% Sample file: sampart.tex % The sample article for the amsart document class % with BiBTeX \documentclass{amsart} \usepackage{amssymb,latexsym} \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem*{main}{Main~Theorem} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \theoremstyle{definition} \newtheorem{definition}{Definition} \theoremstyle{remark} \newtheorem*{notation}{Notation} \numberwithin{equation}{section} \begin{document} \title[Complete-simple distributive lattices] {A construction of complete-simple\\ distributive lattices} \author{George~A. Menuhin} \address{Computer Science Department\\ University of Winnebago\\ Winnebago, MN 53714} \email{menuhin@ccw.uwinnebago.edu} \urladdr{http://math.uwinnebago.edu/homepages/menuhin/} \thanks{Research supported by the NSF under grant number 23466.} \keywords{Complete lattice, distributive lattice, complete congruence, congruence lattice} \subjclass[2000]{Primary: 06B10; Secondary: 06D05} \date{March 15, 2006} \begin{abstract} In this note we prove that there exist \emph{complete-simple distributive lattices,} that is, complete distributive lattices in which there are only two complete congruences. \end{abstract} \maketitle \section{Introduction}\label{S:intro} In this note we prove the following result: \begin{main} There exists an infinite complete distributive lattice~$K$ with only the two trivial complete congruence relations. \end{main} \section{The $D^{\langle 2 \rangle}$ construction}\label{S:Ds} For the basic notation in lattice theory and universal algebra, see Ferenc~R. Richardson~\cite{fR82} and George~A. Menuhin~\cite{gM68}. We start with some definitions: \begin{definition}\label{D:prime} Let $V$ be a complete lattice, and let $\mathfrak{p} = [u, v]$ be an interval of $V$. Then $\mathfrak{p}$ is called \emph{complete-prime} if the following three conditions are satisfied: \begin{enumerate} \item $u$ is meet-irreducible but $u$ is \emph{not} completely meet-irreducible;\label{m-i} \item $v$ is join-irreducible but $v$ is \emph{not} completely join-irreducible;\label{j-i} \item $[u, v]$ is a complete-simple lattice.\label{c-s} \end{enumerate} \end{definition} Now we prove the following result: \begin{lemma}\label{L:ds} Let $D$ be a complete distributive lattice satisfying conditions \eqref{m-i} and~\eqref{j-i}. Then $D^{\langle 2 \rangle}$ is a sublattice of $D^{2}$; hence $D^{\langle 2 \rangle}$ is a lattice, and $D^{\langle 2 \rangle}$ is a complete distributive lattice satisfying conditions \eqref{m-i} and~\eqref{j-i}. \end{lemma} \begin{proof} By conditions~\eqref{m-i} and \eqref{j-i}, $D^{\langle 2 \rangle}$ is a sublattice of $D^{2}$. Hence, $D^{\langle 2 \rangle}$ is a lattice. Since $D^{\langle 2 \rangle}$ is a sublattice of a distributive lattice, $D^{\langle 2 \rangle}$ is a distributive lattice. Using the characterization of standard ideals in Ernest~T. Moynahan~\cite{eM57}, $D^{\langle 2 \rangle}$ has a zero and a unit element, namely, $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$. To show that $D^{\langle 2 \rangle}$ is complete, let $\varnothing \ne A \subseteq D^{\langle 2 \rangle}$, and let $a = \bigvee A$ in $D^{2}$. If $a \in D^{\langle 2 \rangle}$, then $a = \bigvee A$ in $D^{\langle 2 \rangle}$; otherwise, $a$ is of the form $\langle b, 1 \rangle$ for some $b \in D$ with $b < 1$. Now $\bigvee A = \langle 1, 1\rangle$ in $D^{2}$ and the dual argument shows that $\bigwedge A$ also exists in $D^{2}$. Hence $D$ is complete. Conditions \eqref{m-i} and~\eqref{j-i} are obvious for $D^{\langle 2 \rangle}$. \end{proof} \begin{corollary}\label{C:prime} If $D$ is complete-prime, then so is $D^{\langle 2 \rangle}$. \end{corollary} The motivation for the following result comes from Soo-Key Foo~\cite{sF90}. \begin{lemma}\label{L:ccr} Let $\Theta$ be a complete congruence relation