file.tsv:

 foo<TAB>bar
 baz <TAB> quux

GNU Parallel

Page 48

To run:

 cmd -o bar -i foo
 cmd -o quux -i baz

you can run:

 parallel -a table_file.tsv --colsep '\t' cmd -o {2} -i {1}

Note: The default for GNU parallel is to remove the spaces around
 the columns. To keep the spaces:

 parallel -a table_file.tsv --trim n --colsep '\t' cmd -o {2} -i {1}

EXAMPLE: Output to database
GNU parallel can output to a database table and a CSV-file:

 DBURL=csv:///%2Ftmp%2Fmy.csv
 DBTABLEURL=$DBURL/mytable
 parallel --sqlandworker $DBTABLEURL seq ::: {1..10}

It is rather slow and takes up a lot of CPU time because GNU parallel parses the whole CSV file for
each update.

A better approach is to use an SQLite-base and then convert that to CSV:

 DBURL=sqlite3:///%2Ftmp%2Fmy.sqlite
 DBTABLEURL=$DBURL/mytable
 parallel --sqlandworker $DBTABLEURL seq ::: {1..10}
 sql $DBURL '.headers on' '.mode csv' 'SELECT * FROM mytable;'

This takes around a second per job.

If you have access to a real database system, such as PostgreSQL, it
 is even faster:

 DBURL=pg://user:pass@host/mydb
 DBTABLEURL=$DBURL/mytable
 parallel --sqlandworker $DBTABLEURL seq ::: {1..10}
 sql $DBURL "COPY (SELECT * FROM mytable) TO stdout DELIMITER ',' CSV
HEADER;"

Or MySQL:

 DBURL=mysql://user:pass@host/mydb
 DBTABLEURL=$DBURL/mytable
 parallel --sqlandworker $DBTABLEURL seq ::: {1..10}
 sql -p -B $DBURL "SELECT * FROM mytable;" > mytable.tsv
 perl -pe 's/"/""/g; s/\t/","/g; s/^/"/; s/$/"/; s/\\\\/\\/g;
 s/\\t/\t/g; s/\\n/\n/g;' mytable.tsv

EXAMPLE: Output to CSV-file for R
If you have no need for the advanced job distribution control that a
 database provides, but you simply
want output into a CSV file that you
 can read into R or LibreCalc, then you can use --results:

 parallel --results my.csv seq ::: 10 20 30
 R
 > mydf <- read.csv("my.csv");
 > print(mydf[2,])

GNU Parallel

Page 49

 > write(as.character(mydf[2,c("Stdout")]),'')

EXAMPLE: Use XML as input
The show Aflyttet on Radio 24syv publishes an RSS feed with their audio
 podcasts on:
http://arkiv.radio24syv.dk/audiopodcast/channel/4466232

Using xpath you can extract the URLs for 2016 and download them
 using GNU parallel:

 wget -O - http://arkiv.radio24syv.dk/audiopodcast/channel/4466232 |
 xpath -e
"//ancestor::pubDate[contains(text(),'2016')]/../enclosure/@url" |
 parallel -u wget '{= s/ url="//; s/"//; =}'

EXAMPLE: Run the same command 10 times
If you want to run the same command with the same arguments 10 times
 in parallel you can do:

 seq 10 | parallel -n0 my_command my_args

EXAMPLE: Working as cat | sh. Resource inexpensive jobs and evaluation
GNU parallel can work similar to cat | sh.

A resource inexpensive job is a job that takes very little CPU, disk
 I/O and network I/O. Ping is an
example of a resource inexpensive
 job. wget is too - if the webpages are small.

The content of the file jobs_to_run:

 ping -c 1 10.0.0.1
 wget http://example.com/status.cgi?ip=10.0.0.1
 ping -c 1 10.0.0.2
 wget http://example.com/status.cgi?ip=10.0.0.2
 ...
 ping -c 1 10.0.0.255
 wget http://example.com/status.cgi?ip=10.0.0.255

To run 100 processes simultaneously do:

 parallel -j 100 < jobs_to_run

As there is not a command the jobs will be evaluated by the shell.

EXAMPLE: Processing a big file using more cores
To process a big file or some output you can use --pipe to split up
 the data into blocks and pipe the
blocks into the processing program.

