Maintainer: | Christophe Dutang |

Contact: | Christophe.Dutang at ensimag.fr |

Version: | 2022-03-23 |

URL: | https://CRAN.R-project.org/view=ExtremeValue |

Source: | https://github.com/cran-task-views/ExtremeValue/ |

Contributions: | Suggestions and improvements for this task view are very welcome and can be made through issues or pull requests on GitHub or via e-mail to the maintainer address. For further details see the Contributing guide. |

Citation: | Christophe Dutang (2022). CRAN Task View: Extreme Value Analysis. Version 2022-03-23. URL https://CRAN.R-project.org/view=ExtremeValue. |

Installation: | The packages from this task view can be installed automatically using the ctv package. For example, `ctv::install.views("ExtremeValue", coreOnly = TRUE)` installs all the core packages or `ctv::update.views("ExtremeValue")` installs all packages that are not yet installed and up-to-date. See the CRAN Task View Initiative for more details. |

Extreme values modelling and estimation are an important challenge in various domains of application, such as environment, hydrology, finance, actuarial science, just to name a few. The restriction to the analysis of extreme values may be justified since the extreme part of a sample can be of a great importance. That is, it may exhibit a larger risk potential such as high concentration of air pollutants, flood, extreme claim sizes, price shocks in the four previous topics respectively. The statistical analysis of extreme may be spread out in many packages depending on the topic of application. In this task view, we present the packages from a methodological side.

Applications of extreme value theory can be found in other task views: for financial and actuarial analysis in the Finance task view, for environmental analysis in the Environmetrics task view. General implementation of probability distributions is studied in the Distributions task view.

The maintainers gratefully acknowledge E. Gilleland, M. Ribatet and A. Stephenson for their review for extreme value analysis packages (2013) Kevin Jaunatre for his helpful advice and Achim Zeileis for his useful comments. If you think information is not accurate or if we have omitted a package or important information that should be mentioned here, please send an e-mail or submit an issue or pull request in the GitHub repository linked above.

- Univariate Extreme Value Theory
- Bivariate Extreme Value Theory
- Multivariate Extreme Value Theory
- Classical graphics

### Block Maxima approach:

- The package climextRemes provides functions for fitting GEV via point process fitting for extremes in climate data, providing return values, return probabilities, and return periods for stationary and nonstationary models.
- The package evd provides functions for a wide range of univariate distributions. Modelling function allow estimation of parameters for standard univariate extreme value methods.
- The package evir performs modelling of univariate GEV distributions by maximum likelihood fitting.
- The package extRemes provides EVDs univariate estimation for block maxima model approache by MLE. It also incorporates a non-stationarity through the parameters of the EVDs and L-moments estimation for the stationary case for the GEV distributions. Finally, it has also Bayes estimation capabilities. A separate package in2extRemes provides some GUI interfaces to extRemes.
- The package extremeStat includes functions to fit multiple GEV distributions types available in the package lmomco using linear moments to estimate the parameters.
- The package fExtremes provides univariate data processing and modelling. It includes clustering, block maxima identification and exploratory analysis. The estimation of stationary models for the GEV is provided by maximum likelihood and probability weighted moments.
- The package ismev provides a collection of three functions to fit the GEV (diagnostic plot, MLE, likelihood profile) and follows the book of Coles (2001).

- The package lmom has functions to fit probability distributions from GEV distributions to data using the low-order L-moments.
- The package lmomRFA extends package lmom and implements all the major components for regional frequency analysis using L-moments.
- The package QRM provides a function to fit GEV

in Quantitative Risk Management perspective. - The package Renext provides various functions to fit the GEV distribution using an aggregated marked POT process.
- The package CompRandFld
*(archived)*provides a function to fit a GEV distribution based on maximum likelihood, moment matching.

