anticipatory I/O scheduler



 drivers/block/Makefile     |    3 
 drivers/block/as-iosched.c | 1751 +++++++++++++++++++++++++++++++++++++++++++++
 drivers/block/ll_rw_blk.c  |   19 
 include/linux/elevator.h   |    5 
 include/linux/sched.h      |    4 
 kernel/exit.c              |    2 
 kernel/fork.c              |    1 
 7 files changed, 1783 insertions(+), 2 deletions(-)

diff -puN /dev/null drivers/block/as-iosched.c
--- /dev/null	2002-08-30 16:31:37.000000000 -0700
+++ 25-akpm/drivers/block/as-iosched.c	2003-04-01 02:33:29.000000000 -0800
@@ -0,0 +1,1751 @@
+/*
+ *  linux/drivers/block/as-iosched.c
+ *
+ *  Anticipatory & deadline i/o scheduler.
+ *
+ *  Copyright (C) 2002 Jens Axboe <axboe@suse.de>
+ *                     Nick Piggin <piggin@cyberone.com.au>
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/elevator.h>
+#include <linux/bio.h>
+#include <linux/blk.h>
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/compiler.h>
+#include <linux/hash.h>
+#include <linux/rbtree.h>
+#include <linux/interrupt.h>
+
+struct ant_stats {
+	int reads;	/* total read requests */
+	int writes;	/* total write requests */
+	int anticipate_starts;
+	int expired_read_batches;
+	int expired_write_batches;
+	int timeouts;
+	int kblockd_calls;
+	int anticipate_hits;
+	int expired_fifo_reads;
+	int expired_fifo_writes;
+	int close_requests;
+	int matching_ids;
+	int broken_by_write;
+	int exitted_tasks;
+	int queued_request;
+	int big_thinktime;
+
+	int ant_delay_hist[100];	/* milliseconds */
+
+	/*
+	 * This is a logarithmic (base 2) histogram
+	 */
+	int lba_forward_offsets[BITS_PER_LONG];
+	int lba_backward_offsets[BITS_PER_LONG];
+} ant_stats;
+
+/*
+ * See Documentation/as-iosched.txt
+ */
+
+/*
+ * max time before a read is submitted.
+ */
+static unsigned long read_expire = HZ / 20;
+
+/*
+ * ditto for writes, these limits are not hard, even
+ * if the disk is capable of satisfying them.
+ */
+static unsigned long write_expire = HZ / 2;
+
+/*
+ * read_batch_expire describes how long we will allow a stream of reads to
+ * persist before looking to see whether it is time to switch over to writes.
+ */
+static unsigned long read_batch_expire = HZ / 5;
+
+/*
+ * write_batch_expire describes how long we will allow a stream of writes to
+ * persist before looking to see whether it is time to switch over to reads.
+ */
+static unsigned long write_batch_expire = HZ / 20;
+
+/*
+ * max time we may wait to anticipate a read
+ */
+static unsigned long antic_expire = HZ / 100;
+
+/*
+ * This is the per-process anticipatory I/O scheduler state.  It is refcounted
+ * and kmalloc'ed.
+ *
+ * There is no locking protecting the contents of this structure!  Pointers
+ * to a single as_io_context may appear in multiple queues at once.
+ */
+
+/* Keep track of up to 30ms thinktimes */
+#define MAX_THINKTIME (HZ/33UL)
+
+struct as_io_context {
+	atomic_t refcount;
+	pid_t pid;
+	unsigned long state;
+	atomic_t nr_queued; /* queued reads & sync writes */
+	atomic_t nr_dispatched; /* number of requests gone to the drivers */
+
+	/* IO History tracking */
+	unsigned long last_end_request;
+	unsigned long thinktime[MAX_THINKTIME];
+	unsigned long mean_thinktime;
+};
+
+/* Bits in as_io_context.state */
+enum as_io_states {
+	AS_TASK_RUNNING=0,	/* Process has not exitted */
+	AS_TASK_IORUNNING,	/* Process has completed some IO */
+};
+
+struct as_data {
+	/*
+	 * run time data
+	 */
+
+	struct request_queue *q;	/* the "owner" queue */
+
+	/*
+	 * requests (as_rq s) are present on both sort_list and fifo_list
+	 */
+	struct rb_root sort_list[2];	
+	struct list_head fifo_list[2];
+	
+	struct as_rq *next_arq[2];	/* next in sort order */
+	sector_t last_sector[2];	/* last READ and WRITE sectors */
+	struct list_head *dispatch;	/* driver dispatch queue */
+	struct list_head *hash;		/* request hash */
+	unsigned long hash_valid_count;	/* barrier hash count */
+	unsigned long current_batch_expires;
+	unsigned long last_check_fifo[2];
+	int batch_data_dir;		/* current/last batch READ or WRITE */
+
+	int antic_status;
+	unsigned long antic_start;	/* jiffies: when it started */
+	struct timer_list antic_timer;	/* anticipatory scheduling timer */
+	struct work_struct antic_work;	/* Deferred unplugging */
+	struct as_io_context *as_io_context;/* Identify the expected process */
+	int aic_finished; /* IO associated with as_io_context finished */
+
+	/*
+	 * settings that change how the i/o scheduler behaves
+	 */
+	unsigned long fifo_expire[2];
+	unsigned long batch_expire[2];
+	unsigned long front_merges;
+	unsigned long antic_expire;
+};
+
+#define list_entry_fifo(ptr)	list_entry((ptr), struct as_rq, fifo)
+
+enum anticipation_states {
+	ANTIC_OFF=0,		/* Not anticipating (normal operation)	*/
+	ANTIC_WAIT_REQ,		/* The last read has not yet completed  */
+	ANTIC_WAIT_NEXT,	/* Currently anticipating a request vs
+				   last read (which has completed) */
+	ANTIC_FINISHED,		/* Anticipating but have found a candidate
+				   or timed out	*/
+};
+
+/*
+ * per-request data.
+ */
+enum arq_state {
+	AS_RQ_NEW=0,		/* New - not referenced and not on any lists */
+	AS_RQ_QUEUED,		/* In the request queue. It belongs to the
+				   scheduler */
+	AS_RQ_DISPATCHED,	/* On the dispatch list. It belongs to the
+				   driver now */
+};
+
+struct as_rq {
+	/*
+	 * rbtree index, key is the starting offset
+	 */
+	struct rb_node rb_node;
+	sector_t rb_key;
+
+	struct request *request;
+
+	struct as_io_context *as_io_context;	/* The submitting task */
+
+	/*
+	 * request hash, key is the ending offset (for back merge lookup)
+	 */
+	struct list_head hash;
+	unsigned long hash_valid_count;
+
+	/*
+	 * expire fifo
+	 */
+	struct list_head fifo;
+	unsigned long expires;
+
+	enum arq_state state; /* debug only */
+};
+
+#define RQ_DATA(rq)	((struct as_rq *) (rq)->elevator_private)
+
+static kmem_cache_t *arq_pool;
+
+/* 
+ * IO Context helper functions
+ */
+/* Debug */
+static atomic_t nr_as_io_requests = ATOMIC_INIT(0);
+
+static void put_as_io_context(struct as_io_context **paic)
+{
+	struct as_io_context *aic = *paic;
+
+	if (aic == NULL)
+		return;
+
+	BUG_ON(atomic_read(&aic->refcount) == 0);
+	*paic = NULL;
+	if (atomic_dec_and_test(&aic->refcount)) {
+		atomic_dec(&nr_as_io_requests);
+		kfree(aic);
+	}
+}
+
+/* Called by the exitting task */
+void exit_as_io_context(void)
+{
+	unsigned long flags;
+	struct as_io_context *aic;
+
+	local_irq_save(flags);
+	aic = current->as_io_context;
+	if (aic) {
+		clear_bit(AS_TASK_RUNNING, &aic->state);
+		put_as_io_context(&aic);
+		current->as_io_context = NULL;
+	}
+	local_irq_restore(flags);
+}
+
+/*
+ * If the current task has no IO context then create one and initialise it.
