\documentclass{article} \usepackage{geometry} \usepackage{fancyhdr} \usepackage{amsmath,amsthm,amssymb} \usepackage{graphicx} \usepackage{hyperref} \usepackage{lipsum} \title{Test document} \author{Your name \\ \url{you@example.com}} \date{2009-Oct-12} \begin{document} \maketitle \tableofcontents \newpage This is some preamble text that you enter yourself.\footnote{First footnote.}\footnote{Second footnote.} \section{Text for the first section} \lipsum[1] \subsection{Text for a subsection of the first section} \lipsum[2-3] \label{labelone} \subsection{Another subsection of the first section} \lipsum[4-5] \label{labeltwo} \section{The second section} \lipsum[6] Refer again to \ref{labelone}.\cite{ConcreteMath} Note also the discussion on page \pageref{labeltwo} \subsection{Title of the first subsection of the second section} \lipsum[7] There are $\binom{2n+1}{n}$ sequences with $n$ occurrences of $-1$ and $n+1$ occurrences of $+1$, and Raney's lemma tells us that exactly $1/(2n+1)$ of these sequences have all partial sums positive. Elementary calculus suffices to evaluate $C$ if we are clever enough to look at the double integral \begin{equation*} C^2 =\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x \int_{-\infty}^{+\infty} e^{-y^2} \mathrm{d}y\;. \end{equation*} Solve the following recurrence for $n,k\geq 0$: \begin{align*} Q_{n,0} &= 1 \quad Q_{0,k} = [k=0]; \\ Q_{n,k} &= Q_{n-1,k}+Q_{n-1,k-1}+\binom{n}{k}, \quad\text{for $n,k>0$.} \end{align*} Therefore \begin{equation*} a\equiv b\pmod{m} \qquad\Longleftrightarrow\qquad a\equiv b \pmod{p^{m_p}}\quad\text{for all $p$} \end{equation*} if the prime factorization of $m$ is $\prod_p p^{m_p}$. \begin{thebibliography}{9} \bibitem{ConcreteMath} Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, \textit{Concrete mathematics}, Addison-Wesley, Reading, MA, 1995. \end{thebibliography} \end{document}