If the program is gzip -9 you can do:

 cat bigfile | parallel --pipe --recend '' -k gzip -9 > bigfile.gz

This will split bigfile into blocks of 1 MB and pass that to gzip
 -9 in parallel. One gzip will be run per
CPU core. The output of gzip -9 will be kept in order and saved to bigfile.gz

gzip works fine if the output is appended, but some processing does
 not work like that - for example
sorting. For this GNU parallel can
 put the output of each command into a file. This will sort a big file
 in
parallel:

 cat bigfile | parallel --pipe --files sort |\
 parallel -Xj1 sort -m {} ';' rm {} >bigfile.sort

GNU Parallel

Page 50

Here bigfile is split into blocks of around 1MB, each block ending
 in '\n' (which is the default for
--recend). Each block is passed
 to sort and the output from sort is saved into files. These
 files are
passed to the second parallel that runs sort -m on the
 files before it removes the files. The output is
saved to bigfile.sort.

GNU parallel's --pipe maxes out at around 100 MB/s because every
 byte has to be copied through
GNU parallel. But if bigfile is a
 real (seekable) file GNU parallel can by-pass the copying and send

the parts directly to the program:

 parallel --pipepart --block 100m -a bigfile --files sort |\
 parallel -Xj1 sort -m {} ';' rm {} >bigfile.sort

EXAMPLE: Grouping input lines
When processing with --pipe you may have lines grouped by a
 value. Here is my.csv:

 Transaction Customer Item
	 1	 a	 53
	 2	 b	 65
	 3	 b	 82
	 4	 c	 96
	 5	 c	 67
	 6	 c	 13
	 7	 d	 90
	 8	 d	 43
	 9	 d	 91
	 10	 d	 84
	 11	 e	 72
	 12	 e	 102
	 13	 e	 63
	 14	 e	 56
	 15	 e	 74

Let us assume you want GNU parallel to process each customer. In
 other words: You want all the
transactions for a single customer to be
 treated as a single record.

To do this we preprocess the data with a program that inserts a record
 separator before each
customer (column 2 = $F[1]). Here we first make
 a 50 character random string, which we then use as
the separator:

 sep=`perl -e 'print map { ("a".."z","A".."Z")[rand(52)] } (1..50);'`
 cat my.csv | perl -ape '$F[1] ne $l and print "'$sep'"; $l = $F[1]' |
 parallel --recend $sep --rrs --pipe -N1 wc

If your program can process multiple customers replace -N1 with a
 reasonable --blocksize.

EXAMPLE: Running more than 250 jobs workaround
If you need to run a massive amount of jobs in parallel, then you will
 likely hit the filehandle limit which
is often around 250 jobs. If you
 are super user you can raise the limit in /etc/security/limits.conf
 but
you can also use this workaround. The filehandle limit is per
 process. That means that if you just
spawn more GNU parallels then
 each of them can run 250 jobs. This will spawn up to 2500 jobs:

 cat myinput |\
 parallel --pipe -N 50 --round-robin -j50 parallel -j50 your_prg

This will spawn up to 62500 jobs (use with caution - you need 64 GB
 RAM to do this, and you may
need to increase /proc/sys/kernel/pid_max):

 cat myinput |\

GNU Parallel

Page 51

 parallel --pipe -N 250 --round-robin -j250 parallel -j250 your_prg

EXAMPLE: Working as mutex and counting semaphore
The command sem is an alias for parallel --semaphore.

A counting semaphore will allow a given number of jobs to be started
 in the background. When the
number of jobs are running in the
 background, GNU sem will wait for one of these to complete before

starting another command. sem --wait will wait for all jobs to
 complete.

Run 10 jobs concurrently in the background:

 for i in *.log ; do
 echo $i
 sem -j10 gzip $i ";" echo done
 done
 sem --wait

A mutex is a counting semaphore allowing only one job to run. This
 will edit the file myfile and
prepends the file with lines with the
 numbers 1 to 3.

 seq 3 | parallel sem sed -i -e 'i{}' myfile

As myfile can be very big it is important only one process edits
 the file at the same time.

