\documentclass{article} \begin{document} \section*{Some problems for the DVI class} \begin{enumerate} \item Let $f$ be a real-valued, nonnegative function on the positive half-axis. For every positive integer $i$, put $a_i := f(i)$. Assume that $f$ is monotonically decreasing. Then $\sum_{i=1}^{\infty} a_i$ is finite iff $\int_1^{\infty} f(x)\,dx$ is. \item And here's a harder one: consider nonnegative solutions $\epsilon$, $\delta$ of the equation \[ \bigg(1 + \epsilon \Big(1 + \epsilon \big(1 + \epsilon (1 + \epsilon ) \big) \Big) \bigg) = \sqrt{1 + \delta \sqrt {1 + \delta \sqrt {1 + \delta \sqrt{1 + \delta}}}} \] Is it true (and if so, in which sense) that $\epsilon \ll \delta$ as $\delta \rightarrow 0$ ? What happens if the equation is changed to \[ \bigg(1 + \epsilon \Big(1 + \epsilon \big(1 + \epsilon (1 + \epsilon )^2 \big)^2 \Big)^2 \bigg)^2 = \sqrt[4]{1 + \delta \sqrt[4] {1 + \delta \sqrt[4] {1 + \delta \sqrt[4]{1 + \delta}}}} \] \item Prove that the series \[ \sum_{n=1}^{\infty} \frac{(-1)^n\,n}{(n+1)^2} \] does converge. (Hint: don't try to use problem 1). \end{enumerate} Solutions have to be submitted by yesterday, 0730~AM at my office in ascii, latin1 and utf-8 encoding. \end{document}