
Intro to optimx

John C. Nash (nashjc at uottawa.ca)

2023-07-25

Abstract
optimx is a wrapper package to allow the multiple methods for function minimization available in R and
CRAN packages to be used through a consistent syntax. This vignette shows how it may be used to simplify
the use of different solvers and to discover which ones may be suitable for particular types of problems.

This vignette was written to accompany the 2023 major overhaul of the package. However, it should be noted
that the package is extensible and solvers and other features are being added regularly.

Background
Function minimization (or maximization), possibly constrained, is an important computational problem. The
CRAN package optimx (John C. Nash and Varadhan (2011)) aims to provide a unified interface to optim(),
nlm() and nlminb() from the base R distribution and a number of other solvers from CRAN packages or
from optimx itself. The collection of solvers can be extended, as discussed in a companion vignette. There
are also nonlinear least squares solvers nls() and some in CRAN packages such as nlsr and minpack.lm
(John C Nash and Duncan Murdoch (2023), Elzhov et al. (2012)) that will not be discussed here except
when there is overlap with particular matters at hand.

“Optimization”
The general nonlinear optimization problem considers the minimization or maximization of an objective
function subject to equality and inequality constraints that are both linear and nonlinear. It comprehends
the field of mathematical programming, and solution of nonlinear equations overlaps many methods.

In R, what is referred to as “optimization”, including the original optim() function and its replacement in
this package, only allows for the minimization or maximization of nonlinear functions of multiple parameters
subject to at most bounds constraints. Many methods offer extra facilities, but apart from masks (fixed
parameters), such features are likely inaccessible via this package without some customization of the code.
Even masks are specified by bounds constraints where the upper and lower bounds coincide. This will
generally “work” for methods that support bounds constraints, but a few methods explicitly recognize masks
and avoid extra computational work. Where possible, the solvers supplied as part of optimx try to be efficient
in this way.

For our purposes, we wish to find the vector of (real valued) parameters bestpar that minimize an objective
function specified by an R function fn(par, ...) where par is the general vector of parameters, initially
provided as a vector that is either the first argument to optimr() or else specified by a par= argument. The
dot arguments are additional information needed to compute the function. Function minimization methods
may require information on the gradient or Hessian of the function, which we will assume to be furnished,
if required, by functions gr(par, ...) and hess(par, ...). Bounds or box constraints, if they are to be
imposed, are given in the vectors lower and upper.

As far as I am aware, all the optimizers included in the optimx package are local minimizers. The “SANN”
method of optim(), a simulated annealing minimization tool, is excluded from the set of methods used by

1

optimr() as it performs badly and simply runs for a specified number of function evaluations. That is, it
does not necessarily return a solution.

Thus the solvers in optimx attempt to find a local minimum of the objective function. Global optimization
is a much bigger problem. Even finding a local minimum can often be difficult, and to that end, the optimx
package offers the function kktchk() to test the Kuhn-Karush-Tucker conditions. These conditions essentially
require that a local minimum has a zero gradient and all nearby points on the function surface have a greater
function value. There are many details that are ignored in this very brief explanation.

Intent of package optimx

The goals in preparing optimx are

• to provide a unified interface to allow the execution of many optimization solvers through a common
syntax, thereby allowing the solver to be changed with the alteration of the method name

• to allow several solvers to be applied in a single call so that they may be compared in their performance
on a single problem

• to provide for easier examination of different features of optimization solvers, for example, different
gradient or Hessian approximations, or their use or omission. That is, to provide a framework for
development of methods or programs.

Note that these goals point to different modes of use of package optimx.

Though unstated, a consideration throughout is to code the package and its components as much as possible
in R and not call other languages. Given the large number of solvers that are built in other computing
environments, this is aspirational rather than doctrinal.

Unifying the syntax
Because the syntax for optim() is relatively convenient and already spans five different multiparameter
minimization methods (or solvers), this syntax has been adopted for optimx::optimr().

The optim() syntax is

optim(par, fn, gr = NULL, ...,
method = "string_name_of_method",
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

Here par is the vector of starting parameters for the function fn which has an (optional) gradient function
gr. method specifies the solver to be used.

The benefits of a unified syntax are seen immediately if we examine how nlm() and nlminb() must be called,
which we leave to the reader.

Available solvers

optimx provides access to a number of solvers. It is also relatively easy to extend, with almost all the work in
the file optimr.R, though ctrldefault.R and NAMESPACE need modification too. The list of solvers available
can be displayed as follows, in fact by testing to see if they are installed and available.
library(optimx)
checkallsolvers()

method BFGS (BFGS) from package stats is available
method CG (CG) from package stats is available
method Nelder-Mead (Nelder-Mead) from package stats is available
method L-BFGS-B (L-BFGS-B) from package stats is available

2

method nlm (nlm) from package stats is available
method nlminb (nlminb) from package stats is available
method lbfgsb3c (lbfgsb3c) from package lbfgsb3c is available
method Rcgmin (Rcgmin) from package optimx is available
method Rtnmin (Rtnmin) from package optimx is available
method Rvmmin (Rvmmin) from package optimx is available
method snewton (snewton) from package optimx is available
method snewtonm (snewtonm) from package optimx is available
method spg (spg) from package BB is available
method ucminf (ucminf) from package ucminf is available
method newuoa (newuoa) from package minqa is available
method bobyqa (bobyqa) from package minqa is available
method uobyqa (uobyqa) from package minqa is available
method nmkb (nmkb) from package dfoptim is available
method hjkb (hjkb) from package dfoptim is available
method hjn (hjn) from package optimx is available
method lbfgs (lbfgs) from package lbfgs is available
method subplex (subplex) from package subplex is available
method ncg (ncg) from package optimx is available
method nvm (nvm) from package optimx is available
method mla (mla) from package marqLevAlg is available
method slsqp (slsqp) from package nloptr is available
method tnewt (tnewton) from package nloptr is available
method anms (anms) from package pracma is available
method pracmanm (nelder_mead) from package pracma is available
method nlnm (neldermead) from package nloptr is available

NULL

checkallsolvers returns a list of missing or uninstalled solvers, so a NULL tells us all are ready to use.
Note that solvers can generally be categorized by whether they use the function, the function and gradient,
or the function, gradient and hessian. Another nomenclature is “direct search”, “descent”, and “Newton-like”
methods.