Name the semaphore to have multiple different semaphores active at the
 same time:

 seq 3 | parallel sem --id mymutex sed -i -e 'i{}' myfile

EXAMPLE: Mutex for a script
Assume a script is called from cron or from a web service, but only
 one instance can be run at a time.
With sem and --shebang-wrap
 the script can be made to wait for other instances to finish. Here in
bash:

 #!/usr/bin/sem --shebang-wrap -u --id $0 --fg /bin/bash

 echo This will run
 sleep 5
 echo exclusively

Here perl:

 #!/usr/bin/sem --shebang-wrap -u --id $0 --fg /usr/bin/perl

 print "This will run ";
 sleep 5;
 print "exclusively\n";

Here python:

 #!/usr/local/bin/sem --shebang-wrap -u --id $0 --fg /usr/bin/python

 import time
 print "This will run ";
 time.sleep(5)
 print "exclusively";

GNU Parallel

Page 52

EXAMPLE: Start editor with filenames from stdin (standard input)
You can use GNU parallel to start interactive programs like emacs or vi:

 cat filelist | parallel --tty -X emacs
 cat filelist | parallel --tty -X vi

If there are more files than will fit on a single command line, the
 editor will be started again with the
remaining files.

EXAMPLE: Running sudo
sudo requires a password to run a command as root. It caches the
 access, so you only need to enter
the password again if you have not
 used sudo for a while.

The command:

 parallel sudo echo ::: This is a bad idea

is no good, as you would be prompted for the sudo password for each of
 the jobs. You can either do:

 sudo echo This
 parallel sudo echo ::: is a good idea

or:

 sudo parallel echo ::: This is a good idea

This way you only have to enter the sudo password once.

EXAMPLE: GNU Parallel as queue system/batch manager
GNU parallel can work as a simple job queue system or batch manager.
 The idea is to put the jobs
into a file and have GNU parallel read
 from that continuously. As GNU parallel will stop at end of file
we
 use tail to continue reading:

 true >jobqueue; tail -n+0 -f jobqueue | parallel

To submit your jobs to the queue:

 echo my_command my_arg >> jobqueue

You can of course use -S to distribute the jobs to remote
 computers:

 true >jobqueue; tail -n+0 -f jobqueue | parallel -S ..

If you keep this running for a long time, jobqueue will grow. A way of
 removing the jobs already run is
by making GNU parallel stop when
 it hits a special value and then restart. To use --eof to make GNU
parallel exit, tail also needs to be forced to exit:

 true >jobqueue;
 while true; do
 tail -n+0 -f jobqueue |
 (parallel -E StOpHeRe -S ..; echo GNU Parallel is now done;
 perl -e 'while(<>){/StOpHeRe/ and last};print <>' jobqueue > j2;
 (seq 1000 >> jobqueue &);
 echo Done appending dummy data forcing tail to exit)
 echo tail exited;
 mv j2 jobqueue
 done

GNU Parallel

Page 53

In some cases you can run on more CPUs and computers during the night:

 # Day time
 echo 50% > jobfile
 cp day_server_list ~/.parallel/sshloginfile
 # Night time
 echo 100% > jobfile
 cp night_server_list ~/.parallel/sshloginfile
 tail -n+0 -f jobqueue | parallel --jobs jobfile -S ..

GNU Parallel discovers if jobfile or ~/.parallel/sshloginfile
 changes.

There is a a small issue when using GNU parallel as queue
 system/batch manager: You have to
submit JobSlot number of jobs before
 they will start, and after that you can submit one at a time, and
job
 will start immediately if free slots are available. Output from the
 running or completed jobs are held
back and will only be printed when
 JobSlots more jobs has been started (unless you use --ungroup or

--line-buffer, in which case the output from the jobs are printed
 immediately). E.g. if you have 10
jobslots then the output from the
 first completed job will only be printed when job 11 has started, and

the output of second completed job will only be printed when job 12
 has started.

EXAMPLE: GNU Parallel as dir processor
If you have a dir in which users drop files that needs to be processed
 you can do this on GNU/Linux
(If you know what inotifywait is
 called on other platforms file a bug report):

 inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f my_dir |\
 parallel -u echo

This will run the command echo on each file put into my_dir or
 subdirs of my_dir.