+ * If it does have a context, take a ref on it.
+ *
+ * This is always called in the context of the task which submitted the I/O.
+ * But weird things happen, so we disable local interrupts to ensure exclusive
+ * access to *current.
+ */
+static struct as_io_context *get_as_io_context(void)
+{
+	struct task_struct *tsk = current;
+	unsigned long flags;
+	struct as_io_context *ret;
+
+	local_irq_save(flags);
+	ret = tsk->as_io_context;
+	if (ret == NULL) {
+		ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
+		if (ret) {
+			atomic_inc(&nr_as_io_requests);
+			atomic_set(&ret->refcount, 1);
+			ret->pid = tsk->pid;
+			ret->state = 1 << AS_TASK_RUNNING;
+			atomic_set(&ret->nr_queued, 0);
+			atomic_set(&ret->nr_dispatched, 0);
+			memset(ret->thinktime, 0, sizeof(ret->thinktime));
+			ret->mean_thinktime = 0;
+			tsk->as_io_context = ret;
+		}
+	}
+	local_irq_restore(flags);
+	atomic_inc(&ret->refcount);
+	return ret;
+}
+
+static void
+copy_as_io_context(struct as_io_context **pdst, struct as_io_context **psrc)
+{
+	struct as_io_context *src = *psrc;
+
+	if (src) {
+		BUG_ON(atomic_read(&src->refcount) == 0);
+		atomic_inc(&src->refcount);
+		put_as_io_context(pdst);
+		*pdst = src;
+	}
+}
+
+static void
+swap_as_io_context(struct as_io_context **aic1, struct as_io_context **aic2)
+{
+	struct as_io_context *temp;
+	temp = *aic1;
+	*aic1 = *aic2;
+	*aic2 = temp;
+}
+
+/*
+ * the back merge hash support functions
+ */
+static const int as_hash_shift = 10;
+#define AS_HASH_BLOCK(sec)	((sec) >> 3)
+#define AS_HASH_FN(sec)		(hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
+#define AS_HASH_ENTRIES		(1 << as_hash_shift)
+#define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
+#define list_entry_hash(ptr)	list_entry((ptr), struct as_rq, hash)
+#define ON_HASH(arq)		(arq)->hash_valid_count
+
+#define AS_INVALIDATE_HASH(ad)				\
+	do {						\
+		if (!++(ad)->hash_valid_count)		\
+			(ad)->hash_valid_count = 1;	\
+	} while (0)
+
+static inline void __as_del_arq_hash(struct as_rq *arq)
+{
+	arq->hash_valid_count = 0;
+	list_del_init(&arq->hash);
+}
+
+static inline void as_del_arq_hash(struct as_rq *arq)
+{
+	if (ON_HASH(arq))
+		__as_del_arq_hash(arq);
+}
+
+static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
+{
+	struct request *rq = arq->request;
+
+	BUG_ON(ON_HASH(arq));
+
+	arq->hash_valid_count = ad->hash_valid_count;
+	list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
+}
+
+static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
+{
+	struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
+	struct list_head *entry, *next = hash_list->next;
+
+	while ((entry = next) != hash_list) {
+		struct as_rq *arq = list_entry_hash(entry);
+		struct request *__rq = arq->request;
+
+		next = entry->next;
+		
+		BUG_ON(!ON_HASH(arq));
+
+		if (!rq_mergeable(__rq)
+		    || arq->hash_valid_count != ad->hash_valid_count) {
+			__as_del_arq_hash(arq);
+			continue;
+		}
+
+		if (rq_hash_key(__rq) == offset)
+			return __rq;
+	}
+
+	return NULL;
+}
+
+/*
+ * rb tree support functions
+ */
+#define RB_NONE		(2)
+#define RB_EMPTY(root)	((root)->rb_node == NULL)
+#define ON_RB(node)	((node)->rb_color != RB_NONE)
+#define RB_CLEAR(node)	((node)->rb_color = RB_NONE)
+#define rb_entry_arq(node)	rb_entry((node), struct as_rq, rb_node)
+#define ARQ_RB_ROOT(ad, arq)	(&(ad)->sort_list[rq_data_dir((arq)->request)])
+#define rq_rb_key(rq)		(rq)->sector
+
+/*
+ * as_find_first_arq finds the first (lowest sector numbered) request
+ * for the specified data_dir. Used to sweep back to the start of the disk
+ * (1-way elevator) after we process the last (highest sector) request.
+ */
+static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
+{
+	struct rb_node *n = ad->sort_list[data_dir].rb_node;
+
+	if (n == NULL)
+		return NULL;
+
+	for (;;) {
+		if (n->rb_left == NULL)
+			return rb_entry_arq(n);
+		
+		n = n->rb_left;
+	}
+}
+
+static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
+{
+	struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
+	struct rb_node *parent = NULL;
+	struct as_rq *__arq;
+
+	while (*p) {
+		parent = *p;
+		__arq = rb_entry_arq(parent);
+
+		if (arq->rb_key < __arq->rb_key)
+			p = &(*p)->rb_left;
+		else if (arq->rb_key > __arq->rb_key)
+			p = &(*p)->rb_right;
+		else
+			return __arq;
+	}
+
+	rb_link_node(&arq->rb_node, parent, p);
+	return 0;
+}
+
+static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
+/*
+ * Aad the request to the rb tree if it is unique.  If there is an alias (an
+ * existing request against the same sector), which can happen when using
+ * direct IO, then move the alias to the dispatch list and then add the
+ * request.
+ */
+static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
+{
+	struct as_rq *alias;
+	struct request *rq = arq->request;
+	 
+	arq->rb_key = rq_rb_key(rq);
+
+	/* This can be caused by direct IO */
+	while ((alias = __as_add_arq_rb(ad, arq)))
+		as_move_to_dispatch(ad, alias);
+	
+	rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
+}
+
+static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
+{
+	if (ON_RB(&arq->rb_node)) {
+		rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
+		RB_CLEAR(&arq->rb_node);
+	}
+}
+
+static struct request *
+as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
+{
+	struct rb_node *n = ad->sort_list[data_dir].rb_node;
+	struct as_rq *arq;
+
+	while (n) {
+		arq = rb_entry_arq(n);
+
+		if (sector < arq->rb_key)
+			n = n->rb_left;
+		else if (sector > arq->rb_key)
+			n = n->rb_right;
+		else
+			return arq->request;
+	}
+
+	return NULL;
+}
+
+/*
+ * IO Scheduler proper
+ */
+
+#define MAXBACK (512 * 1024)	/* Maximum distance a process can seek backward
+				   from a previous request it has made. No
+				   seeking backward between processes allowed */
+
+/*
+ * as_choose_req selects the preferred one of two requests of the same data_dir
+ * ignoring time - eg. timeouts, which is the job of as_dispatch_request
+ */
+static struct as_rq *
+as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
+{
+	int data_dir;
+	sector_t last, s1, s2, d1, d2;
+	int r1_wrap=0, r2_wrap=0;	/* requests are behind the disk head */
+	const sector_t maxback = MAXBACK;
+
+	if (arq1 == NULL || arq1 == arq2)
+		return arq2;
+	if (arq2 == NULL)
+		return arq1;
+
+	data_dir = rq_data_dir(arq1->request);
+
+	last = ad->last_sector[data_dir];
+	s1 = arq1->request->sector;
+	s2 = arq2->request->sector;
+
+	BUG_ON(data_dir != rq_data_dir(arq2->request));
+
+	/*
+	 * Strict one way elevator _except_ in the case where we allow
+	 * short backward seeks which are biased as twice the cost of a
+	 * similar forward seek. Only for reads and only between reads
+	 * from the same process!
