% Sample file: gallery.tex formula template file % Typeset with LaTeX format \documentclass{article} \usepackage{amssymb,latexsym,amsmath} \begin{document} Section 3.1 Formula gallery Formula 1 \[ x \mapsto \{\, c \in C \mid c \leq x \,\} \] Formula 2 \[ \left| \bigcup (\, I_{j} \mid j \in J \,) \right| < \mathfrak{m} \] Formula 3 \[ A = \{\, x \in X \mid x \in X_{i}, \mbox{ for some } i \in I \,\} \] Formula 4 \[ \langle a_{1}, a_{2} \rangle \leq \langle a'_{1}, a'_{2}\rangle \qquad \mbox{if{f}} \qquad a_{1} < a'_{1} \quad \mbox{or} \quad a_{1} = a'_{1} \mbox{ and } a_{2} \leq a'_{2} \] Formula 5 \[ \Gamma_{u'} = \{\, \gamma \mid \gamma < 2\chi, \ B_{\alpha} \nsubseteq u', \ B_{\gamma} \subseteq u' \,\} \] Formula 6 \[ A = B^{2} \times \mathbb{Z} \] Formula 7 \[ \left( \bigvee (\, s_{i} \mid i \in I \,) \right)^{c} = \bigwedge (\, s_{i}^{c} \mid i \in I \,) \] Formula 8 \[ y \vee \bigvee (\, [B_{\gamma}] \mid \gamma \in \Gamma \,) \equiv z \vee \bigvee (\, [B_{\gamma}] \mid \gamma \in \Gamma \,) \pmod{ \Phi^{x} } \] Formula 9 \[ f(\mathbf{x}) = \bigvee\nolimits_{\!\mathfrak{m}} \left(\, \bigwedge\nolimits_{\mathfrak{m}} (\, x_{j} \mid j \in I_{i} \,) \mid i < \aleph_{\alpha} \,\right) \] Formula 10 \[ \left. \widehat{F}(x) \right|_{a}^{b} = \widehat{F}(b) - \widehat{F}(a) \] Formula 11 \[ u \underset{\alpha}{+} v \overset{1}{\thicksim} w \overset{2}{\thicksim} z \] Formula 12 \[ f(x) \overset{ \text{def} }{=} x^{2} - 1 \] Formula 13 \[ \overbrace{a + b + \cdots + z}^{n} \] Formula 14 \[ \begin{vmatrix} a + b + c & uv\\ a + b & c + d \end{vmatrix} = 7 \] \[ \begin{Vmatrix} a + b + c & uv\\ a + b & c + d \end{Vmatrix} = 7 \] Formula 15 \[ \sum_{j \in \mathbf{N}} b_{ij} \hat{y}_{j} = \sum_{j \in \mathbf{N}} b^{(\lambda)}_{ij} \hat{y}_{j} + (b_{ii} - \lambda_{i}) \hat{y}_{i} \hat{y} \] Formula 16 \[ \left( \prod^n_{\, j = 1} \hat x_{j} \right) H_{c} = \frac{1}{2} \hat k_{ij} \det \hat{ \mathbf{K} }(i|i) \] \[ \biggl( \prod^n_{\, j = 1} \hat x_{j} \biggr) H_{c} = \frac{1}{2} \hat{k}_{ij} \det \widehat{ \mathbf{K} }(i|i) \] Formula 17 \[ \det \mathbf{K} (t = 1, t_{1}, \ldots, t_{n}) = \sum_{I \in \mathbf{n} }(-1)^{|I|} \prod_{i \in I} t_{i} \prod_{j \in I} (D_{j} + \lambda_{j} t_{j}) \det \mathbf{A}^{(\lambda)} (\,\overline{I} | \overline{I}\,) = 0 \] Formula 18 \[ \lim_{(v, v') \to (0, 0)} \frac{H(z + v) - H(z + v') - BH(z)(v - v')} {\| v - v' \|} = 0 \] Formula 19 \[ \int_{\mathcal{D}} | \overline{\partial u} |^{2} \Phi_{0}(z) e^{\alpha |z|^2} \geq c_{4} \alpha \int_{\mathcal{D}} |u|^{2} \Phi_{0} e^{\alpha |z|^{2}} + c_{5} \delta^{-2} \int_{A} |u|^{2} \Phi_{0} e^{\alpha |z|^{2}} \] Formula 20 \[ \mathbf{A} = \begin{pmatrix} \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{1} \times \varepsilon_{1}} & (x + \varepsilon_{2})^{2} & \cdots & (x + \varepsilon_{n - 1})^{n - 1} & (x + \varepsilon_{n})^{n}\\[10pt] \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{2} \times \varepsilon_{1}} & \dfrac{\varphi \cdot X_{n, 2}} {\varphi_{2} \times \varepsilon_{2}} & \cdots & (x + \varepsilon_{n - 1})^{n - 1} & (x + \varepsilon_{n})^{n}\\ \hdotsfor{5}\\ \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{n} \times \varepsilon_{1}} & \dfrac{\varphi \cdot X_{n, 2}} {\varphi_{n} \times \varepsilon_{2}} & \cdots & \dfrac{\varphi \cdot X_{n, n - 1}} {\varphi_{n} \times \varepsilon_{n - 1}} & \dfrac{\varphi\cdot X_{n, n}} {\varphi_{n} \times \varepsilon_{n}} \end{pmatrix} + \mathbf{I}_{n} \] Section 3.2. User-defined commands Formula 20 with user-defined commands: \newcommand{\quot}[2]{% \dfrac{\varphi \cdot X_{n, #1}}% {\varphi_{#2} \times \varepsilon_{#1}}} \newcommand{\exn}[1]{(x+\varepsilon_{#1})^{#1}} \[ \mathbf{A} = \begin{pmatrix} \quot{1}{1} & \exn{2} & \cdots & \exn{n - 1}&\exn{n}\\[10pt] \quot{1}{2} & \quot{2}{2} & \cdots & \exn{n - 1} &\exn{n}\\ \hdotsfor{5}\\ \quot{1}{n} & \quot{2}{n} & \cdots & \quot{n - 1}{n} & \quot{n}{n} \end{pmatrix} + \mathbf{I}_{n} \] Section 3.3. Building a formula step-by-step Step 1 $\left[ \frac{n}{2} \right]$ Step 2 \[ \sum_{i = 1}^{ \left[ \frac{n}{2} \right] } \] Step 3 \[ x_{i, i + 1}^{i^{2}} \qquad \left[ \frac{i + 3}{3} \right] \] Step 4 \[ \binom{ x_{i,i + 1}^{i^{2}} }{ \left[ \frac{i + 3}{3} \right] } \] Step 5 $\sqrt{ \mu(i)^{ \frac{3}{2} } (i^{2} - 1) }$ $\sqrt{ \mu(i)^{ \frac{3}{2} } (i^{2} - 1) }$ Step 6 $\sqrt[3]{ \rho(i) - 2 }$ $\sqrt[3]{ \rho(i) - 1 }$ Step 7 \[ \frac{ \sqrt{ \mu(i)^{ \frac{3}{2}} (i^{2} -1) } } { \sqrt[3]{\rho(i) - 2} + \sqrt[3]{\rho(i) - 1} } \] Step 8 \[ \sum_{i = 1}^{ \left[ \frac{n}{2} \right] } \binom{ x_{i, i + 1}^{i^{2}} } { \left[ \frac{i + 3}{3} \right] } \frac{ \sqrt{ \mu(i)^{ \frac{3}{2}} (i^{2} - 1) } } { \sqrt[3]{\rho(i) - 2} + \sqrt[3]{\rho(i) - 1} } \] \[\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i,i+1}^{i^{2}}} {\left[\frac{i+3}{3}\right]}\frac{\sqrt{\mu(i)^{\frac{3} {2}}(i^{2}-1)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}\] %\[\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i,i+1}^{i^{2}}} %{\left[\frac{i+3}{3}\right]}\frac{\sqrt{\mu(i)^{\frac{3} %{2}}}(i^{2}-1)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}\] \end{document}