You can of course use -S to distribute the jobs to remote
 computers:

 inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f my_dir |\
 parallel -S .. -u echo

If the files to be processed are in a tar file then unpacking one file
 and processing it immediately may
be faster than first unpacking all
 files. Set up the dir processor as above and unpack into the dir.

Using GNU Parallel as dir processor has the same limitations as using
 GNU Parallel as queue
system/batch manager.

EXAMPLE: Locate the missing package
If you have downloaded source and tried compiling it, you may have seen:

 $./configure
 [...]
 checking for something.h... no
 configure: error: "libsomething not found"

Often it is not obvious which package you should install to get that
 file. Debian has `apt-file` to search
for a file. `tracefile` from
 https://gitlab.com/ole.tange/tangetools can tell which files a program
 tried to
access. In this case we are interested in one of the last
 files:

 $ tracefile -un ./configure | tail | parallel -j0 apt-file search

QUOTING
GNU parallel is very liberal in quoting. You only need to quote
 characters that have special meaning
in shell:

GNU Parallel

Page 54

 () $ ` ' " < > ; | \

and depending on context these needs to be quoted, too:

 ~ & # ! ? space * {

Therefore most people will never need more quoting than putting '\'
 in front of the special characters.

Often you can simply put \' around every ':

 perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

can be quoted:

 parallel perl -ne \''/^\S+\s+\S+$/ and print $ARGV,"\n"'\' ::: file

However, when you want to use a shell variable you need to quote the
 $-sign. Here is an example
using $PARALLEL_SEQ. This variable is set
 by GNU parallel itself, so the evaluation of the $ must
be done by
 the sub shell started by GNU parallel:

 seq 10 | parallel -N2 echo seq:\$PARALLEL_SEQ arg1:{1} arg2:{2}

If the variable is set before GNU parallel starts you can do this:

 VAR=this_is_set_before_starting
 echo test | parallel echo {} $VAR

Prints: test this_is_set_before_starting

It is a little more tricky if the variable contains more than one space in a row:

 VAR="two spaces between each word"
 echo test | parallel echo {} \'"$VAR"\'

Prints: test two spaces between each word

If the variable should not be evaluated by the shell starting GNU parallel but be evaluated by the sub
shell started by GNU parallel, then you need to quote it:

 echo test | parallel VAR=this_is_set_after_starting \; echo {} \$VAR

Prints: test this_is_set_after_starting

It is a little more tricky if the variable contains space:

 echo test |\
 parallel VAR='"two spaces between each word"' echo {} \'"$VAR"\'

Prints: test two spaces between each word

$$ is the shell variable containing the process id of the shell. This
 will print the process id of the shell
running GNU parallel:

 seq 10 | parallel echo $$

And this will print the process ids of the sub shells started by GNU parallel.

 seq 10 | parallel echo \$\$

GNU Parallel

Page 55

If the special characters should not be evaluated by the sub shell
 then you need to protect it against
evaluation from both the shell
 starting GNU parallel and the sub shell:

 echo test | parallel echo {} \\\$VAR

Prints: test $VAR

GNU parallel can protect against evaluation by the sub shell by
 using -q:

 echo test | parallel -q echo {} \$VAR

Prints: test $VAR

This is particularly useful if you have lots of quoting. If you want to run a perl script like this:

 perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

It needs to be quoted like one of these:

 ls | parallel perl -ne '/^\\S+\\s+\\S+\$/\ and\ print\ \$ARGV,\"\\n\"'
 ls | parallel perl -ne \''/^\S+\s+\S+$/ and print $ARGV,"\n"'\'

Notice how spaces, \'s, "'s, and $'s need to be quoted. GNU parallel
 can do the quoting by using
option -q:

 ls | parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"'

However, this means you cannot make the sub shell interpret special
 characters. For example
because of -q this WILL NOT WORK:

 ls *.gz | parallel -q "zcat {} >{.}"
 ls *.gz | parallel -q "zcat {} | bzip2 >{.}.bz2"

because > and | need to be interpreted by the sub shell.

