\newcommand*\Q[2]{\frac{\partial #1}{\partial #2}} \section*{Overview} \begin{frame}{Overview} \tableofcontents[part=1,pausesections] \end{frame} \AtBeginSubsection[]{\begin{frame} \frametitle{Overview} \tableofcontents[current,currentsubsection] \end{frame} } \part{Main part} \section{Research and studies} \begin{frame}{The integral and its geometric applications.} The first Green equation: \begin{align}\label{green} \underset{\mathcal{G}\quad}\iiint\! \left[u\nabla^{2}v+\left(\nabla u,\nabla v\right)\right]d^{3}V =\underset{\mathcal{S}\quad}\oiint u\Q{v}{n}d^{2}A \end{align} The Green equation (\ref{green}) will be checked later. \begin{itemize} \item A line with \texttt{itemize}. \begin{itemize} \item A line with \texttt{itemize}. \begin{enumerate} \item A line with \texttt{enumerate}. \item Another one \ldots \end{enumerate} \item A line with \texttt{itemize}. \end{itemize} \item A line with \texttt{itemize}. \end{itemize} \end{frame} \subsection{Interval} \begin{frame}{Definition} The \emph{interval} $\langle a,b\rangle$ contains all numbers $x$ that satisfy the condition $a\le x \le b$. \end{frame} \subsection{Sequence of numbers} \begin{frame}{Definition of a sequence} A \emph{sequence of numbers} or \emph{sequence} is created by replacing each member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or irrational number, i.\,e.\ each $n$ by a number $x_n$. \end{frame} \subsection{Limits} \begin{frame}{Definition of a limit} $\lim x_n=g$ means that almost all members of the series are within each neighbourhood of $g$. \end{frame} \subsection{Convergence criterion} \begin{frame}{Definition of convergence} \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2, x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$. \end{frame} \endinput