Summary of GEV density functions and GEV fitting functions

package | density function | location | scale | shape | fit function | argdata | outputS4 | outputS3 | outputS3par |
---|---|---|---|---|---|---|---|---|---|

climextRemes | NA | `location` |
`scale` |
`shape` |
`fit_gev` |
`y` |
NA | `mle` |
NA |

evd | `dgev` |
`loc` |
`scale` |
`shape` |
`fgev` |
`x` |
NA | `estimate` |
NA |

evir | `dgev` |
`mu` |
`sigma` |
`xi` |
`gev` |
`data` |
NA | `par.ests` |
NA |

extraDistr | `dgev` |
`mu` |
`sigma` |
`xi` |
NA | NA | NA | NA | NA |

extRemes | `devd` |
`loc` |
`scale` |
`shape` |
`fevd` |
`x` |
NA | `results` |
`par` |

fExtremes | `dgev` |
`mu` |
`beta` |
`xi` |
`gevFit` |
`x` |
`fit` |
`par.ests` |
NA |

ismev | NA | NA | NA | NA | `gev.fit` |
`xdat` |
NA | `mle` |
NA |

lmomco | `pdfgev` |
`xi` |
`alpha` |
`kappa` |
NA | NA | NA | NA | NA |

QRM | `dGEV` |
`mu` |
`sigma` |
`xi` |
`fit.GEV` |
`maxima` |
NA | `par.ests` |
NA |

revdbayes | `dgev` |
`loc` |
`scale` |
`shape` |
NA | NA | NA | NA | NA |

SpatialExtremes | `dgev` |
`loc` |
`scale` |
`shape` |
NA | NA | NA | NA | NA |

texmex | `dgev` |
`mu` |
`sigma` |
`xi` |
`evm` |
`y` |
NA | `coefficients` |
NA |

TLMoments | `dgev` |
`loc` |
`scale` |
`shape` |
NA | NA | NA | NA | NA |

### Peak-Over-Threshold by GPD approach:

- The package ercv provides a methodology to fit a generalized Pareto distribution, together with an automatic threshold selection algorithm.
- The package eva provides Goodness-of-fit tests for selection of r in the r-largest order statistics and threshold selection.
- The package evd includes univariate estimation for GPD approach by MLE.
- The package evir performs modelling of univariate GPD by maximum likelihood fitting.
- The package extRemes provides EVDs univariate estimation for GPD approach by MLE. A non-stationarity through the parameters of the EVDs and L-moments estimation for the stationnary case for the GPD distributions is also included.
- The package extremeStat includes functions to fit multiple GPD distributions types available in the package lmomco using linear moments to estimate the parameters.
- The package fExtremes includes the estimation of stationary models for the GPD by maximum likelihood and probability weighted moments.
- The package ismev provides a collection of three functions to fit the GPD (diagnostic plot, MLE over a range of thresholds, likelihood profile) and follows the book of Coles (2OO1).

- The package lmom includes functions to fit probability distributions from GPD to data using the low-order L-moments.
- The package lmomRFA extends package lmom and implements all the major components for regional frequency analysis using L-moments.
- The package mev provides functions to simulate data from GPD and multiple method to estimate the parameters (optimization, MLE, Bayesian methods and the method used in the ismev package).

- The package POT provides multiple estimators of the GPD parameters (MLE, L-Moments, method of median, minimum density power divergence). L-moments diagrams and from the properties of a non-homogeneous Poisson process techniques are provided for the selection of the threshold.
- The package QRM provides functions to fit and graphically assess the fit of the GPD.
- The package ReIns provides a function to fit the GPD distribution as well as the extended Pareto distribution.

- The package Renext provides various functions to fit and assess the GPD distribution using an aggregated marked POT process.
- The package SpatialExtremes provides a function to fit the GPD distribution.

- The package SpatialExtremes provides different approaches for fitting/selecting the threshold in generalized Pareto distributions. Most of them are based on minimizing the AMSE-criterion or at least by reducing the bias of the assumed GPD-model.
- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.