Also note that many of the solvers available in optimx() are NOT very good, or are experimental, so replete
with weaknesses or errors. Part of the goal of the package is to allow for testing and comparison of solvers,
and to allow their improvement.

An example

library(optimx)
sqmod<-function(z, xx){

nn<-length(z)
yy<-xxˆ(1:nn)
f<-sum((yy-z)ˆ2)
f

}
sqmod.g <- function(z, xx){

nn<-length(z)
yy<-xxˆ(1:nn)
gg<- 2*(z - yy)

}

z0 <- rep(0.1, 2) # initial parameters
sol <- optimr(par=z0, fn=sqmod, gr=sqmod.g, method="nvm", xx=1.5)

3

proptimr(sol)

Result sol (nvm -> sqmod) calc. min. = 2.46519e-31 at
1.5 2.25
After 4 fn evals, and 3 gr evals and 0 hessian evals
Termination code is 2 : NA
##

The function proptimr() is used to give a tidy output to the result of running optimr().

Excluded [1D] solver

There is also method “Brent” in optim() that is a one-parameter, or one-dimensional ([1D]), minimizer.
Separately, base R has the one-parameter function optimize(). In the development of optimx, [1D] problems
have not been a priority, though there is the illustrative script onepar_test.R in the inst/doc/legacy-demo
directory of package optimx. At the time of writing, we advise the use of optimize().

More than one method at a time
The method argument to optimr() must actually be a single character string. An attempt to call two solvers
by, say,

t2 <- optim(par=c(2,2), fn=fr, gr=grr, method=c("BFGS", "Nelder-Mead"))

generates the message

Error in match.arg(method) : 'arg' must be of length 1

In package optimx, the function optimr() takes one method at a time. However, the function opm() allows
method to be a vector of character strings, and returns the results in a data frame, allowing easy comparison
of different solvers when presented with a single problem. Moreover, there are special values that may be
given to method, namely “ALL” and “MOST”. The former tries all currently available methods as listed in
the returned object allmeth from function ctrldefault(), while the latter uses a more reasonable subset
of these. Note that a call to ctrldefault() needs an integer argument that approximates the number of
parameters in the objective function to be minimized.
solm <- opm(par=z0, fn=sqmod, gr=sqmod.g, method="MOST", xx=1.5)

Warning in opm(par = z0, fn = sqmod, gr = sqmod.g, method = "MOST", xx = 1.5):
'snewtonm' removed from 'method' -- no hess()
cat("Result of applying opm() to ",attr(solm,"fname"))

Result of applying opm() to sqmod
print(summary(solm, order=value))

p1 s1 p2 s2 value fevals gevals hevals conv
nlm 1.500000 2.250000 0.000000e+00 6 6 0 0
lbfgsb3c 1.500000 2.250000 0.000000e+00 3 3 0 0
Rtnmin 1.500000 2.250000 0.000000e+00 3 3 0 0
spg 1.500000 2.250000 0.000000e+00 21 4 0 0
subplex 1.500000 2.250000 0.000000e+00 337 0 0 0
ncg 1.500000 2.250000 0.000000e+00 4 2 0 0
slsqp 1.500000 2.250000 0.000000e+00 6 5 0 0
tnewt 1.500000 2.250000 0.000000e+00 5 4 0 0
nlminb 1.500000 2.250000 4.930381e-32 5 3 0 0
ucminf 1.500000 2.250000 4.930381e-32 4 4 0 0

4

Rcgmin 1.500000 2.250000 2.465190e-31 4 2 0 0
nvm 1.500000 2.250000 2.465190e-31 4 3 0 2
Rvmmin 1.500000 2.250000 2.465190e-31 4 3 0 2
pracmanm 1.500000 2.250000 4.435370e-28 199 0 0 0
bobyqa 1.500000 2.250000 7.038638e-20 35 0 0 0
mla 1.500000 2.250000 5.466920e-17 7 20 0 0
nlnm 1.500001 2.250000 1.313518e-12 115 0 0 0
Nelder-Mead 1.500161 2.249910 3.393324e-08 87 0 0 0
nmkb 1.499130 2.250543 1.052278e-06 47 0 0 0
kkt1 kkt2 xtime
nlm TRUE TRUE 0.001
lbfgsb3c TRUE TRUE 0.001
Rtnmin TRUE TRUE 0.002
spg TRUE TRUE 0.001
subplex TRUE TRUE 0.001
ncg TRUE TRUE 0.001
slsqp TRUE TRUE 0.002
tnewt TRUE TRUE 0.001
nlminb TRUE TRUE 0.000
ucminf TRUE TRUE 0.001
Rcgmin TRUE TRUE 0.001
nvm TRUE TRUE 0.000
Rvmmin TRUE TRUE 0.001
pracmanm TRUE TRUE 0.003
bobyqa TRUE TRUE 0.001
mla TRUE TRUE 0.002
nlnm TRUE TRUE 0.002
Nelder-Mead TRUE TRUE 0.000
nmkb FALSE TRUE 0.003

Note that the summary offers a way to order the results. Here we have chosen to order them from the smallest
minimum found, so that the first result could be considered the best, though we have seen cases where the
lowest solution value is for a set of parameters that is infeasible. We caution that timing results are generally
unreliable when they are as small as these, and also we have only a single timing.

Using named arguments

R allows a user to specify the arguments to a function like optim or, particularly, optimr by name, and to do
so in any order. We recommend naming arguments, as using the position of arguments can, by very simple
mistakes, get wrong answers. (We have done it ourselves!) One such error is to include the gr argument
when the solver does not use gradients and the function is not defined. We do admin, however, positional
arguments do allow for shorter calling statements.

An equally annoying error, however, is to use the WRONG argument name. For example, in one case it took
me several hours to realize a very strange error was being caused by using start=strt rather than par=strt
in calling the snewtonm() function. This may argue for calling the solvers via optimr as a way to avoid such
naming errors.