+	 */
+	if (s1 >= last)
+		d1 = s1 - last;
+	else if (data_dir == READ
+			&& ad->as_io_context == arq1->as_io_context
+			&& s1+maxback >= last)
+				d1 = (last - s1)*2;
+	else {
+		r1_wrap = 1;
+		d1 = 0; /* shut up, gcc */
+	}
+
+	if (s2 >= last)
+		d2 = s2 - last;
+	else if (data_dir == READ
+			&& ad->as_io_context == arq2->as_io_context
+			&& s2+maxback >= last)
+				d2 = (last - s2)*2;
+	else {
+		r2_wrap = 1;
+		d2 = 0;
+	}
+
+	/* Found required data */
+	if (!r1_wrap && r2_wrap)
+		return arq1;
+	else if (!r2_wrap && r1_wrap)
+		return arq2;
+	else if (r1_wrap && r2_wrap) {
+		/* both behind the head */
+		if (s1 <= s2)
+			return arq1;
+		else
+			return arq2;
+	}
+	
+	/* Both requests in front of the head */
+	if (d1 < d2) 
+		return arq1;
+	else if (d2 < d1)
+		return arq2;
+	else {
+		if (s1 >= s2)
+			return arq1;
+		else
+			return arq2;
+	}
+}
+
+/*
+ * as_find_next_arq finds the next request after @prev in elevator order.
+ * this with as_choose_arq form the basis for how the scheduler chooses
+ * what request to process next. Anticipation works on top of this.
+ */
+static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
+{
+	const int data_dir = rq_data_dir(last->request);
+	struct as_rq *ret;
+	struct rb_node *rbnext = rb_next(&last->rb_node);
+	struct rb_node *rbprev = rb_prev(&last->rb_node);
+	struct as_rq *arq_next, *arq_prev;
+
+	BUG_ON(!ON_RB(&last->rb_node));
+
+	if (rbprev)
+		arq_prev = rb_entry_arq(rbprev);
+	else
+		arq_prev = NULL;
+
+	if (rbnext)
+		arq_next = rb_entry_arq(rbnext);
+	else {
+		arq_next = as_find_first_arq(ad, data_dir);
+		if (arq_next == last)
+			arq_next = NULL;
+	}
+
+	ret = as_choose_req(ad,	arq_next, arq_prev);
+	
+	return ret;
+}
+
+/*
+ * anticipatory scheduling functions follow
+ */
+
+/* 
+ * as_antic_expired tells us when we have anticipated too long.
+ * The funny "absolute difference" math on the elapsed time is to handle
+ * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
+ */
+static int as_antic_expired(struct as_data *ad)
+{
+	long delta_jif;
+
+	delta_jif = jiffies - ad->antic_start;
+	if (unlikely(delta_jif < 0))
+		delta_jif = -delta_jif;
+	if (delta_jif < ad->antic_expire)
+		return 0;
+
+	return 1;
+}
+
+/*
+ * as_antic_waitnext starts anticipating that a nice request will soon be
+ * submitted. See also as_antic_waitreq
+ */
+static void as_antic_waitnext(struct as_data *ad)
+{
+	unsigned long timeout;
+
+	BUG_ON(ad->antic_status != ANTIC_OFF
+			&& ad->antic_status != ANTIC_WAIT_REQ);
+
+	timeout = ad->antic_start + ad->antic_expire;
+#if 0 /* TODO unif me. This should be fixed. */
+	timeout = min(timeout,	ad->current_batch_expires);
+#endif
+	mod_timer(&ad->antic_timer, timeout);
+				
+	ad->antic_status = ANTIC_WAIT_NEXT;
+}
+
+/*
+ * as_antic_waitreq starts anticipating. We don't start timing the anticipation
+ * until the request that we're anticipating on has finished. This means we
+ * are timing from when the candidate process wakes up hopefully.
+ */
+static void as_antic_waitreq(struct as_data *ad)
+{
+	BUG_ON(ad->antic_status == ANTIC_FINISHED);
+	if (ad->antic_status == ANTIC_OFF) {
+		ant_stats.anticipate_starts++;
+
+		if (!ad->as_io_context || ad->aic_finished)
+			as_antic_waitnext(ad);
+		else 
+			ad->antic_status = ANTIC_WAIT_REQ;
+	}
+}
+
+/*
+ * This is called directly by the functions in this file to stop anticipation.
+ * We kill the timer and schedule a call to the request_fn asap.
+ */
+static void as_antic_stop(struct as_data *ad)
+{
+	int status = ad->antic_status;
+
+	if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
+		if (status == ANTIC_WAIT_NEXT)
+			del_timer(&ad->antic_timer);
+		ad->antic_status = ANTIC_FINISHED;
+		/* see as_work_handler */
+		kblockd_schedule_work(&ad->antic_work);
+	}
+}
+
+/*
+ * as_antic_timeout is the timer function set by as_antic_waitnext.
+ */
+static void as_antic_timeout(unsigned long data)
+{
+	struct request_queue *q = (struct request_queue *)data;
+	struct as_data *ad = q->elevator.elevator_data;
+	int status = ad->antic_status;
+
+	ant_stats.timeouts++;
+	if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
+		ad->antic_status = ANTIC_FINISHED;
+		kblockd_schedule_work(&ad->antic_work);
+	}
+}
+
+/*
+ * as_close_req decides if one request is considered "close" to the
+ * previous one issued.
+ */
+static int as_close_req(struct as_data *ad, struct as_rq *arq)
+{
+	unsigned long delay;	/* milliseconds */
+	sector_t last = ad->last_sector[ad->batch_data_dir];
+	sector_t next = arq->request->sector;
+	sector_t delta;	/* acceptable close offset (in sectors) */
+
+	if (ad->antic_status == ANTIC_OFF || ad->antic_status == ANTIC_WAIT_REQ)
+		delay = 0;
+	else
+		delay = ((jiffies - ad->antic_start) * 1000) / HZ;
+
+	if (delay <= 1)
+		delta = 32;
+	else if (delay <= 20 && delay <= ad->antic_expire / 2)
+		delta = 32 << (delay-1);
+	else
+		return 1;
+
+	return (last <= next) && (next <= last + delta);
+}
+
+/*
+ * as_can_break_anticipation returns true if we have been anticipating this
+ * request.
+ *
+ * It also returns true if the process against which we are anticipating
+ * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
+ * dispatch it ASAP, because we know that application will not be submitting
+ * any new reads.