Summary of GPD density functions and GPD fitting functions

package | density function | location | scale | shape | fit function | argdata | argthres | outputS4 | outputS3 | outputS3par |
---|---|---|---|---|---|---|---|---|---|---|

ercv | NA | NA | NA | NA | `fitpot` |
`data` |
`threshold` |
NA | `coeff` |
NA |

eva | `dgpd` |
`loc` |
`scale` |
`shape` |
`gpdFit` |
`data` |
`threshold` |
NA | `par.ests` |
NA |

evd | `dgpd` |
`loc` |
`scale` |
`shape` |
`fpot` |
`x` |
`threshold` |
NA | `estimate` |
NA |

evir | `dgpd` |
`mu` |
`beta` |
`xi` |
`gpd` |
`data` |
`threshold` |
NA | `par.ests` |
NA |

extraDistr | `dgpd` |
`mu` |
`sigma` |
`xi` |
NA | NA | NA | NA | NA | NA |

extRemes | `devd` |
`loc` |
`scale` |
`shape` |
`fevd` |
`x` |
`threshold` |
NA | `results` |
`par` |

fExtremes | `dgpd` |
`mu` |
`beta` |
`xi` |
`gpdFit` |
`x` |
`u` |
`fit` |
`fit` |
`par` |

ismev | NA | NA | NA | NA | `gpd.fit` |
`xdat` |
`threshold` |
NA | `mle` |
NA |

lmomco | `pdfgpa` |
`xi` |
`alpha` |
`kappa` |
NA | NA | NA | NA | NA | NA |

mev | NA | NA | `scale` |
`shape` |
`fit.gpd` |
`xdat` |
`threshold` |
NA | `estimate` |
NA |

POT | `dgpd` |
`loc` |
`scale` |
`shape` |
`fitgpd` |
`data` |
`threshold` |
NA | `fitted.values` |
NA |

QRM | `dGPD` |
NA | `beta` |
`xi` |
`fit.GPD` |
`data` |
`threshold` |
NA | `par.ests` |
NA |

ReIns | `dgpd` |
`mu` |
`sigma` |
`gamma` |
`GPDfit` |
`data` |
NA | NA | NA | NA |

Renext | `dGPD` |
`loc` |
`scale` |
`shape` |
`fGPD` |
`x` |
NA | NA | `estimate` |
NA |

revdbayes | `dgp` |
`loc` |
`scale` |
`shape` |
NA | NA | NA | NA | NA | NA |

SpatialExtremes | `dgpd` |
`loc` |
`scale` |
`shape` |
`gpdmle` |
`x` |
`threshold` |
NA | NA | NA |

tea | `dgpd` |
`loc` |
`scale` |
`shape` |
`gpdFit` |
`data` |
`threshold` |
NA | `par.ests` |
NA |

texmex | `dgpd` |
`u` |
`sigma` |
`xi` |
`evm` |
`y` |
`th` |
NA | `coefficients` |
NA |

TLMoments | `dgpd` |
`loc` |
`scale` |
`shape` |
NA | NA | NA | NA | NA | NA |

### Extremal index estimation approach:

- The package evd implements univariate estimation for extremal index estimation approach.
- The package evdbayes
*(archived)*includes point process characterisation - the package evir includes extremal index estimation.
- The package extRemes also provides EVDs univariate estimation for the block maxima and poisson point process approache by MLE. It also incorporates a non-stationarity through the parameters.
- The package extremefit provides modelization of exceedances over a threshold in the Pareto type tail. It computes an adaptive choice of the threshold.

- The package ExtremeRisks provides risk measures such as Expectile, Value-at-Risk, for univariate independent observations and temporal dependent observations. The statistical inference is performed through parametric and non-parametric estimators. Inferential procedures such as confidence intervals, confidence regions and hypothesis testing are obtained by exploiting the asymptotic theory.

- The package fExtremes provides univariate data processing and modelling. It includes extremal index estimation.
- The package mev provides extremal index estimators based on interexceedance time (MLE and iteratively reweigthed least square estimators of Suveges (2007)). It provides the information matrix test statistic proposed by Suveges and Davison (2010) and MLE for the extremal index.
- The package ReIns provides functions for extremal index and splicing approaches in a reinsurance perspective.
- The package ptsuite implements various estimation methods for the shape parameter of Pareto distributed data.