Examples of usage

There are a number of examples and tests in the directory inst/doc/examples/, as well as in the tests
directory and included in the manual (.Rd) files for the functions in the optimx package. Most of these
may be run via the script runex.R in this directory. The script fhop.R requires user input and also the
non-CRAN package funconstrain from https://github.com/jlmelville/funconstrain. However, it provides a
quite diverse set of well-established tests that include gradients and hessians in analytic form. The script

5

https://github.com/jlmelville/funconstrain

HessQuality.R uses the same examples and also requires user input to illustrate measures of quality for
computed (possibly approximate) Hessians.

Additional resources

The directory inst/doc/legacy-demo/ contains the demonstration directory that was previously part of the
package when the optimx() function was the primary (but now deprecated) tool. Currently, there is no
demonstration directory, as I have found running the demo() takes too much keyboard entry for simple use.
Instead the inst/doc/examples/ can be loaded and run. They can be executed line by line in Rstudio IDE
(https://www.rstudio.com/categories/rstudio-ide/).

Developments of the optimx() function
optimx is now a mature package that has gone through several revisions since it was first set up in 2008.
Users will note that there is much overlap between the original function optimx() (kept in the package for
legacy uses) and the current opm(). The reasons for restructuring to two functions optimr() and opm() are
as follows:

• optimx has a large set of features, some of which conflict, which increase the complexity of maintenance;

• opm() is built upon optimr() which is designed to call any one of a set of solvers, so extensions reside
largely in the optimr() function;

• there are small but possibly important differences in the result structures from optimx() and opm().
For example, opm() does not report the number of “iterations” in the variable niter because such a
value is not returned by either the original optim() or newer optimr() functions.

• optimr() is structured so it can use the original optim() syntax and result format, together with the
parscale control allowing parameter scaling for all solvers. optimx() only allows parscale for some
solvers.

• optimx() was intended to have features to allow for calling solvers sequentially to create polyalgorithms,
as well as for using multiple vectors of starting parameters. The combination of such options may cause
unexpected behaviour, and these features are now deprecated.

• polyopt() (built on optimr()) allows for running solvers sequentially to create a polyalgorithm. For
example, one may want to run a number of cycles of method Nelder-Mead, followed by the gradient
method Rvmmin.

• multistart() allows multiple starting vectors to be used in a single call.

Running multiple methods – opm()

It is often convenient to be able to run multiple optimization methods on the same function and gradient. To
this end, the function opm() is supplied. The output of this by default includes the KKT tests and other
information in a data frame, and there are convenience methods summary() and coef() to allow for display
or extraction of results.

opm() is extremely useful for comparing methods easily. It is not an efficient way to run problems, even
though it can be extremely helpful in deciding which method to apply to a class of problems.

An important use of opm() is to discover cases where methods fail on particular problems and initial conditions
of parameters and settings. This has proven over time to help discover weaknesses and bugs in codes for
different methods. If you find such cases, and your code and data can be rendered as an easily executed
example, I strongly recommend posting it to one of the R lists or communicating with the package maintainers.
That really is one of the few ways that our codes come to be improved.

To allow for ease of use, opm() can take as its method argument the single character strings “ALL” or “MOST”
(upper case). The first of these uses all available methods, the second a selection of “most” of the methods, in

6

https://www.rstudio.com/categories/rstudio-ide/

both cases conditional on bounds and other characteristics of the problem. The use of “ALL” is disparaged,
as there are a number of legacy methods that have been superceded by very similar solvers with (hopefully)
superior performance. The set of solvers defined by “MOST” is intended to serve as a way to examine the
performance of different classes of solver on a problem without excessive duplication.

Polyalgorithms – multiple methods in sequence
Function polyopt() is intended to allow for attempts to optimize a function by running different methods in
sequence. The call to polyopt() differs from that of optimr() or opm() in the following respects:

• The method character argument or character vector is replaced by the methcontrol array which has a
set of triplets consisting of a method name (character), a function evaluation count and an iteration
count.

• the control$maxfeval and control$maxit are replaced, if present, with values from the methcontrol
argument list.

The methods in methcontrol are executed in the sequence in which they appear. Each method runs until
either the specified number of iterations (typically gradient evaluations) or function evaluations have been
completed, or termination tests cause the method to be exited, after which the best set of parameters so far
is passed to the next method specified. If there is no further method, polyopt() exits.

Polyalgorithms may be useful because some methods such as Nelder-Mead are fairly robust and efficient in
finding the region in which a minimum exists, but then very slow to obtain an accurate set of parameters.
Gradients at points far from a solution may be such that gradient-based methods do poorly when started far
away from a solution, but are very efficient when started “nearby”. Caution, however, is recommended. Such
approaches need to be tested for particular applications.

My experience is that the hopes of users are generally much more optimistic than the eventual results of
applying ideas like those in polyopt().
fnR <- function (x, gs=100.0)
{

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n - 1)]
sum(gs * (x1 - x2ˆ2)ˆ2 + (1 - x2)ˆ2)

}
grR <- function (x, gs=100.0)
{

n <- length(x)
g <- rep(NA, n)
g[1] <- 2 * (x[1] - 1) + 4*gs * x[1] * (x[1]ˆ2 - x[2])
if (n > 2) {

ii <- 2:(n - 1)
g[ii] <- 2 * (x[ii] - 1) + 4 * gs * x[ii] * (x[ii]ˆ2 - x[ii +

1]) + 2 * gs * (x[ii] - x[ii - 1]ˆ2)
}
g[n] <- 2 * gs * (x[n] - x[n - 1]ˆ2)
g

}

x0 <- rep(pi, 4)
mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(1000, 100), maxfeval= c(1000, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))

7

Method 1 : Nelder-Mead
Method 2 : Rvmmin
ans

p1 p2 p3 p4 value fevals gevals convergence
1 1.236467 1.530031 2.34111 5.484277 2.136779e+00 129 NA 0
2 1.000000 1.000000 1.00000 1.000000 1.360662e-28 59 39 0
mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(100, 100), maxfeval= c(100, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))

Method 1 : Nelder-Mead
Method 2 : Rvmmin
ans

p1 p2 p3 p4 value fevals gevals convergence
1 1.237657 1.530116 2.342114 5.484497 2.139230e+00 101 NA 1
2 1.000000 1.000000 1.000000 1.000000 4.461994e-30 60 40 0
mc <- data.frame(method=c("Nelder-Mead","Rvmmin"), maxit=c(10, 100), maxfeval= c(10, 1000))

ans <- polyopt(x0, fnR, grR, methcontrol=mc, control=list(trace=0))

