\newcommand*\Q[2]{\frac{\partial #1}{\partial #2}} \section[slide=false]{Overview} \begin{slide}[toc=,bm=]{Overview} \tableofcontents[type=1] \end{slide} \section[slide=false]{Research and studies} \begin{slide}[toc=The Integral]{The integral and its geometric applications.} The first Green equation: \begin{align}\label{green} \underset{\mathcal{G}\quad}\iiint\! \left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]d^{3}V =\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}d^{2}A \end{align} The Green equation (\ref{green}) will be checked later. \begin{itemize} \item<1-> A line with \texttt{itemize}. \begin{itemize} \item<2> A line with \texttt{itemize}. \begin{enumerate} \item<1> A line with \texttt{enumerate}. \item<-3> Another one \ldots \end{enumerate} \item<3-> A line with \texttt{itemize}. \end{itemize} \item<4-> A line with \texttt{itemize}. \end{itemize} \end{slide} \subsection{Interval} \begin{slide}{Definition} The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$ that satisfy the condition $a\le x\le b$. \end{slide} \subsection{Sequence of numbers} \begin{slide}{Definition of a sequence} A \emph{sequence of numbers} or \emph{sequence} is created by replacing each member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or irrational number, i.\,e.\ each $n$ by a number $x_n$. \end{slide} \subsection{Limits} \begin{slide}{Definition of a limit} $\lim x_n=g$ means that almost all members of the sequence are within each neighbourhood of $g$. \end{slide} \subsection{Convergence criterion} \begin{slide}{Definition of convergence} \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$. \end{slide} \endinput %%% new text above \begin{slide}{Definition} The \emph{interval} $\langle a,b\rangle$ contains all numbers $x$ that satisfy the condition $\le x \le b$. \end{slide} \subsection{Series of numbers} \begin{slide}{Definition of the series} A \emph{series of numbers} or \emph{series} is created by replacing each member of the infinite series of numbers $1,2,3,\ldots$ by some rational or irrational number, i.e.\ each $n$ by a number $x_n$. \end{slide} \subsection{Limits} \begin{slide}{Definition of limits} %CJ both the above lines said "limes" rather than "limits" - bit odd! $\lim x_n=g$ means that almost all members of the series are within each environment of $g$. %CJ that sounds odd/wrong - perhaps: $\lim x_n=g$ means that as n increases, the members of the series get closer to the value $g$ \end{slide} \subsection{Convergence criteria} \begin{slide}{Definition of convergence} \textbf{Convergence criteria}. The series $x_1,x_2,x_3,\ldots$ converges if and only if \textbf{each} sub series $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$. \end{slide} \endinput