%% %% Ein Beispiel der DANTE-Edition %% %% 7. Auflage %% %% Beispiel 35-00-48 auf Seite 838. %% %% Copyright (C) 2016 Herbert Voss %% %% It may be distributed and/or modified under the conditions %% of the LaTeX Project Public License, either version 1.3 %% of this license or (at your option) any later version. %% %% See http://www.latex-project.org/lppl.txt for details. %% %% %% ==== % Show page(s) 1 %% %% \documentclass[]{exaarticle} \pagestyle{empty} \setlength\textwidth{352.81416pt} \setlength\parindent{0pt} \usepackage[a3paper,landscape,dvips,margin=5mm]{geometry} %StartShownPreambleCommands \usepackage{pst-slpe,pstricks-add,graphicx} \newpsstyle{magenta40}{fillstyle=solid,fillcolor=magenta!40} \newpsstyle{blue40}{fillstyle=solid,fillcolor=blue!60} \newpsstyle{Blackball}{fillstyle=ccslope,slopebegin=white,slopeend=black, slopecenter={0.6 0.6}} \newpsstyle{Blueball}{fillstyle=ccslope,slopebegin=white,slopeend=blue, slopecenter={0.6 0.6}} \newpsstyle{Redball}{fillstyle=ccslope,slopebegin=white,slopeend=red, slopecenter={0.6 0.6}} % inclined plane \newcommand*\ChronoSlope{30 } \newcommand*\ChronoSlopeN{180 \ChronoSlope sub } % Length of inclined plane (that is, the ball course!) \newcommand*\ChronoLength{15 } \newcommand*\rBall{0.5 } \makeatletter \pst@dima=\rBall pt \pst@dimb=0.5\pst@dima \edef\rBallinner{\strip@pt\pst@dimb} \makeatother \newcommand*\mass{1 } \def\Acceleration{9.81 \ChronoSlope sin mul } \def\AccelerationRot{\Acceleration 5 mul 7 div } \def\S#1{ % way as function of time, returns x y 0.5 \Acceleration mul #1 dup mul mul % S(t) dup \ChronoSlope cos mul % Sx exch \ChronoSlope sin mul neg \CVL add } % Sy \def\Srot#1{ % way as function of time, returns x y 0.5 \AccelerationRot mul #1 dup mul mul % S(t) dup \ChronoSlope cos mul % Sx exch \ChronoSlope sin mul neg \CVL add } % Sy \def\tEnd{2 \ChronoLength mul \Acceleration div sqrt } \def\tEndRot{2 \ChronoLength mul \AccelerationRot div sqrt } \newcommand*{\CHL}{\ChronoSlope cos \ChronoLength mul }% Chrono Horizontal Length \newcommand*{\CVL}{\ChronoSlope sin \ChronoLength mul }% Chrono Vertical Length %StopShownPreambleCommands \begin{document} \begin{pspicture}(-1,-1)(15.5,10.5) \pspolygon[style=magenta40](0,0)(!\CHL 0)(!0 \CVL)\psline(!\CHL 0)(!\CHL 2 add 0) \rput[rt](13,8){\large\textbf{A gliding ball}} \multido{\nt=0+0.25}{10}{% Chronophotography (one shot per 1/4 second) \rput(! \S{\nt} ){% \pscircle[style=Blackball](!90 \ChronoSlope sub cos \rBall mul 90 \ChronoSlope sub sin \rBall mul){\rBall}} \psline[linestyle=dashed]{*-}(! \S{\nt} )(! \S{\nt} pop -0.2) }% end of multido \rput(! \S{2.5} pop 0 ){\pscircle[style=Blackball](0,\rBall){\rBall}} \psline[arrowscale=2]{->}(! \S{2.5} pop \rBall )(! \S{2.5} pop 1 add \rBall ) \rput{-\ChronoSlope}(! \S{2.25} ){% \psline[arrowscale=2]{->}(! 