Method 1 : Nelder-Mead
Method 2 : Rvmmin
ans

p1 p2 p3 p4 value fevals gevals convergence
1 2.905973 2.631084 3.495022 3.495022 1.217125e+04 11 NA 1
2 1.000000 1.000000 1.000000 1.000000 6.236932e-30 87 63 0

Multiple sets of starting parameters
For problems with multiple minima, or which are otherwise difficult to solve, it is sometimes helpful to
attempt an optimization from several starting points. multistart() is a simple wrapper to allow this to be
carried out. Instead of the vector par for the starting parameters argument, however, we now have a matrix
parmat, each row of which is a set of starting parameters. Note that only one method can be specified in the
call.
edited from inst/doc/examples/StyblinskiTang2308.R
require(optimx, quietly=TRUE)
fnStyblinskiTang <- function(x) 0.5 * sum(xˆ4 - 16*xˆ2 + 5*x)
grST <- function(x) {

2*xˆ3 - 16*x + 2.5
}
n <- 4
cat("Globalmin ",n," = ",(-39.16599)*length(x0),"\n")

Globalmin 4 = -156.664
methlist<-c("hjn", "nvm", "Nelder-Mead")
stmat<-matrix(runif(6*n, -5, 5), nrow=6, ncol=n)
cat("Starting parameters (rows of matrix):\n")

Starting parameters (rows of matrix):

8

print(stmat)

[,1] [,2] [,3] [,4]
[1,] -4.5136044 3.690520 4.9117958 3.1829082
[2,] 4.0990019 -4.525456 -4.2796745 -1.0470612
[3,] 4.0445684 -3.508700 4.9211997 -0.6676426
[4,] 0.8694745 3.923755 -0.6763276 -1.1902157
[5,] -0.1123274 2.831190 4.8878358 -3.1408729
[6,] 2.8468709 3.654458 -1.8659686 0.3156759
for (mstr in methlist){

cat("Method ",mstr,":\n")
mtst <- multistart(stmat, fnStyblinskiTang, grST, method=mstr)
print(mtst)

}

Method hjn :
p1 p2 p3 p4 value fevals gevals convergence
1 -2.903534 2.746803 2.746803 2.746803 -114.2545 363 NA 0
2 2.746803 -2.903534 -2.903534 -2.903534 -142.5279 400 NA 0
3 2.746803 -2.903534 2.746803 -2.903534 -128.3912 398 NA 0
4 2.746803 2.746803 -2.903534 -2.903534 -128.3912 416 NA 0
5 2.746803 2.746803 2.746803 -2.903534 -114.2545 410 NA 0
6 2.746803 2.746803 -2.903534 2.746803 -114.2545 399 NA 0
Method nvm :
p1 p2 p3 p4 value fevals gevals convergence
1 -2.903534 2.746803 -2.903534 2.746803 -128.3912 33 17 0
2 2.746803 2.746803 -2.903534 -2.903534 -128.3912 36 17 0
3 2.746803 -2.903534 -2.903534 -2.903534 -142.5279 34 14 0
4 2.746803 2.746803 -2.903534 -2.903534 -128.3912 35 17 0
5 -2.903534 2.746803 -2.903534 -2.903534 -142.5279 38 17 0
6 2.746803 2.746803 -2.903534 2.746803 -114.2545 34 15 0
Method Nelder-Mead :
p1 p2 p3 p4 value fevals gevals convergence
1 -2.903373 2.746844 2.746697 2.746804 -114.2545 131 NA 0
2 2.746670 -2.903537 -2.903468 -2.903554 -142.5279 203 NA 0
3 2.746917 -2.903518 2.746780 2.746917 -114.2545 249 NA 0
4 2.746822 2.746729 -2.903655 -2.903562 -128.3912 259 NA 0
5 2.746714 2.746847 2.746813 -2.903491 -114.2545 171 NA 0
6 2.746878 2.746839 -2.903581 2.746938 -114.2545 235 NA 0
Try a single start
tst1<-opm(rep(-5, n), fnStyblinskiTang,grST,method=methlist)
summary(tst1)

p1 s1 p2 s2 p3 s3 p4 s4 value
hjn -2.903534 -2.903534 -2.903534 -2.903534 -156.6647
nvm 2.746803 2.746803 2.746803 2.746803 -100.1178
Nelder-Mead -2.903340 -2.904460 -2.903926 -2.903324 -156.6646
fevals gevals hevals conv kkt1 kkt2 xtime
hjn 288 0 0 0 TRUE TRUE 0.002
nvm 27 11 0 0 TRUE TRUE 0.001
Nelder-Mead 185 0 0 0 TRUE TRUE 0.001

Personally, I have not been happy with the outputs of such approaches in the few cases where I have applied
them. They are an inelegant approach to such problems, though in some cases may be an appropriate

9

expedient.

In setting up this functionality, I chose NOT to allow mixing of multiple starts with a polyalgorithm or
multiple methods. For users really wishing to do this, I believe the available source codes opm.R, polyopt.R
and multistart.R provide a sufficient base that the required tools can be fashioned fairly easily.

Bounds
A number of methods support the inclusion of box (or bounds) constraints. These are specified via the
arguments lower and upper to either opm() or optimr(). It there are n parameters, these arguments may
either be assigned a single value or else a vector of n elements. A single value is replicated in an n-vector.

Masks are bounds constraints where the upper and lower bound are equal, so essentially fixed parameters.

The function optimx::bmchk() has a rich set of tests for bounds and parameters. In particular, it returns
information on whether the supplied parameters and bounds are

• admissible meaning no lower bound exceeds an upper bound
• feasible meaning all parameters are in the closed interval between the lower and upper bounds
• onbound to flag cases where a parameter is on an upper or lower bound, as some methods, nmkb in

particular, fails if this is the case
• maskadded when upper and lower bounds are close together

Generally it is a poor idea to specify bounds that are too close together. For masks, make the lower and
upper bounds equal, otherwise give the methods some space to adjust parameters, as most methods rely on
various tolerances and heuristics. Moreover, approximations to derivatives using finite difference have to take
steps along the parameters. I know of no generally available program that checks that finite difference steps
do not violate bounds.

