\documentclass[a4paper,twoside]{article} \usepackage{html} \usepackage{amsmath} \renewcommand{\d}{\partial}\providecommand{\bm}[1]{\mathbf{#1}} \providecommand{\Range}{\mathcal{R}}\providecommand{\Ker}{\mathcal{N}} \providecommand{\Quat}{\vec{\mathbf{Q}}} \newcommand{\StAndrews}{\url{http://www-groups.dcs.st-and.ac.uk/~history}}% \newcommand{\Pythagorians}{\htmladdnormallink {Pythagorians}{\StAndrews/Mathematicians/Pythagoras.html}} \newcommand{\Fermat}{\htmladdnormallink {Fermat, c.1637}{\StAndrews/HistTopics/Fermat's_last_theorem.html}} \newcommand{\Wiles}{\htmladdnormallink {Wiles, 1995}{http://www.pbs.org:80/wgbh/nova/proof}} \begin{document} \htmlhead[center]{section}{Math examples} \begin{flushright} \begin{makeimage} \begin{eqnarray} \phi(\lambda) & = & \frac{1} {2 \pi i}\int^{c+i\infty}_{c-i\infty} \exp \left( u \ln u + \lambda u \right ) du \hspace{1cm}\mbox{for } c \geq 0 \\ \lambda & = & \frac{\epsilon -\bar{\epsilon} }{\xi} - \gamma' - \beta^2 - \ln \frac{\xi} {E_{\rm max}} \\ \gamma & = & 0.577215\dots \mathrm{\hspace{5mm}(Euler's\ constant)} \\ \gamma' & = & 0.422784\dots = 1 - \gamma \\ \epsilon , \bar{\epsilon} & = & \mbox{actual/average energy loss} \end{eqnarray} \end{makeimage} \end{flushright} Since~\eqref{eqn:stress-sr} or~\eqref{gdef} should hold for arbitrary $\delta\bm{c}$% -vectors, it is clear that $\Ker(A) = \Range(B)$ and that when $y=B(x)$ one has...\\ ...the \Pythagorians{} knew infinitely many solutions in integers to $a^2+b^2=c^2$. That no non-trivial integer solutions exist for $a^n+b^n=c^n$ with integers $n>2$ has long been suspected (\Fermat). Only during the current decade has this been proved (\Wiles). \begin{flushright} \begin{eqnarray}\htmlimage{} \label{eqn:stress-sr} V \bm{\pi}^{sr} & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i + \sum_i \sum_{j>i} \bm{R}_{ij} \bm{F}_{ij}\right> \\ \nonumber & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i + \sum_{i}\sum_{j>i}\sum_\alpha\sum_\beta \bm{r}_{i\alpha j\beta}\bm{f}_{i\alpha j\beta} - \sum_i \sum_\alpha \bm{p}_{i\alpha} \bm{f}_{i\alpha} \right> \end{eqnarray} \end{flushright} \begin{flushright} \begin{subequations}\htmlimage{} \label{bgdefs} \begin{align} B_{ij}^\alpha & = \left(B_{ij}^\alpha\right)_0 + \left(B_{ij}^\alpha\right)_a \label{bdef} \\ \left(B_{ij}^\alpha\right)_0 & = \frac{1}{2}\left(\frac{\d N_i^\alpha}{\d X_j} + \frac{\d N_j^\alpha} {\d X_i} \right) \label{b0def} \\ \left(B_{ij}^\alpha\right)_a & = H_{ij}^{\alpha \beta} a^\beta \label{budef} \\ H_{ij}^{\alpha \beta} & = \frac{1}{2}\left( \frac{\d N_k^\alpha}{\d X_i} \frac{\d N_k^\beta}{\d X_j} + \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right) \label{gdef} \end{align} \end{subequations} \end{flushright} \end{document}