+ *
+ * If the task which has submitted the request has exitted, break anticipation.
+ *
+ * If this task has queued some other IO, do not enter enticipation.
+ */
+static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
+{
+	struct as_io_context *aic;
+	
+	if (ad->antic_status == ANTIC_WAIT_NEXT && as_antic_expired(ad)) {
+		/*
+		 * In this situation status should really be FINISHED,
+		 * however the timer hasn't had the chance to run yet.
+		 */
+		return 1;
+	}
+
+	if (rq_data_dir(arq->request) == READ && as_close_req(ad, arq)) {
+		ant_stats.close_requests++;
+		return 1;
+	}
+	
+	if (ad->as_io_context == arq->as_io_context) {
+		ant_stats.matching_ids++;
+		if (rq_data_dir(arq->request) == WRITE)
+			ant_stats.broken_by_write++;
+		return 1;
+	}
+
+	aic = ad->as_io_context;
+	if (aic && !test_bit(AS_TASK_RUNNING, &aic->state)) {
+		ant_stats.exitted_tasks++;
+		return 1;
+	}
+
+	if (aic && atomic_read(&aic->nr_queued) > 0) {
+		ant_stats.queued_request++;
+		return 1;
+	}
+
+	if (aic && aic->mean_thinktime > max(HZ/200, 1)) {
+		ant_stats.big_thinktime++;
+		return 1;
+	}
+	
+	return 0;
+}
+
+/*
+ * as_can_anticipate indicates weather we should either run arq
+ * or keep anticipating a better request.
+ */
+static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
+{
+	if (!ad->as_io_context)
+		/*
+		 * Last request submitted was a write
+		 */
+		return 0;
+
+	if (ad->antic_status == ANTIC_FINISHED)
+		/*
+		 * Don't restart if we have just finished. Run the next request
+		 */
+		return 0;
+
+	if (arq && as_can_break_anticipation(ad, arq))
+		/*
+		 * This request is a good candidate. Don't keep anticipating,
+		 * run it.
+		 */
+		return 0;
+
+	/*
+	 * OK from here, we haven't finished, and don't have a decent request!
+	 * Status is either ANTIC_OFF so start waiting,
+	 * ANTIC_WAIT_REQ so continue waiting for request to finish
+	 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
+	 * 
+	 */
+
+	return 1;
+}
+
+/*
+ * as_update_iohist keeps a decaying histogram of IO thinktimes, and
+ * updates @aic->mean_thinktime based on that. It is called when a new
+ * request is queued.
+ */
+static void as_update_iohist(struct as_io_context *aic)
+{
+	unsigned i;
+	unsigned long thinktime;
+	unsigned long total = 0;
+	unsigned long num = 0;
+
+	if (aic == NULL)
+		return;
+
+	if (test_bit(AS_TASK_IORUNNING, &aic->state)) {
+		thinktime = jiffies - aic->last_end_request;
+		thinktime = min(thinktime, MAX_THINKTIME-1);
+		aic->thinktime[thinktime] += 256; /* fixed point: 1.0 == 1<<8 */
+
+		for (i = 0; i < MAX_THINKTIME; i++) {
+			unsigned long tt = aic->thinktime[i];
+			total += i*tt;
+			num += tt;
+
+			aic->thinktime[i] = (tt>>1) + (tt>>2); /* 75% decay */
+		}
+		/* fixed point factor is cancelled here */
+		if (num)
+			aic->mean_thinktime = total / num;
+	}
+}
+
+/*
+ * as_update_arq must be called whenever a request (arq) is added to
+ * the sort_list. This function keeps caches up to date, and checks if the
+ * request might be one we are "anticipating"
+ */
+static void as_update_arq(struct as_data *ad, struct as_rq *arq)
+{
+	const int data_dir = rq_data_dir(arq->request);
+
+	if (data_dir == READ)
+		ant_stats.reads++;
+	else
+		ant_stats.writes++;
+
+	/* keep the next_arq cache up to date */
+	ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
+
+	/*
+	 * have we been anticipating this request?
+	 * or does it come from the same process as the one we are anticipating
+	 * for?
+	 */
+	if (ad->batch_data_dir == READ && ad->antic_status != ANTIC_FINISHED
+			&& as_can_break_anticipation(ad, arq)) {
+		sector_t last = ad->last_sector[data_dir];
+		sector_t this = arq->request->sector;
+		unsigned long delay;
+		long lba_offset;
+		int neg;
+		int log2;
+
+		if (ad->antic_status == ANTIC_WAIT_REQ)
+			delay = 0;
+		else
+			delay = jiffies - ad->antic_start;
+
+		if (data_dir == READ) {
+			if (delay >= ARRAY_SIZE(ant_stats.ant_delay_hist))
+				delay = ARRAY_SIZE(ant_stats.ant_delay_hist)-1;
+			ant_stats.ant_delay_hist[delay]++;
+			ant_stats.anticipate_hits++;
+
+			lba_offset = this - last;
+			neg = 0;
+			if (lba_offset < 0) {
+				lba_offset = -lba_offset;
+				neg = 1;
+			}
+			log2 = ffs(lba_offset);
+			if (neg)
+				ant_stats.lba_backward_offsets[log2]++;
+			else
+				ant_stats.lba_forward_offsets[log2]++;
+		}
+
+		as_antic_stop(ad);
+	}
+}
+
+/*
+ * as_complete_arq is to be called when a request has completed and returned
+ * something to the requesting process, be it an error or data.
+ */
+static void as_complete_arq(struct as_data *ad, struct as_rq *arq)
+{
+	if (!arq->as_io_context)
+		return;
+
+	if (rq_data_dir(arq->request) == READ) {
+		set_bit(AS_TASK_IORUNNING, &arq->as_io_context->state);
+		arq->as_io_context->last_end_request = jiffies;
+	}
+
+	if (ad->as_io_context == arq->as_io_context) {
+		ad->antic_start = jiffies;
+		ad->aic_finished = 1;
+		if (ad->antic_status == ANTIC_WAIT_REQ) {
+			/*
+			 * We were waiting on this request, now anticipate
+			 * the next one
+			 */
+			as_antic_waitnext(ad);
+		}
+	}
+}
+
+/*
+ * as_remove_queued_request removes a request from the pre dispatch queue
+ * without updating refcounts. It is expected the caller will drop the
+ * reference unless it replaces the request at somepart of the elevator
+ * (ie. the dispatch queue)
+ */
+static void as_remove_queued_request(request_queue_t *q, struct request *rq)
+{
+	struct as_rq *arq = RQ_DATA(rq);
+
+	if (!arq)
+		BUG();
+	else {
+		const int data_dir = rq_data_dir(arq->request);
+		struct as_data *ad = q->elevator.elevator_data;
+
+		WARN_ON(arq->state != AS_RQ_QUEUED);
+
+		if (arq->as_io_context) {
+			BUG_ON(!atomic_read(&arq->as_io_context->nr_queued));
+			atomic_dec(&arq->as_io_context->nr_queued);
+		}
+
+		/*
+		 * Update the "next_arq" cache if we are about to remove its
+		 * entry
+		 */
+		if (ad->next_arq[data_dir] == arq)
+			ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
+		
+		list_del_init(&arq->fifo);
+		as_del_arq_hash(arq);
+		as_del_arq_rb(ad, arq);
+
+		if (q->last_merge == &rq->queuelist)
+			q->last_merge = NULL;
+
+		list_del_init(&rq->queuelist);
+	}
+
+}
+
+/*
+ * as_remove_dispatched_request is called to remove a request which has gone
+ * to the dispatch list.