If you get errors like:

 sh: -c: line 0: syntax error near unexpected token
 sh: Syntax error: Unterminated quoted string
 sh: -c: line 0: unexpected EOF while looking for matching `''
 sh: -c: line 1: syntax error: unexpected end of file

then you might try using -q.

If you are using bash process substitution like <(cat foo) then
 you may try -q and prepending
command with bash -c:

 ls | parallel -q bash -c 'wc -c <(echo {})'

Or for substituting output:

 ls | parallel -q bash -c \
 'tar c {} | tee >(gzip >{}.tar.gz) | bzip2 >{}.tar.bz2'

Conclusion: To avoid dealing with the quoting problems it may be
 easier just to write a small script or
a function (remember to export -f the function) and have GNU parallel call that.

GNU Parallel

Page 56

LIST RUNNING JOBS
If you want a list of the jobs currently running you can run:

 killall -USR1 parallel

GNU parallel will then print the currently running jobs on stderr
 (standard error).

COMPLETE RUNNING JOBS BUT DO NOT START NEW JOBS
If you regret starting a lot of jobs you can simply break GNU parallel,
 but if you want to make sure
you do not have half-completed jobs you
 should send the signal SIGTERM to GNU parallel:

 killall -TERM parallel

This will tell GNU parallel to not start any new jobs, but wait until
 the currently running jobs are
finished before exiting.

ENVIRONMENT VARIABLES
$PARALLEL_HOME

Dir where GNU parallel stores config files, semaphores, and caches
 information
between invocations. Default: $HOME/.parallel.

$PARALLEL_PID

The environment variable $PARALLEL_PID is set by GNU parallel and
 is visible to
the jobs started from GNU parallel. This makes it
 possible for the jobs to
communicate directly to GNU parallel.
 Remember to quote the $, so it gets
evaluated by the correct
 shell.

Example: If each of the jobs tests a solution and one of jobs finds
 the solution the
job can tell GNU parallel not to start more jobs
 by: kill -TERM $PARALLEL_PID.
This only works on the local
 computer.

$PARALLEL_SHELL

Use this shell the shell for the commands run by GNU Parallel:

$PARALLEL_SHELL. If undefined use:

The shell that started GNU Parallel. If that cannot be determined:

$SHELL. If undefined use:

/bin/sh

$PARALLEL_SSH

GNU parallel defaults to using ssh for remote access. This can
 be overridden with
$PARALLEL_SSH, which again can be overridden with --ssh. It can also be set on a
per server basis (see --sshlogin).

$PARALLEL_SEQ

$PARALLEL_SEQ will be set to the sequence number of the job
 running. Remember
to quote the $, so it gets evaluated by the correct
 shell.

Example:

 seq 10 | parallel -N2 \
 echo seq:'$'PARALLEL_SEQ arg1:{1} arg2:{2}

$PARALLEL_TMUX

Path to tmux. If unset the tmux in $PATH is used.

GNU Parallel

Page 57

$TMPDIR

Directory for temporary files. See: --tmpdir.

$PARALLEL

The environment variable $PARALLEL will be used as default options for
 GNU
parallel. If the variable contains special shell characters
 (e.g. $, *, or space) then
these need to be to be escaped with \.

Example:

 cat list | parallel -j1 -k -v ls
 cat list | parallel -j1 -k -v -S"myssh user@server" ls

can be written as:

 cat list | PARALLEL="-kvj1" parallel ls
 cat list | PARALLEL='-kvj1 -S myssh\ user@server' \
 parallel echo

Notice the \ in the middle is needed because 'myssh' and 'user@server'
 must be one
argument.

DEFAULT PROFILE (CONFIG FILE)
The global configuration file /etc/parallel/config, followed by user
 configuration file ~/.parallel/config
(formerly known as .parallelrc)
 will be read in turn if they exist. Lines starting with '#' will be
 ignored.
The format can follow that of the environment variable
 $PARALLEL, but it is often easier to simply put
each option on its own
 line.

Options on the command line take precedence, followed by the
 environment variable $PARALLEL,
user configuration file
 ~/.parallel/config, and finally the global configuration file
 /etc/parallel/config.

Note that no file that is read for options, nor the environment
 variable $PARALLEL, may contain
retired options such as --tollef.