of $D^{\langle 2 \rangle}$ such that \begin{equation}\label{E:rigid} \langle 1, d \rangle \equiv \langle 1, 1 \rangle \pmod{\Theta}, \end{equation} for some $d \in D$ with $d < 1$. Then $\Theta = \iota$. \end{lemma} \begin{proof} Let $\Theta$ be a complete congruence relation of $D^{\langle 2 \rangle}$ satisfying \eqref{E:rigid}. Then $\Theta = \iota$. \end{proof} \section{The $\Pi^{*}$ construction}\label{S:P*} The following construction is crucial to our proof of the Main Theorem: \begin{definition}\label{D:P*} Let $D_{i}$, for $i \in I$, be complete distributive lattices satisfying condition~\eqref{j-i}. Their $\Pi^{*}$ product is defined as follows: \[ \Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1; \] that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element. \end{definition} \begin{notation} If $i \in I$ and $d \in D_{i}^{-}$, then \[ \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \] is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$-th component is $d$ and all the other components are $0$. \end{notation} See also Ernest~T. Moynahan \cite{eM57a}. Next we verify: \begin{theorem}\label{T:P*} Let $D_{i}$, for $i \in I$, be complete distributive lattices satisfying condition~\eqref{j-i}. Let $\Theta$ be a complete congruence relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist $i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that for all $d \leq c < 1_{i}$, \begin{equation}\label{E:cong1} \langle \dots, 0, \dots,\overset{i}{d}, \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta}, \end{equation} then $\Theta = \iota$. \end{theorem} \begin{proof} Since \begin{equation}\label{E:cong2} \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta}, \end{equation} and $\Theta$ is a complete congruence relation, it follows from condition~\eqref{c-s} that \begin{equation}\label{E:cong} \begin{split} &\langle \dots, \overset{i}{d}, \dots, 0, \dots \rangle\\ &\equiv \bigvee ( \langle \dots, 0, \dots, \overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 ) \equiv 1 \pmod{\Theta}. \end{split} \end{equation} Let $j \in I$ for $j \neq i$, and let $a \in D_{j}^{-}$. Meeting both sides of the congruence \eqref{E:cong2} with $\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle$, we obtain \begin{equation}\label{E:comp} \begin{split} 0 &= \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \wedge \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle\\ &\equiv \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle \pmod{\Theta}. \end{split} \end{equation} Using the completeness of $\Theta$ and \eqref{E:comp}, we get: \[ 0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta}, \] hence $\Theta = \iota$. \end{proof} \begin{theorem}\label{T:P*a} Let $D_{i}$ for $i \in I$ be complete distributive lattices satisfying conditions \eqref{j-i} and~\eqref{c-s}. Then $\Pi^{*} ( D_{i} \mid i \in I )$ also satisfies conditions~\eqref{j-i} and \eqref{c-s}. \end{theorem} \begin{proof} Let $\Theta$ be a complete congruence on $\Pi^{*} ( D_{i} \mid i \in I )$. Let $i \in I$. Define \[ \widehat{D}_{i} = \{ \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle \mid d \in D_{i}^{-} \} \cup \{ 1 \}. \] Then $\widehat{D}_{i}$ is a complete sublattice of $\Pi^{*} ( D_{i} \mid i \in I )$, and $\widehat{D}_{i}$ is isomorphic to $D_{i}$. Let $\Theta_{i}$ be the restriction of $\Theta$ to $\widehat{D}_{i}$. Since $D_{i}\) is complete-simple, so is $\widehat{D}_{i}$, and hence $\Theta_{i}$ is $\omega$ or $\iota$. If $\Theta_{i} = \rho$ for all $i \in I$, then $\Theta = \omega$. If there is an $i \in I$, such that $\Theta_{i} = \iota$, then $0 \equiv 1 \pmod{\Theta}$, hence $\Theta = \iota$. \end{proof} The Main Theorem follows easily from Theorems \ref{T:P*} and~\ref{T:P*a}. \bibliographystyle{amsplain} \bibliography{sampartb} \end{document}