Infeasible parameters

If a user specifies infeasible parameters, optimx::optimr() will stop. However, there is an easy way to adjust
initial parameters to be within bounds. This does, of course, assume that the bounds are specified correctly
and the parameters are incorrect. Here is an example of how to make the adjustment.

set initial parameters in vector init, lower and upper bounds in lo and up
chkpar <- bmchk(init, lower=lo, upper=up)
if (chkpar$parchanged) init <- chckpar$bvec

Display of solution status w.r.t. bounds

A recent addition to the output summary is a set of status flags showing which parameters are on lower
or upper bounds or are masked. The following example illustrates this. At the time of writing, I have not
diagnosed why method nmkb does not indicate that the solution is on a lower bound. However, nmkb from
the dfoptim package uses a transfinite transformation of the parameters to keep parameters within bounds,
so the parameter returned may be very slightly different from the bound, so not getting flagged.

The example also suppresses a warning for a lack of symmetry in the estimated Hessian at solution in order to
keep this presentation tidy. The warning is very common and I have yet to find a suitable test for asymmetry
that works well across the range of different problems.
XRosenbrock.f <- function (x)
{

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n - 1)]
sum(100 * (x1 - x2ˆ2)ˆ2 + (1 - x2)ˆ2)

}
XRosenbrock.g <- function (x)

10

{
n <- length(x)
g <- rep(NA, n)
g[1] <- 2 * (x[1] - 1) + 400 * x[1] * (x[1]ˆ2 - x[2])
if (n > 2) {

ii <- 2:(n - 1)
g[ii] <- 2 * (x[ii] - 1) + 400 * x[ii] * (x[ii]ˆ2 - x[ii +

1]) + 200 * (x[ii] - x[ii - 1]ˆ2)
}
g[n] <- 200 * (x[n] - x[n - 1]ˆ2)
g

}

lo <- (2:5)
up <- (4:7)
st <- 0.5*(lo+up)
brose <- opm(st, XRosenbrock.f, XRosenbrock.g, method="MOST", lower=lo, upper=up,

control=list(dowarn=FALSE))

Warning in opm(st, XRosenbrock.f, XRosenbrock.g, method = "MOST", lower = lo, :
method requested does not handle bounds

Warning in opm(st, XRosenbrock.f, XRosenbrock.g, method = "MOST", lower = lo, :
'snewtonm' removed from 'method' -- no hess()
warnings turned off to avoid kktchk Hessian symmetry warning on most methods
summary(brose, order=value)

p1 s1 p2 s2 p3 s3 p4 s4 value fevals gevals hevals conv kkt1 kkt2
nlminb 2 L 3 L 4 L 7 U 10714 5 3 0 0 FALSE TRUE
lbfgsb3c 2 L 3 L 4 L 7 U 10714 3 3 0 0 FALSE TRUE
Rtnmin 2 L 3 L 4 L 7 U 10714 13 13 0 0 FALSE TRUE
bobyqa 2 L 3 L 4 L 7 U 10714 30 0 0 0 FALSE TRUE
nmkb 2 3 L 4 L 7 U 10714 34 0 0 0 FALSE TRUE
ncg 2 L 3 L 4 L 7 U 10714 9 8 0 0 FALSE TRUE
Rcgmin 2 L 3 L 4 L 7 U 10714 9 8 0 0 FALSE TRUE
nvm 2 L 3 L 4 L 7 U 10714 10 10 0 2 FALSE TRUE
Rvmmin 2 L 3 L 4 L 7 U 10714 10 10 0 2 FALSE TRUE
slsqp 2 L 3 L 4 L 7 U 10714 4 3 0 0 FALSE TRUE
tnewt 2 L 3 L 4 L 7 U 10714 7 6 0 0 FALSE TRUE
nlnm 2 L 3 L 4 L 7 U 10714 67 0 0 0 FALSE TRUE
xtime
nlminb 0.018
lbfgsb3c 0.001
Rtnmin 0.003
bobyqa 0.001
nmkb 0.002
ncg 0.001
Rcgmin 0.001
nvm 0.001
Rvmmin 0.002
slsqp 0.002
tnewt 0.001
nlnm 0.002

11

Function and parameter scaling
optim() uses control$fnscale to “scale” the value of the function or gradient computed by fn or gr
respectively. In practice, the only use for this scaling is to convert a maximization to a minimization. Most
of the methods applied are function minimization tools, so that if we want to maximize a function, we
minimize its negative. optimr() and opm() include a maximize control, and we would recommend avoiding
fnscale use. Note that having both fnscale and maximize could create a conflict. We check for this in
optimr() and try to ensure both controls are set consistently. There is a further risk of conflict with the use
of numerical approximation of derivatives, as discussed later.

As general advice, I believe users should recast their problem as a minimization, either manually or with
some pre-processing code, and then use post-solution processing to return the answer in a fashion relevant to
the context. Unfortunately, there are many places where automated scaling by a negative number can create
havoc.

Access to solver-specific controls
Because different methods use different control parameters, and may even put them into arguments rather
than the control list, a lot of the code in optimr() is purely for translating or transforming the names
and values to achieve the desired result. This is sometimes not possible precisely. A method which uses
control$trace = TRUE (a logical element) has only “on” or “off” for controlling output. Other methods use
an integer for this trace object, or call it something else that is an integer, in which case there are more
levels of output possible.

In package optimx we have had to navigate such obstacles:

• I have found it is important to remove (i.e., set NULL) controls that are not used for a method.
Moreover, since R can leave objects in the workspace, I find it important to set any unused or unwanted
control to NULL both before and after calling a method.

• The package attempts to provide a sane set of choices for the default values of controls. In many cases,
optimx functions, particularly opm(), will NOT be able to use all the options available for some solvers,
and users will need to access such functions directly.

In some cases, it is possible to access solver-specific controls, but we caution that this is still a developmental
feature. We illustrate with an example.

