% Introductory sample article: intrart.tex % Typeset with LaTeX format \documentclass{article} \usepackage{amsmath,amssymb} \newtheorem{theorem}{Theorem} \newtheorem{definition}{Definition} \newtheorem{notation}{Notation} \begin{document} \title{A construction of complete-simple\\ distributive lattices} \author{George~A. Menuhin\thanks{Research supported by the NSF under grant number~23466.}\\ Computer Science Department\\ Winnebago, Minnesota 23714\\ menuhin@ccw.uwinnebago.edu} \date{March 15, 1995} \maketitle \begin{abstract} In this note we prove that there exist \emph{complete-simple distributive lattices}, that is, complete distributive lattices in which there are only two complete congruences. \end{abstract} \section{Introduction} \label{S:intro} In this note we prove the following result: \begin{theorem} There exists an infinite complete distributive lattice $K$ with only the two trivial complete congruence relations. \end{theorem} \section{The $\Pi^{*}$ construction} \label{S:P*} The following construction is crucial in our proof of our Theorem: \begin{definition} \label{D:P*} Let $D_{i}$, $i \in I$, be complete distributive lattices satisfying condition~\textup{(J)}. Their $\Pi^{*}$ product is defined as follows: \[ \Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1; \] that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element. \end{definition} \begin{notation} If $i \in I$ and $d \in D_{i}^{-}$, then \[ \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \] is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$th component is $d$ and all the other components are $0$. \end{notation} See also Ernest~T. Moynahan~\cite{eM57a}. Next we verify the following result: \begin{theorem} \label{T:P*} Let $D_{i}$, $i \in I$, be complete distributive lattices satisfying condition~\textup{(J)}. Let $\Theta$ be a complete congruence relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist $i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that for all $d \leq c < 1_{i}$, \begin{equation} \label{E:cong1} \langle \dots, 0, \dots,\overset{i}{d}, \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta}, \end{equation} then $\Theta = \iota$. \end{theorem} \emph{Proof.} Since \begin{equation} \label{E:cong2} \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta}, \end{equation} and $\Theta$ is a complete congruence relation, it follows from condition~(C) that \begin{align} \label{E:cong} & \langle \dots, \overset{i}{d}, \dots, 0, \dots \rangle \equiv\\ &\qquad \qquad \quad \bigvee ( \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 ) \equiv 1 \pmod{\Theta}. \notag \end{align} Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$. Meeting both sides of the congruence \eqref{E:cong2} with $\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle$, we obtain \begin{align} \label{E:comp} 0 = & \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \wedge \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle \equiv\\ &\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle \pmod{\Theta}, \notag \end{align} Using the completeness of $\Theta$ and \eqref{E:comp}, we get: \[ 0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta}, \] hence $\Theta = \iota$. \begin{thebibliography}{9} \bibitem{sF90} Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990. \bibitem{gM68} George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand, Princeton-Toronto-London-Mel\-bourne, 1968. \bibitem{eM57} Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone}, Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460. \bibitem{eM57a} Ernest~T. Moynahan, \emph{Ideals and congruence relations in lattices.~II}, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} (1957), 417--434. \end{thebibliography} \end{document}