### Regression models:

- The package VGAM offers additive modelling for extreme value analysis. The estimation for vector generalised additive models is performed using a backfitting algorithm and employs a penalized likelihood for the smoothing splines. It is the only package known to the authors that performs additive modelling for a range of extreme value analysis. It includes both GEV and GP distributions.
- The package ismev provides a collection of functions to fit a point process with explanatory variables (diagnostic plot, MLE) and follows the book of Coles (2001).
- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.

### Mixture distribution or composite distribution approach:

- The package evmix provides kernel density estimation and extreme value modelling. It also implements mixture extreme value models and includes help on the choice of the threshold within those models using MLE: either parametric / GPD, semi-parametric / GPD or non-parametric / GPD.

### Bayesian approach:

- The package evdbayes
*(archived)*provides the Bayesian analysis of univariate extreme value models using MCMC methods. It uses likelihood to estimate the parameters of the GPD/GEV distributions. - The package extRemes also provides bayesian estimation.

- The package MCMC4Extremes proposes some functions to perform posterior estimation for some distribution, with an emphasis to extreme value distributions.
- The package revdbayes provides the Bayesian analysis of univariate extreme value models using direct random sampling from the posterior distribution, that is, without using MCMC methods.

- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.

- The package evdbayes

package | function | models[^1] | covariates | sampling[^2] | prior choice | generic functions |
---|---|---|---|---|---|---|

`evdbayes` |
`posterior` |
1–4 | loc./thresh | RWMH | multiple | |

`extRemes` |
`fevd` |
1–4,* | all | RWMH | custom | plot, summary |

`MCMC4Extremes` |
`ggev` ,`gpdp` |
1–2,* | no | RWMH | fixed | plot, summary |

`revdbayes` |
`rpost` |
1–4 | no | RU | custom | plot, summary |

`texmex` |
`evm` |
1–2,* | all | IMH | gaussian | plot, summary, density,correlogram |

[^1]model family: generalized extreme value distribution (1), generalized Pareto distribution (2), inhomogeneous Poisson process (3), order statistics/r-largest (4) or custom/other (*).

[^2]sampling: random walk Metropolis–Hastings (RWMH), exact sampling ratio-of-uniform (RU), independent Metropolis–Hastings (IMH)

### Threshold selection:

- The package threshr deals with the selection of thresholds using a Bayesian leave-one-out cross-validation approach in order to compare the predictive performance resulting from a set of thresholds.
- The package ercv provides a methodology to fit a generalized Pareto distribution, together with an automatic threshold selection algorithm.
- The package POT provides multiple estimators of the GPD parameters (MLE, L-Moments, method of median, minimum density power divergence). L-moments diagrams and from the properties of a non-homogeneous Poisson process techniques are provided for the selection of the threshold.

### Maxima approach:

- The package evd provides functions for multivariate distributions. Modelling function allow estimation of parameters for class of bivariate extreme value distributions. Both parametric and non-parametric estimation of bivariate EVD can be performed.
- Nonparametric estimation of the spectral measure using a sample of pseudo-angles is available in the package extremis in the bivariate setting.

### Peak-Over-Threshold by GPD approach:

- The package evd implements bivariate threshold modelling using censored likelihood methodology.
- The single multivariate implementation in the package evir is a bivariate threshold method.
- The package extremefit provides modelization of exceedances over a threshold in the Pareto type tail depending on a time covariate. It provides an adaptive choice of the threshold depending of the covariate.
- The package POT provides estimators of the GPD parameters in the bivariate case.

### Tail dependence coefficient approach:

- The package RTDE implements bivariate estimation for the tail dependence coefficient.

### Copula approach:

- The package copula provides utilities for exploring and modelling a wide range of commonly used copulas, see also the Distributions task view (copula section).

- The pacage fCopulae provides utilities to fit bivariate extreme copulas.

- The package copula provides utilities for exploring and modelling a wide range of commonly used copulas, see also the Distributions task view (copula section).