Example of use of local control parameters

Since we have the source code to optimr() which is where all the solvers are called, it is possible to alter local
control parameters. This is, however, not intended for general users. On the other hand, we do provide an
illustration of how to make the modifications. The example is the nelder_mead() solver in package pracma.
This is set by default to “converge” when the variance of the function values is no greater than tol, for which
the default is 1.0e-8.

tol is, unfortunately, a common name, and is one of the optimx default controls. Thus we have allowed
a special control named pracmanmtol for routine optimr(). Note that this is not intended to be applied
to opm(). Special controls should be used for the solver for which they are appropriate. We believe that
it is sensible to use a mechanism like that suggested here so that the solver’s original default settings are
preserved, but can be changed by the user. pracmanmtol could also be added to ctrldefault() if it is
generally important to use it. Below in the discussion of ctrldefault() further examples are referenced.
library(optimx)
fnR <- function (x, gs=100.0)
{

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n - 1)]

12

sum(gs * (x1 - x2ˆ2)ˆ2 + (1 - x2)ˆ2)
}
x0 <- rep(pi, 4)

apnm0<-optimr(x0, fnR, method="pracmanm")
proptimr(apnm0)

Result apnm0 (pracmanm -> (no_name)) calc. min. = 2.4803e-06 at
0.99999 1.0001 1.0003 1.0006
After 523 fn evals, and 0 gr evals and 0 hessian evals
Termination code is 0 :
##

apnm1<-optimr(x0, fnR, method="pracmanm", control=list(pracmanmtol=1e-13))

Warning in optimr(x0, fnR, method = "pracmanm", control = list(pracmanmtol =
1e-13)): Special controls present for optimr with method pracmanm
proptimr(apnm1)

Result apnm1 (pracmanm -> (no_name)) calc. min. = 2.733e-14 at
1 1 1 1
After 705 fn evals, and 0 gr evals and 0 hessian evals
Termination code is 0 :
##

Derivatives
Derivative information is used by many optimization methods. In particular, the gradient is the vector of
first derivatives of the objective function and the hessian is its second derivative matrix. It is generally
non-trivial to write a function for a gradient, and a huge amount of work to write the hessian function.

While there are (true) derivative-free methods, we may also choose to employ numerical approximations for
derivatives with gradient-based solvers. Some of the optimizers called by optimr automatically provide a
numerical approximation if the gradient function (typically called gr) is not provided or set NULL. However,
I believe this is open to abuse and also a source of confusion, since we may not be informed in the results
what approximation has been used. There is also the question of counting function and gradient evaluations
correctly. Generally, I advise explicitly setting the gradient function for methods that use this information,
and optimx has tools to make this possible.

Specifying that numerical gradients are to be used, and which method for such approximation, presents a
software interfacing issue. Around 2010 I introduced the idea of making the name of a gradient approximation
program a character string e.g., “grfwd” and “grcentral” for forward and central derivative approximations.
Direct codes for the gradient are included in the call by a name NOT in character form.

This idea has been helpful, but it has raised some concerns.

• as mentioned above, there may be conflicts with the maximize control;
• there is an inefficiency if the (already evaluated) current best function value is not used in computing

the gradient approximation;
• bounds constraints can be violated by the argument step to compute the gradient approximation by

finite differences;
• some approximations may be inappropriate or inadmissible for the current objective function.

For example, the package numDeriv has functions for the gradient and hessian, and offers three methods,
namely a Richardson extrapolation (the default), a complex step method, and a “simple” method. The last is

13

either a forward of backward approximation controlled by an extra argument side to the grad() function.
The complex step method, which offers essentially analytic precision from a very efficient computation, is
unfortunately only applicable if the objective function has specific properties. That is, according to the
documentation:

This method requires that the function be able to handle complex valued
arguments and return the appropriate complex valued result, even though
the user may only be interested in the real-valued derivatives. It also
requires that the complex function be analytic.

The default method of numDeriv generally requires multiple evaluations of the objective function to approxi-
mate a derivative. The simpler choices, namely, the forward, backward and central approximations, require
respectively 1, 1, and 2 (extra) function evaluations for each parameter.

To keep the code straightforward, I decided that if an approximate gradient is to be used by optimr() (or by
extension the multiple method routine opm()), then the user should specify the name of the approximation
routine as a character string in quotations marks. The optimx package supplies several gradient approximation
functions for this purpose, namely “grfwd” and “grback” for the forward and backward simple approximations,
“grcentral” for the central approximation, “grnd” for the default Richardson method via numDeriv, and
“grpracma” for the grad function from package pracma. It should be fairly straightforward for a user to copy
the structure of any of these routines and build their own gradient approximation, but I have not tried to do
so.
mymeth<-"ncg"
using fnR and grR from earlier chunk
system.time(sola <- optimr(par=x0, fn=fnR, gr=grR, method=mymeth))

user system elapsed
0.001 0.000 0.002
proptimr(sola)

Result sola (ncg -> fnR) calc. min. = 6.6888e-16 at
1 1 1 1
After 181 fn evals, and 80 gr evals and 0 hessian evals
Termination code is 0 : NA
##

system.time(solfwd <- optimr(par=x0, fn=fnR, gr="grfwd", method=mymeth))

user system elapsed
0.001 0.000 0.000
proptimr(solfwd)

Result solfwd (ncg -> fnR) calc. min. = 677.67 at
1.7938 0.87935 -0.35714 0.055417
After 38 fn evals, and 6 gr evals and 0 hessian evals
Termination code is 0 : NA
##

system.time(solback <- optimr(par=x0, fn=fnR, gr="grback", method=mymeth))

user system elapsed
0.016 0.000 0.017
proptimr(solback)

14

Result solback (ncg -> fnR) calc. min. = 5.287e-09 at
0.99999 0.99997 0.99994 0.99988
After 2243 fn evals, and 264 gr evals and 0 hessian evals
Termination code is 1 : NA
##

system.time(solctl <- optimr(par=x0, fn=fnR, gr="grcentral", method=mymeth))

user system elapsed
0.004 0.000 0.004
proptimr(solctl)

Result solctl (ncg -> fnR) calc. min. = 7.154e-15 at
1 1 1 1
After 181 fn evals, and 80 gr evals and 0 hessian evals
Termination code is 0 : NA
##

system.time(solnd <- optimr(par=x0, fn=fnR, gr="grnd", method=mymeth))

user system elapsed
0.024 0.000 0.024
proptimr(solnd)

Result solnd (ncg -> fnR) calc. min. = 6.6535e-16 at
1 1 1 1
After 181 fn evals, and 80 gr evals and 0 hessian evals
Termination code is 0 : NA
##

system.time(solpra <- optimr(par=x0, fn=fnR, gr="grpracma", method=mymeth))

user system elapsed
0.003 0.000 0.003
proptimr(solpra)

Result solpra (ncg -> fnR) calc. min. = 1.6956e-15 at
1 1 1 1
After 133 fn evals, and 57 gr evals and 0 hessian evals
Termination code is 0 : NA
##

It is worth mentioning that the package pracma (Borchers (2017)) has functions gradient and hessian,
and these routines can be substituted for the numDeriv versions. Within optimr() and opm() the gradient,
for example, can use the quoted string “grpracma” to get the numeric gradient function of pracma, while
specifying the control list elements hesspkg="pracma" or jacpkg="pracma" will substitute the appropriate
Hessian or Jacobian approximations.