0 90 \ChronoSlope add sin \rBall mul) (! 1 90 \ChronoSlope add sin \rBall mul)} \psset{linewidth=0.2pt,tbarsize=5mm,arrowscale=2,arrows=|<->|} \pcline(-0.75,0)(!-0.75 \CVL) \ncput*[nrot=:U]{length\,$\cdot\sin\alpha$} \pcline(0,-0.75)(! \CHL -0.75) \ncput*{length\,$\cdot\cos\alpha$} \rput{-\ChronoSlope}% (!\rBall 4 mul \ChronoSlope sin mul \CVL \rBall 4 mul \ChronoSlope cos mul add)% {\pcline(0,0)(\ChronoLength,0)\ncput*{length=15\,m}} \psarcn[arrows=<-](!\CHL 0){3}{180}{!\ChronoSlopeN} \uput*{2cm}[165](!\CHL 0){$\alpha=30^\circ$} \end{pspicture} \quad \begin{pspicture}(-1,-1)(15.5,10.5) \pspolygon[style=magenta40](0,0)(!\CHL 0)(!0 \CVL)\psline(!\CHL 0)(!\CHL 2 add 0) \rput[rt](13,8){\large\textbf{A rolling ball}} \multido{\nt=0+0.25}{12}{% Chronophotography (one shot per 1/4 second) \rput(! \Srot{\nt} ){% \pscircle[style=Blueball](!90 \ChronoSlope sub cos \rBall mul 90 \ChronoSlope sub sin \rBall mul){\rBall} \psarcn{->}(!90 \ChronoSlope sub cos \rBall mul 90 \ChronoSlope sub sin \rBall mul){\rBallinner}{180}{0}} \psline[linestyle=dashed]{*-}(! \Srot{\nt} )(! \Srot{\nt} pop -0.2) }% end of multido \rput(! \Srot{3} pop 0 ){\pscircle[style=Blueball](0,\rBall){\rBall}} \psarcn{->}(!\Srot{3} pop \rBall ){\rBallinner}{190}{10} \psline[arrowscale=2]{->}(! \Srot{3} pop \rBall )(! \Srot{3} pop 1 add \rBall ) \rput{-\ChronoSlope}(! \Srot{2.75} ){% \psline[arrowscale=2]{->}(! 0 90 \ChronoSlope add sin \rBall mul) (! 1 90 \ChronoSlope add sin \rBall mul)} \psset{linewidth=0.2pt,tbarsize=5mm,arrowscale=2,arrows=|<->|} \pcline(-0.75,0)(!-0.75 \CVL) \ncput*[nrot=:U]{length\,$\cdot\sin\alpha$} \pcline(0,-0.75)(! \CHL -0.75) \ncput*{length\,$\cdot\cos\alpha$} \rput{-\ChronoSlope}% (!\rBall 4 mul \ChronoSlope sin mul \CVL \rBall 4 mul \ChronoSlope cos mul add)% {\pcline(0,0)(\ChronoLength,0)\ncput*{length=15\,m}} \psarcn[arrows=<-](!\CHL 0){3}{180}{!\ChronoSlopeN} \uput*{2cm}[165](!\CHL 0){$\alpha=30^\circ$} \end{pspicture}%} \vspace{1.5cm} \hspace*{2pt}% only for positioning on paper, otherwise not important \psset{llx=-1,lly=-1,xAxisLabel={$t\mathrm{[sec]}$}, yAxisLabel={$s\mathrm{[m]} \,/\, v\mathrm{[m/sec]}$}}% $ \resizebox{14.1cm}{!}{% \begin{psgraph}[Dy=2,Dx=0.25]{->}(0,0)(2.5,16){13.2cm}{8cm} \psline[linecolor=blue!50,linewidth=2pt]% (! 2 \ChronoLength mul \Acceleration div sqrt -0.2)% (! 2 \ChronoLength mul \Acceleration div sqrt 0.2) \psplot[linecolor=blue,linewidth=2pt]{0}{\tEnd}{% S(t) 0.5 \Acceleration mul x dup mul mul } \psline[linecolor=blue,linewidth=2pt]% (! \tEnd 0.5 \Acceleration mul \tEnd dup mul mul )% (! \tEnd 0.2 add 0.5 \Acceleration mul \tEnd dup mul mul % tEnd+dt S(tEnd) \Acceleration \tEnd mul % vEnd 0.2 mul % vEnd * dt add ) \rput[lb](0.5,14){\color{blue}$s(t)=\frac{1}{2}(\,g\cdot\sin\alpha)\cdot t^2$} \psline[linecolor=blue,linewidth=0.5pt,linestyle=dashed]% (0,\ChronoLength)(! \tEnd \ChronoLength)(!