### Multivariate Maxima:

- The package lmomco is similar to the lmom but also implements recent advances in L-moments estimation, including L-moments for censored data, trimmed L-moments and L-moment for multivariate analysis for GEV distributions.
- The package SpatialExtremes provides functions to fit max-stable processes to data using pairwise likelihood or spatial GEV models possibly with covariates.
- The package CompRandFld
*(archived)*has methods for fitting max-stable processes using pairwise composite likelihood for spatial models.

- A set of procedures for modelling parametrically and non-parametrically the dependence structure of multivariate extreme-values is provided in ExtremalDep.
- The BMAmevt package implements a Bayesian nonparametric model that uses a trans-dimensional Metropolis algorithm for fitting a Dirichlet mixture to the spectral measure based on pseudo-angles.

### Peak-Over-Threshold by GPD approach:

- The package lmomco also implements L-moments multivariate analysis for GPD distributions.
- The package graphicalExtremes develops a

statistical methodology for sparse multivariate extreme value models. Methods are provided for exact simulation and statistical inference for multivariate Pareto distributions on graphical structures.

### Tail dependence coefficient approach:

- The package SpatialExtremes provides functions to estimate non parametrically the extremal coefficient function as well as model checking and selection.
- The package ExtremeRisks provides risk measures such as Expectile, Value-at-Risk, for multivariate independent marginals.
- The package tailDepFun provides functions implementing minimal distance estimation methods for parametric tail dependence models.

### Copula approach:

- The package SpatialExtremes provides functions to estimate a copula-based model to spatial extremes as well as model checking and selection.
- The package copula provides utilities for exploring and modelling a wide range of commonly used copulas. Extreme value copulas and non-parametric estimates of extreme value copulas are implemented. See also the Distributions task view (copula section).
- The package SimCop has functionalities for simulation of some bivariate extreme value distributions and the multivariate logistic model, or Gumbel copula.

### Bayesian approach:

- The package SpatialExtremes provides tools for the statistical modelling of spatial extremes using Bayesian hierarchical models (fitting, checking, selection).
- The package ExtremalDep also provides function to fit a multivariate extreme value using Bayesian inference.

### Statistical tests:

- The copula package includes three tests of max-stability assumption.