+ */
+static void as_remove_dispatched_request(request_queue_t *q, struct request *rq)
+{
+	struct as_rq *arq = RQ_DATA(rq);
+
+	if (q->last_merge == &rq->queuelist)
+		q->last_merge = NULL;
+
+	list_del_init(&rq->queuelist);
+
+	if (arq) {
+		struct as_io_context *aic;
+
+		WARN_ON(arq->state != AS_RQ_DISPATCHED);
+		WARN_ON(ON_RB(&arq->rb_node));
+		aic = arq->as_io_context;
+		if (aic) {
+			WARN_ON(!atomic_read(&aic->nr_dispatched));
+			atomic_dec(&arq->as_io_context->nr_dispatched);
+		}
+	}
+}
+/*
+ * as_remove_request is called when a driver has finished with a request.
+ * This should be only called for dispatched requests, but for some reason
+ * a POWER4 box running hwscan it does not.
+ */
+static void as_remove_request(request_queue_t *q, struct request *rq)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct as_rq *arq = RQ_DATA(rq);
+
+	if (unlikely(!blk_fs_request(rq)))
+			return;
+
+	if (arq) {
+		if (ON_RB(&arq->rb_node))
+			as_remove_queued_request(q, rq);
+		else
+			as_remove_dispatched_request(q, rq);
+
+		as_complete_arq(ad, arq);
+		arq->state = AS_RQ_NEW;
+		put_as_io_context(&arq->as_io_context);
+	}
+}
+
+/*
+ * as_fifo_expired returns 0 if there are no expired reads on the fifo,
+ * 1 otherwise.  It is ratelimited so that we only perform the check once per
+ * `fifo_expire' interval.  Otherwise a large number of expired requests
+ * would create a hopeless seekstorm.
+ *
+ * See as_antic_expired comment.
+ */ 
+static int as_fifo_expired(struct as_data *ad, int adir)
+{
+	struct as_rq *arq;
+	long delta_jif;
+
+	delta_jif = jiffies - ad->last_check_fifo[adir];
+	if (unlikely(delta_jif < 0))
+		delta_jif = -delta_jif;
+	if (delta_jif < ad->fifo_expire[adir])
+		return 0;
+
+	ad->last_check_fifo[adir] = jiffies;
+
+	if (list_empty(&ad->fifo_list[adir]))
+		return 0;
+
+	arq = list_entry_fifo(ad->fifo_list[adir].next);
+	
+	return time_after(jiffies, arq->expires);
+}
+
+/*
+ * as_batch_expired returns true if the current batch has expired. A batch
+ * is a set of reads or a set of writes.
+ */
+static inline int as_batch_expired(struct as_data *ad)
+{
+	return time_after(jiffies, ad->current_batch_expires);
+}
+
+/*
+ * move an entry to dispatch queue
+ */
+static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
+{
+	const int data_dir = rq_data_dir(arq->request);
+	
+	BUG_ON(!ON_RB(&arq->rb_node));
+
+	as_antic_stop(ad);
+	ad->antic_status = ANTIC_OFF;
+
+	/*
+	 * This has to be set in order to be correctly updated by
+	 * as_find_next_arq
+	 */
+	ad->last_sector[data_dir] = arq->request->sector
+					+ arq->request->nr_sectors;
+
+	if (data_dir == READ) {
+		/* In case we have to anticipate after this */
+		copy_as_io_context(&ad->as_io_context, &arq->as_io_context);
+		ad->aic_finished = 0;
+	} else
+		put_as_io_context(&ad->as_io_context);
+
+	ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
+
+	/*
+	 * take it off the sort and fifo list, add to dispatch queue
+	 */
+	as_remove_queued_request(ad->q, arq->request);
+	list_add_tail(&arq->request->queuelist, ad->dispatch);
+	if (arq->as_io_context) 
+		atomic_inc(&arq->as_io_context->nr_dispatched);
+
+	WARN_ON(arq->state != AS_RQ_QUEUED);
+	arq->state = AS_RQ_DISPATCHED;
+}
+
+/*
+ * as_dispatch_request selects the best request according to
+ * read/write expire, batch expire, etc, and moves it to the dispatch
+ * queue. Returns 1 if a request was found, 0 otherwise.
+ */
+static int as_dispatch_request(struct as_data *ad)
+{
+	struct as_rq *arq;
+	const int reads = !list_empty(&ad->fifo_list[READ]);
+	const int writes = !list_empty(&ad->fifo_list[WRITE]);
+
+	if (!(reads || writes))
+		return 0;
+
+	if (as_batch_expired(ad)) {
+		if (ad->batch_data_dir == READ)
+			ant_stats.expired_read_batches++;
+		else
+			ant_stats.expired_write_batches++;
+	}
+
+	if (!(reads && writes && as_batch_expired(ad))) {
+		/*
+		 * batch is still running or no reads or no writes
+		 */
+		arq = ad->next_arq[ad->batch_data_dir];
+
+		if (ad->batch_data_dir == READ && ad->antic_expire) {
+			if (as_fifo_expired(ad, READ))
+				goto fifo_expired;
+
+			if (as_can_anticipate(ad, arq)) {
+				as_antic_waitreq(ad);
+				return 0;
+			}
+		}
+
+		if (arq) {
+			/* we have a "next request" */
+			if (reads && !writes)
+				ad->current_batch_expires =
+					jiffies + ad->batch_expire[READ];
+			goto dispatch_request;
+		}
+	}
+
+	/*
+	 * at this point we are not running a batch. select the appropriate
+	 * data direction (read / write)
+	 */
+
+	if (reads) {
+		BUG_ON(RB_EMPTY(&ad->sort_list[READ]));
+
+		if (writes && ad->batch_data_dir == READ)
+			/*
+			 * Last batch was a read, switch to writes
+			 */
+			goto dispatch_writes;
+
+		ad->batch_data_dir = READ;
+		arq = ad->next_arq[ad->batch_data_dir];
+		ad->current_batch_expires = jiffies +
+			ad->batch_expire[ad->batch_data_dir];
+		goto dispatch_request;
+	}
+
+	/*
+	 * there are either no reads or the last batch was a read
+	 */
+
+	if (writes) {
+dispatch_writes:
+		BUG_ON(RB_EMPTY(&ad->sort_list[WRITE]));
+
+		ad->batch_data_dir = WRITE;
+		arq = ad->next_arq[ad->batch_data_dir];
+		ad->current_batch_expires = jiffies +
+			ad->batch_expire[ad->batch_data_dir];
+		goto dispatch_request;
+	}
+
+	BUG();
+	return 0;
+
+dispatch_request:
+	/*
+	 * If a request has expired, service it.
+	 */
+
+	if (as_fifo_expired(ad, ad->batch_data_dir)) {
+fifo_expired:
+		if (ad->batch_data_dir == WRITE)
+			ant_stats.expired_fifo_writes++;
+		else
+			ant_stats.expired_fifo_reads++;
+		arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
+		BUG_ON(arq == NULL);
+	}
+
+	/*
+	 * arq is the selected appropriate request.