PROFILE FILES
If --profile set, GNU parallel will read the profile from that
 file rather than the global or user
configuration files. You can have
 multiple --profiles.

Example: Profile for running a command on every sshlogin in
 ~/.ssh/sshlogins and prepend the output
with the sshlogin:

 echo --tag -S .. --nonall > ~/.parallel/n
 parallel -Jn uptime

Example: Profile for running every command with -j-1 and nice

 echo -j-1 nice > ~/.parallel/nice_profile
 parallel -J nice_profile bzip2 -9 ::: *

Example: Profile for running a perl script before every command:

 echo "perl -e '\$a=\$\$; print \$a,\" \",'\$PARALLEL_SEQ',\" \";';" \
 > ~/.parallel/pre_perl
 parallel -J pre_perl echo ::: *

Note how the $ and " need to be quoted using \.

Example: Profile for running distributed jobs with nice on the
 remote computers:

 echo -S .. nice > ~/.parallel/dist

GNU Parallel

Page 58

 parallel -J dist --trc {.}.bz2 bzip2 -9 ::: *

EXIT STATUS
Exit status depends on --halt-on-error if one of these are used:
 success=X, success=Y%, fail=Y%.

0 All jobs ran without error. If success=X is used: X jobs ran without
 error. If success=Y% is
used: Y% of the jobs ran without error.

1-100

Some of the jobs failed. The exit status gives the number of failed
 jobs. If Y% is used the
exit status is the percentage of jobs that
 failed.

101 More than 100 jobs failed.

255 Other error.

-1 (In joblog and SQL table)

Killed by Ctrl-C, timeout, not enough memory or similar.

-2 (In joblog and SQL table)

skip() was called in {= =}.

-1000 (In SQL table)

Job is ready to run (set by --sqlmaster).

-1220 (In SQL table)

Job is taken by worker (set by --sqlworker).

If fail=1 is used, the exit status will be the exit status of the
 failing job.

DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
See: man parallel_alternatives

BUGS
Quoting of newline

Because of the way newline is quoted this will not work:

 echo 1,2,3 | parallel -vkd, "echo 'a{}b'"

However, these will all work:

 echo 1,2,3 | parallel -vkd, echo a{}b
 echo 1,2,3 | parallel -vkd, "echo 'a'{}'b'"
 echo 1,2,3 | parallel -vkd, "echo 'a'"{}"'b'"

Speed
Startup

GNU parallel is slow at starting up - around 250 ms the first time
 and 150 ms after that.

Job startup

Starting a job on the local machine takes around 10 ms. This can be a
 big overhead if the job takes
very few ms to run. Often you can group
 small jobs together using -X which will make the overhead
less
 significant. Or you can run multiple GNU parallels as described in EXAMPLE: Speeding up fast
jobs.

GNU Parallel

Page 59

SSH

When using multiple computers GNU parallel opens ssh connections
 to them to figure out how many
connections can be used reliably
 simultaneously (Namely SSHD's MaxStartups). This test is done for
each
 host in serial, so if your --sshloginfile contains many hosts it may
 be slow.

If your jobs are short you may see that there are fewer jobs running
 on the remove systems than
expected. This is due to time spent logging
 in and out. -M may help here.

Disk access

A single disk can normally read data faster if it reads one file at a
 time instead of reading a lot of files
in parallel, as this will avoid
 disk seeks. However, newer disk systems with multiple drives can read

faster if reading from multiple files in parallel.

If the jobs are of the form read-all-compute-all-write-all, so
 everything is read before anything is
written, it may be faster to
 force only one disk access at the time:

 sem --id diskio cat file | compute | sem --id diskio cat > file

If the jobs are of the form read-compute-write, so writing starts
 before all reading is done, it may be
faster to force only one reader
 and writer at the time:

 sem --id read cat file | compute | sem --id write cat > file

If the jobs are of the form read-compute-read-compute, it may be
 faster to run more jobs in parallel
than the system has CPUs, as some
 of the jobs will be stuck waiting for disk access.

--nice limits command length
The current implementation of --nice is too pessimistic in the max
 allowed command length. It only
uses a little more than half of what
 it could. This affects -X and -m. If this becomes a real problem for

you file a bug-report.

