%First document, firstdocumentmod.tex \documentclass{amsart} \usepackage{amssymb,latexsym} \newcommand{\pdelta}{\pmod{\delta}} \DeclareMathOperator{\length}{length} \newtheorem{lemma}{Lemma} \begin{document} \title{A technical lemma\\ for congruences of finite lattices} \author{G. Gr\"{a}tzer} \address{Department of Mathematics\\ University of Manitoba\\ Winnipeg, MB R3T 2N2\\ Canada} \email[G. Gr\"atzer]{gratzer@me.com} \urladdr[G. Gr\"atzer]{http://tinyurl.com/lej5g49} \date{March 21, 2014} \subjclass[2010]{Primary: 06B10.} \keywords{finite lattice, congruence.} \begin{abstract} We present here a Technical Lemma for congruences on \emph{finite lattices}. This is not difficult to prove but it has already has proved its usefulness in some applications. \end{abstract} \maketitle \subsection*{Introduction}\label{Intro}%Section~\label{Intro} In some recent research, G. Cz\'edli and I, see \cite{gC13} and \cite{GS13}, spent quite an effort in proving that some equivalence relations on a planar semimodular lattice with intervals as equivalence classes are congruences. The number of cases we had to consider was dramatically cut by the following result. \begin{lemma}\label{L:technical}%Lemma~\ref{L:technical} Let $L$ be a finite lattice. Let $\delta$ be an equivalence relation on $L$ with intervals as equivalence classes. Then $\delta$ is a congruence relation if{}f the following condition and its dual hold: \begin{equation}\label{E:cover}%\eqref{E:cover} \text{If $x$ is covered by $y,z \in L$ and $x \equiv y \pdelta$, then $z \equiv y + z \pdelta$.}\tag{C${}_{+}$} \end{equation} \end{lemma} \subsection*{Proof}\label{Proof}%Section~\label{Proof} We prove the join-substitution property: if $x \leq y$ and $x \equiv y \pdelta$, then \begin{equation}\label{E:Cjoin}%\eqref{E:Cjoin} x + z \equiv y + z \pdelta. \end{equation} Let $U = [x, y+ z]$. We induct on $\length U$, the length of $U$. Let $I=[y_1,y+ z]$ and $J=[z_1,y+ z]$. Then $\length I$ and $\length J < \length U$. Hence, the induction hypothesis applies to $I$ and $\delta\rceil I$, and we obtain that $w \equiv y+ w \pdelta$. By the transitivity of $\delta$, we conclude that \begin{equation}\label{E:three}%\eqref{E:three} z_1 \equiv y+ w \pdelta. \end{equation} Therefore, applying the induction hypothesis to $J$ and $\delta \rceil J$, we conclude from \eqref{E:three} that \[ x+ z = z + z_1 \equiv z + (y+ w) = y+ z \pdelta, \] proving \eqref{E:Cjoin}. \begin{thebibliography}{9} \bibitem{gC13}%G. Cz\'edli~\cite{gC13} G. Cz\'edli, \emph{Patch extensions and trajectory colorings of slim rectangular lattices.} Algebra Universalis, to appear. \bibitem{GS13}%G. Gr\"atzer \cite{GS13} G. Gr\"atzer, \emph{Congruences of fork extensions of lattices.} Acta Sci. Math. (Szeged), submitted. arXiv: 1307.8404 \end{thebibliography} \end{document}