An example using the complex step derivative would also be useful to include in this vignette. I welcome
contributions!

Note In 2018 Changcheng Li and John Nash had preliminary success in using the autodiffr package at
https://github.com/Non-Contradiction/autodiffr/ to generate gradient, hessian and jacobian functions via

15

https://github.com/Non-Contradiction/autodiffr/

the Julia language automatic differentiation capabilities. There are some issues of slow performance compared
to native-R functions to compute these collections of derivative information, but the ease of generation of the
functions and the fact that they generate analytic results i.e., as good as R can compute the information,
allows for some improvements in results and also makes feasible the application of some Newton-like methods.
Unfortunately, rapid changes in Julia functions have made it difficult to keep this capability operational.

Legacy optimx() function
The functions optimx(), optimx.setup(), optimx.check(), and optimx.run() are included in the package
to allow for existing legacy uses. However, these functions will NOT be updated or improved, and any
deficiencies that do not cause the package to be archived will NOT be corrected.

Illustrations of how optimx() is used are included in the files in directory inst/doc/legacy-demo/. Note
that some of these examples have long run times. Moreover, the objective functions are such that some of the
solvers fail to find a satisfactory optimum.

Solvers provided with the optimx package
Over time, I developed a number of solvers, particularly ones written entirely using the R language. Some of
these were in separate packages, but it has made sense to consolidate them with optimx, and the individual
packages are now deprecated. That is to say, it makes no sense to me to have separate packages, each of
which needs to be maintained and coordinated with the others.

Moreover, the most recent solvers are intended to be called from the wrapper function optimr() so that
common needs for checking of suitability of parameters, bounds and functions and derivatives can be shared
in a single block of code. It makes no sense to call these new, streamlined programs independently.

Hooke and Jeeves method

A very simple pattern search method from Hooke and Jeeves (1961) is easily programmed. The function
hjn() is intended to be a didactic tool and NOT an operational routine. Note that specifying method="hjkb"
gets a more sophisticated version from the package dfoptim.

Newton-like methods

Newton-like methods are a traditional approach to optimization and solution of nonlinear equations. The idea
is to find a stationary (i.e., flat) point on the function surface, which will be either a maximum, minimum or
saddle point. There are also a number of interesting theorems that show the approach is in some way “best”.
However, the assumptions that underly such theorems generally do not apply when we would like them to,
and Newton-like methods, and in particular the classical approach, generally perform dismally on real-life
problems.

This classic approach starts with a set of parameters x0 for our objective function f(x). We will evaluate
the Hessian matrix of second partial derivatives at x0 and call it H and the gradient as the vector of first
derivatives and call it g. Then we solve the Newton equations

Hδ = −g

and create

x1 = x0 + δ

and repeat the iteration until, hopefully, we “converge” to a set of parameters where the gradient is (nearly)
zero.

16

optimx includes two Newton-like solvers that try to use this classic algorithm but add some safeguards to
avoid a few of the potential hazards. A major one of these is a singular Hessian, which prevents progress and
generally results in program failure, sometimes with output that is difficult to interpret.

snewtm() is a streamlined version of the earlier snewtonm() that stabilizes the Newton equations following
ideas of Levenberg (1944) and Marquardt (1963). It allows bounds to be specified, and is likely as good as
safeguarded Newton methods get unless a lot of fancy tweaks are added.

snewton() uses a back-track line search along the direction δ rather than a full step. This is much less
successful as a strategy, but serves as a didactic tool. Since the source code is provided, it can be used for
experimentation. A streamlined version of this code has not been prepared as I have not found this approach
very promising.

Note that some other solvers available to optimx from other packages use Newton-like ideas, in particular
nlm().

A significant cost to using Newton-like methods is the generation of the Hessian. This requires a lot of human
effort to code, with many opportunities for mistakes. It also is computationally costly in most situations.
Approximations can be used, but these may multiply the computational cost.

Relevant files are snewtonm.R and snewton.R, as well as the vignette SNewton.Rmd (SNewton: safeguarded
Newton methods for function minimization).

Conjugate gradient methods

The base R function optim() offers a method “CG” which is a translation of Algorithm 22 from John C.
Nash (1979). (Actually, it is a semi-automated translation of the Pascal version of this from the Second
edition, 1990.) I was never happy with this algoritm, and STRONGLY disparage its use. However, a very
minor alteration, following some suggestions in Dai and Yuan (2001) yielded the function Rcgmin(). This has
gone through a number of transformations, largely in an attempt to simplify the code rather than change the
algorithm. The current RECOMMENDED version is the streamlined version ncg(), but previous versions
are available in the package. Relevant files are ncg.R, Rcgmin.R, Rcgminb.R, and Rcgminu.R, with the last
two files intended for separate application to bounds constrained or unconstrained problems.

Note that conjugate gradient methods are very lean on memory use and can be applied to functions of very
large numbers of parameters. My experience is that the performance varies markedly with the test function
and particular details of the internals of the method. “ncg” is quite good, but often is outperformed by
“Rcgmin”. The differences are largely in the line search. “ncg” has more checks and safeguards, and combines
bounded and unbounded codes. It could, however, likely be further improved.