+	 */
+	as_move_to_dispatch(ad, arq);
+
+	return 1;
+}
+
+static struct request *as_next_request(request_queue_t *q)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct request *rq = NULL;
+
+	/*
+	 * if there are still requests on the dispatch queue, grab the first
+	 */
+	if (!list_empty(ad->dispatch) || as_dispatch_request(ad))
+		rq = list_entry_rq(ad->dispatch->next);
+
+	return rq;
+}
+
+/*
+ * add arq to rbtree and fifo
+ */
+static void as_add_request(struct as_data *ad, struct as_rq *arq)
+{
+	const int data_dir = rq_data_dir(arq->request);
+
+	arq->as_io_context = get_as_io_context();
+	if (arq->as_io_context) {
+		atomic_inc(&arq->as_io_context->nr_queued);
+
+		if (data_dir == READ)
+			as_update_iohist(arq->as_io_context);
+	}
+
+	as_add_arq_rb(ad, arq);
+
+	/*
+	 * set expire time (only used for reads) and add to fifo list
+	 */
+	arq->expires = jiffies + ad->fifo_expire[data_dir];
+	list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
+	arq->state = AS_RQ_QUEUED;
+	as_update_arq(ad, arq); /* keep state machine up to date */
+}
+
+static void
+as_insert_request(request_queue_t *q, struct request *rq,
+			struct list_head *insert_here)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct as_rq *arq = RQ_DATA(rq);
+
+	if (unlikely(rq->flags & REQ_HARDBARRIER)) {
+		AS_INVALIDATE_HASH(ad);
+		q->last_merge = NULL;
+	}
+
+	if (unlikely(!blk_fs_request(rq))) {
+		if (!insert_here)
+			insert_here = ad->dispatch->prev;
+
+		list_add(&rq->queuelist, insert_here);
+
+		/* Stop anticipating - let this request get through */
+		if (!list_empty(ad->dispatch) && rq_data_dir(rq) == READ
+			&& (ad->antic_status == ANTIC_WAIT_REQ
+				|| ad->antic_status == ANTIC_WAIT_NEXT))
+			as_antic_stop(ad);
+		
+		return;
+	}
+
+	if (rq_mergeable(rq)) {
+		as_add_arq_hash(ad, arq);
+
+		if (!q->last_merge)
+			q->last_merge = &rq->queuelist;
+	}
+
+	as_add_request(ad, arq);
+}
+
+/*
+ * as_queue_notready tells us weather or not as_next_request
+ * will return us a request or NULL. With the previous work conserving
+ * scheduler this API was designed around, if a queue had requests in it,
+ * as_next_request would return a request, and drivers seem to make
+ * that assumption
+ */
+static int as_queue_notready(request_queue_t *q)
+{
+	int ret = 0;
+	struct as_data *ad = q->elevator.elevator_data;
+
+	if (!list_empty(ad->dispatch))
+		goto out;
+	
+	if (ad->antic_status == ANTIC_WAIT_REQ ||
+			ad->antic_status == ANTIC_WAIT_NEXT) {
+		ret = 1;
+		goto out;
+	}
+				
+	if (!as_dispatch_request(ad)) {
+		ret = 1;
+		goto out;
+	}
+
+out:
+	return ret;
+}
+
+static struct request *
+as_former_request(request_queue_t *q, struct request *rq)
+{
+	struct as_rq *arq = RQ_DATA(rq);
+	struct rb_node *rbprev = rb_prev(&arq->rb_node);
+	struct request *ret = NULL;
+
+	if (rbprev)
+		ret = rb_entry_arq(rbprev)->request;
+
+	return ret;
+}
+
+static struct request *
+as_latter_request(request_queue_t *q, struct request *rq)
+{
+	struct as_rq *arq = RQ_DATA(rq);
+	struct rb_node *rbnext = rb_next(&arq->rb_node);
+	struct request *ret = NULL;
+
+	if (rbnext)
+		ret = rb_entry_arq(rbnext)->request;
+
+	return ret;
+}
+
+static int
+as_merge(request_queue_t *q, struct list_head **insert, struct bio *bio)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct request *__rq;
+	int ret;
+
+	/*
+	 * try last_merge to avoid going to hash
+	 */
+	ret = elv_try_last_merge(q, bio);
+	if (ret != ELEVATOR_NO_MERGE) {
+		__rq = list_entry_rq(q->last_merge);
+		goto out_insert;
+	}
+
+	/*
+	 * see if the merge hash can satisfy a back merge
+	 */
+	__rq = as_find_arq_hash(ad, bio->bi_sector);
+	if (__rq) {
+		BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
+
+		if (elv_rq_merge_ok(__rq, bio)) {
+			ret = ELEVATOR_BACK_MERGE;
+			goto out;
+		}
+	}
+
+	/*
+	 * check for front merge
+	 */
+	if (ad->front_merges) {
+		sector_t rb_key = bio->bi_sector + bio_sectors(bio);
+
+		__rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
+		if (__rq) {
+			BUG_ON(rb_key != rq_rb_key(__rq));
+
+			if (elv_rq_merge_ok(__rq, bio)) {
+				ret = ELEVATOR_FRONT_MERGE;
+				goto out;
+			}
+		}
+	}
+
+	return ELEVATOR_NO_MERGE;
+out:
+	q->last_merge = &__rq->queuelist;
+out_insert:
+	*insert = &__rq->queuelist;
+	return ret;
+}
+
+static void as_merged_request(request_queue_t *q, struct request *req)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct as_rq *arq = RQ_DATA(req);
+
+	/*
+	 * hash always needs to be repositioned, key is end sector
+	 */
+	as_del_arq_hash(arq);
+	as_add_arq_hash(ad, arq);
+
+	/*
+	 * if the merge was a front merge, we need to reposition request
+	 */
+	if (rq_rb_key(req) != arq->rb_key) {
+		as_del_arq_rb(ad, arq);
+		as_add_arq_rb(ad, arq);
+		/*
+		 * Note! At this stage of this and the next function, our next
+		 * request may not be optimal - eg the request may have "grown"
+		 * behind the disk head. We currently don't bother adjusting.
+		 */
+	}
+
+	q->last_merge = &req->queuelist;
+}
+
+static void
+as_merged_requests(request_queue_t *q, struct request *req,
+			 struct request *next)
+{
+	struct as_data *ad = q->elevator.elevator_data;
+	struct as_rq *arq = RQ_DATA(req);
+	struct as_rq *anext = RQ_DATA(next);
+
+	BUG_ON(!arq);
+	BUG_ON(!anext);
+
+	/*
+	 * reposition arq (this is the merged request) in hash, and in rbtree
+	 * in case of a front merge
+	 */
+	as_del_arq_hash(arq);
+	as_add_arq_hash(ad, arq);
+
+	if (rq_rb_key(req) != arq->rb_key) {
+		as_del_arq_rb(ad, arq);
+		as_add_arq_rb(ad, arq);
+	}
+
+	/*
+	 * if anext expires before arq, assign its expire time to arq
+	 * and move into anext position (anext will be deleted) in fifo
+	 */
+	if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
+		if (time_before(anext->expires, arq->expires)) {
+			list_move(&arq->fifo, &anext->fifo);
+			arq->expires = anext->expires;
+			/*
+			 * Don't copy here but swap, because when anext is
+			 * removed below, it must contain the unused context
+			 */
+			swap_as_io_context(&arq->as_io_context,
+					&anext->as_io_context);
+		}
+	}
+
+	/*
+	 * kill knowledge of next, this one is a goner
+	 */
+	as_remove_queued_request(q, next);
+	put_as_io_context(&anext->as_io_context);
+}
+
+/*
+ * This is executed in a "deferred" process context, by kblockd. It calls the
+ * driver's request_fn so the driver can submit that request.