\tEnd 0) \uput*{20pt}[90](! \tEnd 0){\textbf{$t_{End}$}} %$ % \psplot[linecolor=red,linewidth=2pt]{0}{\tEnd}{% Sy(t) 0.5 \Acceleration mul x dup mul mul \ChronoSlope sin mul neg \CVL add} \rput[lb](0.5,13){\color{red}$h(t)=Height-\frac{1}{2}(\,g\cdot\sin^2\alpha)\cdot t^2\sim W_{pot}$} \psline[linecolor=red,linewidth=2pt](!\tEnd 0)(!\tEnd 0.05 add 0) % \psplot[linecolor=green,linewidth=2pt]{0}{\tEnd}{% Sx(t) 0.5 \Acceleration mul x dup mul mul \ChronoSlope cos mul } \rput[lb](0.5,12){\color{green}$w(t)=\frac{1}{2}(\,g\cdot\sin\alpha\cos\alpha)\cdot t^2$} \psplot[linestyle=dashed,linecolor=magenta,linewidth=2pt]{0}{\tEnd}{ \Acceleration x mul } \rput[lb](0.5,11){\color{magenta}$v(t)=g\cdot\sin\alpha\cdot t\sim \sqrt{W_{kin}}$} \psline[linecolor=black!60,linestyle=dashed,linewidth=2pt]% (!0 \Acceleration)(!\tEnd \Acceleration) \rput[lb](0.5,10){\color{black!60}$a(t)=g\cdot\sin\alpha$} \end{psgraph}} \hspace{2.7cm} \resizebox{14.3cm}{!}{% \begin{psgraph}[Dy=2,Dx=0.25]{->}(0,0)(3,16){13.2cm}{8cm} \psline[linecolor=blue!50,linewidth=2pt]% (! 2 \ChronoLength mul \AccelerationRot div sqrt -0.2)% (! 2 \ChronoLength mul \AccelerationRot div sqrt 0.2) \psplot[linecolor=blue,linewidth=2pt]{0}{\tEndRot}{% S(t) 0.5 \AccelerationRot mul x dup mul mul } \psline[linecolor=blue,linewidth=2pt]% (! \tEndRot 0.5 \AccelerationRot mul \tEndRot dup mul mul )% (! \tEndRot 0.2 add 0.5 \AccelerationRot mul \tEndRot dup mul mul % tEnd+dt S(tEnd) \AccelerationRot \tEndRot mul % vEnd 0.2 mul % vEnd * dt add ) \rput[lb](0.5,14){\color{blue}$s(t)=\frac{5}{14}(\,g\cdot\sin\alpha)\cdot t^2$} \psline[linecolor=blue,linewidth=0.5pt,linestyle=dashed]% (0,\ChronoLength)(! \tEndRot \ChronoLength)(!\tEndRot 0) \uput*{20pt}[90](! \tEndRot 0){\textbf{$t_{End}$}}% $ % \psplot[linecolor=red,linewidth=2pt]{0}{\tEndRot}{% Sy(t) 0.5 \AccelerationRot mul x dup mul mul \ChronoSlope sin mul neg \CVL add} \rput[lb](0.5,13){\color{red}$h(t)=Height-\frac{5}{14}(\,g\cdot\sin^2\alpha)\cdot t^2\sim W_{pot}$} \psline[linecolor=red,linewidth=2pt](!\tEndRot 0)(!\tEndRot 0.05 add 0) % \psplot[linecolor=green,linewidth=2pt]{0}{\tEndRot}{% Sx(t) 0.5 \AccelerationRot mul x dup mul mul \ChronoSlope cos mul } \rput[lb](0.5,12){\color{green}$w(t)=\frac{5}{14}(\,g\cdot\sin\alpha\cos\alpha)\cdot t^2$} \psplot[linestyle=dashed,linecolor=magenta,linewidth=2pt]{0}{\tEndRot}{ \AccelerationRot x mul } \rput[lb](0.5,11){\color{magenta}$v(t)=\frac{5}{7}\cdot g\cdot\sin\alpha\cdot t\sim \sqrt{W_{kin}}$} \psline[linecolor=black!60,linestyle=dashed,linewidth=2pt]% (!0 \AccelerationRot)(!\tEndRot \AccelerationRot) \rput[lb](0.5,10){\color{black!60}$a(t)=\frac{5}{7}\cdot g\cdot\sin\alpha$} \end{psgraph}} \end{document}