Aliases and functions do not work
If you get:

 Can't exec "command": No such file or directory

or:

 open3: exec of by command failed

it may be because command is not known, but it could also be
 because command is an alias or a
function. If it is a function you
 need to export -f the function first. An alias will only work if
 you use
env_parallel.

REPORTING BUGS
Report bugs to <bug-parallel@gnu.org> or

https://savannah.gnu.org/bugs/?func=additem&group=parallel

See a perfect bug report on
 https://lists.gnu.org/archive/html/bug-parallel/2015-01/msg00000.html

Your bug report should always include:

The error message you get (if any).

The complete output of parallel --version. If you are not running
 the latest released version (see
http://ftp.gnu.org/gnu/parallel/) you
 should specify why you believe the problem is not fixed in that

version.

A minimal, complete, and verifiable example (See description on

GNU Parallel

Page 60

http://stackoverflow.com/help/mcve).

It should be a complete example that others can run that shows the problem
 including all files
needed to run the example. This should preferably
 be small and simple, so try to remove as many
options as possible. A
 combination of yes, seq, cat, echo, and sleep can
 reproduce most errors.
If your example requires large files, see if
 you can make them by something like seq 1000000 >
file or yes
 | head -n 10000000 > file.

If your example requires remote execution, see if you can use localhost - maybe using another
login.

The output of your example. If your problem is not easily reproduced
 by others, the output might
help them figure out the problem.

Whether you have watched the intro videos

(http://www.youtube.com/playlist?list=PL284C9FF2488BC6D1), walked
 through the tutorial (man
parallel_tutorial), and read the EXAMPLE
 section in the man page (man parallel - search for
EXAMPLE:).

If you suspect the error is dependent on your environment or
 distribution, please see if you can
reproduce the error on one of
 these VirtualBox images:

http://sourceforge.net/projects/virtualboximage/files/
 http://www.osboxes.org/virtualbox-images/

Specifying the name of your distribution is not enough as you may have
 installed software that is not
in the VirtualBox images.

If you cannot reproduce the error on any of the VirtualBox images
 above, see if you can build a
VirtualBox image on which you can
 reproduce the error. If not you should assume the debugging will
be
 done through you. That will put more burden on you and it is extra
 important you give any
information that help. In general the problem
 will be fixed faster and with less work for you if you can
reproduce
 the error on a VirtualBox.

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
 The USENIX Magazine,
February 2011:42-47.

This helps funding further development; and it won't cost you a cent.
 If you pay 10000 EUR you
should feel free to use GNU Parallel without citing.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk

Copyright (C) 2008,2009,2010 Ole Tange, http://ole.tange.dk

Copyright (C) 2010,2011,2012,2013,2014,2015,2016,2017 Ole Tange,
 http://ole.tange.dk and Free
Software Foundation, Inc.

Parts of the manual concerning xargs compatibility is inspired by
 the manual of xargs from GNU
findutils 4.4.2.

LICENSE
Copyright (C) 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Free
 Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU
General Public License as published by
 the Free Software Foundation; either version 3 of the
License, or
 at your option any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this program. If not,

GNU Parallel

Page 61

see <http://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this documentation
 under the terms of the
GNU Free Documentation License, Version 1.3 or
 any later version published by the Free Software
Foundation; with no
 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
 Texts. A
copy of the license is included in the file fdl.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
 licensor (but not
in any way that suggests that they endorse you or
 your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
 the resulting work
only under the same, similar or a compatible
 license.

With the understanding that:

Waiver

Any of the above conditions can be waived if you get permission from
 the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
 applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
 copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
 how the work is
used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the
 license terms of this
work.

A copy of the full license is included in the file as cc-by-sa.txt.

DEPENDENCIES
GNU parallel uses Perl, and the Perl modules Getopt::Long,
 IPC::Open3, Symbol, IO::File, POSIX,
and File::Temp. For remote usage
 it also uses rsync with ssh.

GNU Parallel

Page 62

SEE ALSO
ssh(1), ssh-agent(1), sshpass(1), ssh-copy-id(1), rsync(1), find(1), xargs(1), dirname(1), make
(1), pexec(1), ppss(1), xjobs(1), prll(1), dxargs(1), mdm(1)