+ *
+ * IMPORTANT! This guy will reenter the elevator, so set up all queue global
+ * state before calling, and don't rely on any state over calls.
+ *
+ * FIXME! dispatch queue is not a queue at all!
+ */
+static void as_work_handler(void *data)
+{
+	struct request_queue *q = data;
+	unsigned long flags;
+
+	spin_lock_irqsave(q->queue_lock, flags);
+	if (!as_queue_notready(q))
+		q->request_fn(q);
+	spin_unlock_irqrestore(q->queue_lock, flags);
+}
+
+static void as_exit(request_queue_t *q, elevator_t *e)
+{
+	struct as_data *ad = e->elevator_data;
+	struct as_rq *arq;
+	struct request *rq;
+	int i;
+
+	del_timer_sync(&ad->antic_timer);
+	kblockd_flush();
+
+	BUG_ON(!list_empty(&ad->fifo_list[READ]));
+	BUG_ON(!list_empty(&ad->fifo_list[WRITE]));
+
+	for (i = READ; i <= WRITE; i++) {
+		struct request_list *rl = &q->rq[i];
+		struct list_head *entry;
+
+		list_for_each(entry, &rl->free) {
+			rq = list_entry_rq(entry);
+
+			if ((arq = RQ_DATA(rq)) == NULL)
+				continue;
+
+			rq->elevator_private = NULL;
+			kmem_cache_free(arq_pool, arq);
+		}
+	}
+
+	put_as_io_context(&ad->as_io_context);
+	kfree(ad->hash);
+	kfree(ad);
+}
+
+/*
+ * initialize elevator private data (as_data), and alloc a arq for
+ * each request on the free lists
+ */
+static int as_init(request_queue_t *q, elevator_t *e)
+{
+	struct as_data *ad;
+	struct as_rq *arq;
+	struct request *rq;
+	int i, ret = 0;
+
+	if (!arq_pool)
+		return -ENOMEM;
+
+	ad = kmalloc(sizeof(*ad), GFP_KERNEL);
+	if (!ad)
+		return -ENOMEM;
+	memset(ad, 0, sizeof(*ad));
+
+	ad->q = q; /* Identify what queue the data belongs to */
+
+	ad->hash = kmalloc(sizeof(struct list_head)*AS_HASH_ENTRIES,GFP_KERNEL);
+	if (!ad->hash) {
+		kfree(ad);
+		return -ENOMEM;
+	}
+
+	/* anticipatory scheduling helpers */
+	ad->antic_timer.function = as_antic_timeout;
+	ad->antic_timer.data = (unsigned long)q;
+	init_timer(&ad->antic_timer);
+	INIT_WORK(&ad->antic_work, as_work_handler, q);
+
+	for (i = 0; i < AS_HASH_ENTRIES; i++)
+		INIT_LIST_HEAD(&ad->hash[i]);
+
+	INIT_LIST_HEAD(&ad->fifo_list[READ]);
+	INIT_LIST_HEAD(&ad->fifo_list[WRITE]);
+	ad->sort_list[READ] = RB_ROOT;
+	ad->sort_list[WRITE] = RB_ROOT;
+	ad->dispatch = &q->queue_head;
+	ad->fifo_expire[READ] = read_expire;
+	ad->fifo_expire[WRITE] = write_expire;
+	ad->hash_valid_count = 1;
+	ad->front_merges = 1;
+	ad->antic_expire = antic_expire;
+	ad->batch_expire[READ] = read_batch_expire;
+	ad->batch_expire[WRITE] = write_batch_expire;
+	e->elevator_data = ad;
+
+	ad->current_batch_expires = jiffies + ad->batch_expire[READ];
+
+	for (i = READ; i <= WRITE; i++) {
+		struct request_list *rl = &q->rq[i];
+		struct list_head *entry;
+
+		list_for_each(entry, &rl->free) {
+			rq = list_entry_rq(entry);
+
+			arq = kmem_cache_alloc(arq_pool, GFP_KERNEL);
+			if (!arq) {
+				ret = -ENOMEM;
+				break;
+			}
+
+			memset(arq, 0, sizeof(*arq));
+			INIT_LIST_HEAD(&arq->fifo);
+			INIT_LIST_HEAD(&arq->hash);
+			RB_CLEAR(&arq->rb_node);
+			arq->request = rq;
+			rq->elevator_private = arq;
+		}
+	}
+
+	if (ret)
+		as_exit(q, e);
+
+	return ret;
+}
+
+/*
+ * sysfs parts below
+ */
+struct as_fs_entry {
+	struct attribute attr;
+	ssize_t (*show)(struct as_data *, char *);
+	ssize_t (*store)(struct as_data *, const char *, size_t);
+};
+
+static ssize_t
+as_var_show(unsigned int var, char *page)
+{
+	return sprintf(page, "%d\n", var);
+}
+
+static ssize_t
+as_var_store(unsigned long *var, const char *page, size_t count)
+{
+	char *p = (char *) page;
+
+	*var = simple_strtoul(p, &p, 10);
+	return count;
+}
+
+#define SHOW_FUNCTION(__FUNC, __VAR)					\
+static ssize_t __FUNC(struct as_data *ad, char *page)		\
+{									\
+	return as_var_show(__VAR, (page));			\
+}
+SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[READ]);
+SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[WRITE]);
+SHOW_FUNCTION(as_frontmerges_show, ad->front_merges);
+SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire);
+SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[READ]);
+SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[WRITE]);
+#undef SHOW_FUNCTION
+
+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)				\
+static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count)	\
+{									\
+	int ret = as_var_store(__PTR, (page), count);		\
+	if (*(__PTR) < (MIN))						\
+		*(__PTR) = (MIN);					\
+	else if (*(__PTR) > (MAX))					\
+		*(__PTR) = (MAX);					\
+	return ret;							\
+}
+STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[READ], 0, INT_MAX);
+STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[WRITE], 0, INT_MAX);
+STORE_FUNCTION(as_frontmerges_store, &ad->front_merges, 0, 1);
+STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX);
+STORE_FUNCTION(as_read_batchexpire_store,
+			&ad->batch_expire[READ], 0, INT_MAX);
+STORE_FUNCTION(as_write_batchexpire_store,
+			&ad->batch_expire[WRITE], 0, INT_MAX);
+#undef STORE_FUNCTION
+
+static struct as_fs_entry as_readexpire_entry = {
+	.attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR },
+	.show = as_readexpire_show,
+	.store = as_readexpire_store,
+};
+static struct as_fs_entry as_writeexpire_entry = {
+	.attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR },
+	.show = as_writeexpire_show,
+	.store = as_writeexpire_store,
+};
+static struct as_fs_entry as_frontmerges_entry = {
+	.attr = {.name = "front_merges", .mode = S_IRUGO | S_IWUSR },
+	.show = as_frontmerges_show,
+	.store = as_frontmerges_store,
+};
+static struct as_fs_entry as_anticexpire_entry = {
+	.attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR },
+	.show = as_anticexpire_show,
+	.store = as_anticexpire_store,
+};
+static struct as_fs_entry as_read_batchexpire_entry = {
+	.attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR },
+	.show = as_read_batchexpire_show,
+	.store = as_read_batchexpire_store,
+};