Graphics for univariate extreme value analysis

Graphic name | Packages | Function names |
---|---|---|

Dispersion index plot | POT | `diplot` |

Distribution fitting plot | extremeStat | `distLplot` |

Hill plot | evir | `hill` |

Hill plot | evmix | `hillplot` |

Hill plot | extremefit | `hill` |

Hill plot | QRM | `hillPlot` |

Hill plot | ReIns | `Hill` |

Hill plot | ExtremeRisks | `HTailIndex` |

L-moment plot | POT | `lmomplot` |

Mean residual life plot | POT | `mrlplot` |

Mean residual life plot | evd | `mrlplot` |

Mean residual life plot | evir | `meplot` |

Mean residual life plot | evmix | `mrlplot` |

Mean residual life plot | ismev | `mrl.plot` |

Mean residual life plot | QRM | `MEplot` |

Mean residual life plot | ReIns | `MeanExcess` |

Pickand’s plot | evmix | `pickandsplot` |

QQ Pareto plot | POT | `qplot` |

QQ Pareto plot | RTDE | `qqparetoplot` |

QQ Pareto plot | QRM | `plotFittedGPDvsEmpiricalExcesses` |

QQ Pareto plot | ReIns | `ParetoQQ` |

QQ Exponential plot | QRM | `QQplot` |

QQ Exponential plot | ReIns | `ExpQQ` |

QQ Exponential plot | Renext | `expplot` |

QQ Lognormal plot | ReIns | `LognormalQQ` |

QQ Weibull plot | ReIns | `WeibullQQ` |

QQ Weibull plot | Renext | `weibplot` |

Risk measure plot | QRM | `RMplot` |

Threshold choice plot | evd | `tcplot` |

Threshold choice plot | evmix | `tcplot` |

Threshold choice plot | POT | `tcplot` |

Threshold choice plot | QRM | `xiplot` |

Return level plot | POT | `retlev` |

Return level plot | POT | `Return` |

Return level plot | Renext | `plot,lines` |

Graphics for multivariate extreme value analysis

Graphic | Package | Function |
---|---|---|

Angular densities plot | `ExtremalDep` |
`AngDensPlot` |

Bivariate threshold choice plot | `evd` |
`bvtcplot` |

Dependence measure (chi) plot | `POT` |
`chimeas` |

Dependence measure (chi) plot | `evd` |
`chiplot` |

Dependence diagnostic plot within time series | `POT` |
`tsdep.plot` |

Extremal index plot | `POT` |
`exiplot` |

Extremal index plot | `evd` |
`exiplot` |

(2D)map for a max-stable process | `SpatialExtremes` |
`map` |

madogram for a max-stable process | `SpatialExtremes` |
`madogram` |

madogram for a max-stable process | `ExtremalDep` |
`madogram` |

F-madogram for a max-stable process | `SpatialExtremes` |
`fmadogram` |

lambda-madogram for a max-stable process | `SpatialExtremes` |
`lmadogram` |

Multidimensional Hill plot | `ExtremeRisks` |
`MultiHTailIndex` |

Pickands’ dependence function plot | `POT` |
`pickdep` |

Pickands’ dependence function plot | `ExtremalDep` |
`bbeed` |

QQ-plot for the extremal coefficient | `SpatialExtremes` |
`qqextcoeff` |

Spectral density plot | `POT` |
`specdens` |

variogram for a max-stable fields | `CompRandFld` |
`EVariogram` |

- E. Gilleland, M. Ribatet, A. Stephenson (2013). A Software Review for Extreme Value Analysis,
*Extremes*,**16**, 103-119. - R.-D. Reiss, M. Thomas (2007).
*Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields*, Springer-Verlag. - L. de Haan, A. Ferreira (2006).
*Extreme Value Theory: An Introduction*, Springer-Verlag. - Stephenson AG, Gilleland E (2006). Software for the analysis of extreme events: The current state and future directions.
*Extremes*,**8**, 87–109. - J. Beirlant, Y. Goegebeur, J. Teugels, J. Segers (2004).
*Statistics of Extremes: Theory and Applications*, John Wiley & Sons. - B. Finkenstaedt, H. Rootzen (2004).
*Extreme Values in Finance, Telecommunications, and the Environment*, Chapman & Hall/CRC. - S. Coles (2001).
*An Introduction to Statistical Modeling of Extreme Values*, Springer-Verlag. - P. Embrechts, C. Klueppelberg, T. Mikosch (1997).
*Modelling Extremal Events for Insurance and Finance*, Springer-Verlag. - S.I. Resnick (1987).
*Extreme Values, Regular Variation and Point Processes*, Springer-Verlag. - Smith, R.L. (1987). Approximations in extreme value theory. Technical report 205, Center for Stochastic Process, University of North Carolina, 1–34.
- Suveges (2007) Likelihood estimation of the extremal index. Extremes, 10(1), 41-55.
- Suveges and Davison (2010), Model misspecification in peaks over threshold analysis. Annals of Applied Statistics, 4(1), 203-221.

Core: | evd, evir. |

Regular: | BMAmevt, climextRemes, copula, ercv, eva, evmix, ExtremalDep, extremefit, ExtremeRisks, extRemes, extremeStat, extremis, fCopulae, fExtremes, graphicalExtremes, in2extRemes, ismev, lmom, lmomco, lmomRFA, MCMC4Extremes, mev, POT, ptsuite, QRM, ReIns, Renext, revdbayes, RTDE, SimCop, SpatialExtremes, tailDepFun, texmex, threshr, VGAM. |

Archived: | CompRandFld, evdbayes. |

- Gilleland, Eric, Mathieu Ribatet, and Alec G. Stephenson, A software review for extreme value analysis Extremes 16(1) (2013): 103-119
- Alec G. Stephenson and Eric Gilleland, Software for the analysis of extreme events: The current state and future directions. Extremes 8:87–109 (2006)

- CRAN Task View: Distributions
- CRAN Task View: Environmetrics
- CRAN Task View: Finance