+static struct as_fs_entry as_write_batchexpire_entry = {
+	.attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR },
+	.show = as_write_batchexpire_show,
+	.store = as_write_batchexpire_store,
+};
+
+static struct attribute *default_attrs[] = {
+	&as_readexpire_entry.attr,
+	&as_writeexpire_entry.attr,
+	&as_frontmerges_entry.attr,
+	&as_anticexpire_entry.attr,
+	&as_read_batchexpire_entry.attr,
+	&as_write_batchexpire_entry.attr,
+	NULL,
+};
+
+#define to_as(atr) container_of((atr), struct as_fs_entry, attr)
+
+static ssize_t
+as_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
+{
+	elevator_t *e = container_of(kobj, elevator_t, kobj);
+	struct as_fs_entry *entry = to_as(attr);
+
+	if (!entry->show)
+		return 0;
+
+	return entry->show(e->elevator_data, page);
+}
+
+static ssize_t
+as_attr_store(struct kobject *kobj, struct attribute *attr,
+		    const char *page, size_t length)
+{
+	elevator_t *e = container_of(kobj, elevator_t, kobj);
+	struct as_fs_entry *entry = to_as(attr);
+
+	if (!entry->store)
+		return -EINVAL;
+
+	return entry->store(e->elevator_data, page, length);
+}
+
+static struct sysfs_ops as_sysfs_ops = {
+	.show	= as_attr_show,
+	.store	= as_attr_store,
+};
+
+struct kobj_type as_ktype = {
+	.sysfs_ops	= &as_sysfs_ops,
+	.default_attrs	= default_attrs,
+};
+
+static int __init as_slab_setup(void)
+{
+	arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
+				     0, 0, NULL, NULL);
+
+	if (!arq_pool)
+		panic("as: can't init slab pool\n");
+
+	return 0;
+}
+
+subsys_initcall(as_slab_setup);
+
+elevator_t iosched_as = {
+	.elevator_merge_fn = 		as_merge,
+	.elevator_merged_fn =		as_merged_request,
+	.elevator_merge_req_fn =	as_merged_requests,
+	.elevator_next_req_fn =		as_next_request,
+	.elevator_add_req_fn =		as_insert_request,
+	.elevator_remove_req_fn =	as_remove_request,
+	.elevator_queue_empty_fn =	as_queue_notready,
+	.elevator_former_req_fn =	as_former_request,
+	.elevator_latter_req_fn =	as_latter_request,
+	.elevator_init_fn =		as_init,
+	.elevator_exit_fn =		as_exit,
+
+	.elevator_ktype =		&as_ktype,
+};
+
+EXPORT_SYMBOL(iosched_as);
diff -puN drivers/block/Makefile~as-iosched drivers/block/Makefile
--- 25/drivers/block/Makefile~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/drivers/block/Makefile	2003-04-01 02:33:28.000000000 -0800
@@ -13,7 +13,8 @@
 # kblockd threads
 #
 
-obj-y	:= elevator.o ll_rw_blk.o ioctl.o genhd.o scsi_ioctl.o deadline-iosched.o
+obj-y	:= elevator.o ll_rw_blk.o ioctl.o genhd.o scsi_ioctl.o \
+	deadline-iosched.o as-iosched.o
 
 obj-$(CONFIG_MAC_FLOPPY)	+= swim3.o
 obj-$(CONFIG_BLK_DEV_FD)	+= floppy.o
diff -puN include/linux/elevator.h~as-iosched include/linux/elevator.h
--- 25/include/linux/elevator.h~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/include/linux/elevator.h	2003-04-01 02:33:28.000000000 -0800
@@ -73,6 +73,11 @@ extern elevator_t elevator_noop;
  */
 extern elevator_t iosched_deadline;
 
+/*
+ * anticipatory I/O scheduler
+ */
+extern elevator_t iosched_as;
+
 extern int elevator_init(request_queue_t *, elevator_t *);
 extern void elevator_exit(request_queue_t *);
 extern inline int bio_rq_in_between(struct bio *, struct request *, struct list_head *);
diff -puN drivers/block/ll_rw_blk.c~as-iosched drivers/block/ll_rw_blk.c
--- 25/drivers/block/ll_rw_blk.c~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/drivers/block/ll_rw_blk.c	2003-04-01 02:33:28.000000000 -0800
@@ -1220,6 +1220,18 @@ nomem:
 
 static int __make_request(request_queue_t *, struct bio *);
 
+static elevator_t *chosen_elevator = &iosched_as;
+
+static int __init elevator_setup(char *str)
+{
+	if (!strcmp(str, "deadline")) {
+		chosen_elevator = &iosched_deadline;
+		printk("elevator: cfq\n");
+	}
+	return 1;
+}
+__setup("elevator=", elevator_setup);
+
 /**
  * blk_init_queue  - prepare a request queue for use with a block device
  * @q:    The &request_queue_t to be initialised
@@ -1255,7 +1267,12 @@ int blk_init_queue(request_queue_t *q, r
 	if (blk_init_free_list(q))
 		return -ENOMEM;
 
-	if ((ret = elevator_init(q, &iosched_deadline))) {
+	if (chosen_elevator == &iosched_deadline)
+		printk("deadline elevator\n");
+	else if (chosen_elevator == &iosched_as)
+		printk("anticipatory scheduling elevator\n");
+
+	if ((ret = elevator_init(q, chosen_elevator))) {
 		blk_cleanup_queue(q);
 		return ret;
 	}
diff -puN include/linux/sched.h~as-iosched include/linux/sched.h
--- 25/include/linux/sched.h~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/include/linux/sched.h	2003-04-01 02:33:28.000000000 -0800
@@ -313,6 +313,8 @@ struct k_itimer {
 };
 
 
+struct as_io_context;			/* Anticipatory scheduler */
+void exit_as_io_context(void);
 
 struct task_struct {
 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
@@ -436,6 +438,8 @@ struct task_struct {
 	struct dentry *proc_dentry;
 	struct backing_dev_info *backing_dev_info;
 
+	struct as_io_context *as_io_context;
+
 	unsigned long ptrace_message;
 	siginfo_t *last_siginfo; /* For ptrace use.  */
 };
diff -puN kernel/exit.c~as-iosched kernel/exit.c
--- 25/kernel/exit.c~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/kernel/exit.c	2003-04-01 02:33:28.000000000 -0800
@@ -694,6 +694,8 @@ NORET_TYPE void do_exit(long code)
 		panic("Attempted to kill the idle task!");
 	if (unlikely(tsk->pid == 1))
 		panic("Attempted to kill init!");
+	if (tsk->as_io_context)
+		exit_as_io_context();
 	tsk->flags |= PF_EXITING;
 	del_timer_sync(&tsk->real_timer);
 
diff -puN kernel/fork.c~as-iosched kernel/fork.c
--- 25/kernel/fork.c~as-iosched	2003-04-01 02:33:28.000000000 -0800
+++ 25-akpm/kernel/fork.c	2003-04-01 02:33:28.000000000 -0800
@@ -856,6 +856,7 @@ static struct task_struct *copy_process(
 	p->lock_depth = -1;		/* -1 = no lock */
 	p->start_time = get_jiffies_64();
 	p->security = NULL;
+	p->as_io_context = NULL;
 
 	retval = -ENOMEM;
 	if (security_task_alloc(p))

_