Variable metric methods

The base R function optim() offers a method “BFGS” which is a translation of Algorithm 21 from John
C. Nash (1979). (Actually, it is a semi-automated translation of the Pascal version of this from the Second
edition, 1990.) This algorithm was developed from Fletcher (1970) when I visited Roger Fletcher in Dundee
in January 1976 and we used a pencil to scratch out lines of Fortran code that were not critical to the
method, as I needed to shoe-horn the code into an extremely small memory. It has proved exceptionally
robust. However, the compiled code in base R does not allow for experimentation with variations on the
algorithm, nor did it allow for bounds constraints. Rvmmin(), entirely in R, does have bounds constraints.
More recently, I have endeavoured to simplify the code by merging bounded and unconstrained solver versions
(Rvmminb() and Rvmminu()) into the streamlined code nvm(). Method nvm is now recommended, but the
previous functions are still available, since they are used in a number of legacy applications. Relevant files
are nvm.R, Rvmminb.R, Rvmmin.R, and Rvmminu.R

Variable metric methods are very similar (some would say equivalent to) quasi-Newton methods. The
approach is to approximate the Hessian with some inexpensive proxy. A large proportion of such approaches
have been found to be very efficient and reliable. The particular approach of Fletcher (1970) starts with a
unit matrix as the “approximate inverse Hessian”. This means the initial δ is a steepest descent direction.

17

Then at each iteration, the approximate inverse Hessian is updated by a quite inexpensive process, avoiding
an actual solution of the matrix equations. Note, however, that there are myriad variants on these themes.
The optim() choice “L-BFGS-B” is a particular and much tweaked routine (Byrd et al. (1995), Zhu et al.
(1997)). In 2011, there was a revision by Morales and Nocedal (2011), and Fidler et al. (2018) is the result,
which is available via optimx as solver lbfgsb3c. (It is NOT part of the source code of the package.) There
are few cases where lbfgsb3c and L-BFGS-B get different answers.

Truncated Newton methods

In a similar fashion, Truncated Newton methods (sometimes also called Inexact Newton methods) try
to simplify the solution of the Newton equations by solving them with a linear conjugate gradients approach.
There are a number of implementations of such ideas. In optimx, the Matlab codes of my brother Stephen
Nash (S. G. Nash (1983), S. G. Nash (2000)) have been translated to R for unconstrained (tn()) or bounds
constrained (tnbc()) problems. Relevant files – the transformation from Matlab needed some mildly awkward
coding – are Rtnmin-package.R, tnbc.R, tn.R and zzz.R. To use the functions within optimr() or opm(), the
solvers are specified simply as “Rtnmin” and the programs will select the internal function.

Of the descent methods, the truncated Newton codes in optimx are likely the ones most in need of review
and rework, as they have been the least revised. Moreover, the codes were largely research programs rather
than production ones. From the package nloptr the tnewton() function is available in optimx using the
method name tnewt, and this performs quite well.

Some other functions in the package
optchk()

This routine is an attempt to consolidate the function, gradient and scale checks.

ctrldefault()

This routine provides default values for the control vector that is applicable to all the methods for a given
size of problem. The single argument to this function is the number of parameters, which is used to compute
values for termination tolerances and limits on function and gradient evaluations. However, while I believe
the values computed are “reasonable” in general, for specific problems they may be wildly inappropriate.

ctrldefault() was developed by recording the different controls of many functions and packages in a
spreadsheet to allow for their recording and comparison. This spreadsheet, optcontrol.xls also records the
returned answer structure. It will be part of the ./inst/doc/ collection of information in the package.

Note that calling optimr() with control=list() containing controls that are NOT in the default set
will try to cause these to be passed to the relevant solver. However, no special checks that these are valid
is performed. CAUTION! Here is an example where we want to give the solver minqa::bobyqa() some
parameters that alter the search strategy. A longer example is given in inst/doc/examples/specctrlhobbs.R.
require(optimx)
hobbs.f<- function(x){ # # Hobbs weeds problem -- function

if (abs(12*x[3]) > 500) { # check computability
fbad<-.Machine$double.xmax
return(fbad)

}
res<-hobbs.res(x)
f<-sum(res*res)

}
hobbs.res<-function(x){ # Hobbs weeds problem -- residual
This variant uses looping

if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948,

18

75.995, 91.972)
t<-1:12
if(abs(12*x[3])>50) {

res<-rep(Inf,12)
} else {

res<-100*x[1]/(1+10*x[2]*exp(-0.1*x[3]*t)) - y
}

}
x0 <- c(1,1,1)
cat("default rhobeg and rhoend in bobyqa\n")

default rhobeg and rhoend in bobyqa
tdef <- optimr(x0, hobbs.f, method="bobyqa")
proptimr(tdef)

Result tdef (bobyqa -> (no_name)) calc. min. = 2.5873 at
1.9619 4.9092 3.1357
After 513 fn evals, and 0 gr evals and 0 hessian evals
Termination code is 0 : Normal exit from bobyqa
##

tsp3 <- optimr(x0, hobbs.f, method="bobyqa", control=list(rhobeg=10, rhoend=1e-4))

Warning in optimr(x0, hobbs.f, method = "bobyqa", control = list(rhobeg = 10, :
Special controls present for optimr with method bobyqa
proptimr(tsp3)

Result tsp3 (bobyqa -> (no_name)) calc. min. = 8528.4 at
1.221 1 1.0115
After 20 fn evals, and 0 gr evals and 0 hessian evals
Termination code is 0 : Normal exit from bobyqa
##

dispdefault()

This routine (in file ctrldefault.R) is intended to allow a compact display of the current default settings
used within optimx.

Functions that were formerly in the optextras package
Optimization methods share a lot of common infrastructure, and much of this was collected in my retired
optextras package. These have now been consolidated in the optimx package. The routines used are as
follows.

axsearch()

A crude and old-fashioned form of post-solution analysis is to take small steps from the proposed solution in
a positive and negative direction along each parameter axis and check if the function surface is symmetric
and consider its curvature.

19

kktchk()

This routine, which can be called independently for checking the results of other optimization tools, checks
the KKT conditions for a given set of parameters that are thought to describe a local optimum. A persistent
issue with kktchk() is that it finds the returned Hessian matrix is very often asymmetric, which it should
not be. The degree of asymmetry is rarely extreme, but so far a reasonable test has proved elusive.

grfwd(), grback(), grcentral(), grnd() and grpracma()

These have be discussed above under Derivatives.

fnchk(), grchk() and hesschk()

These functions are provided to allow for detection of user errors in supplied function, gradient or hessian
functions.

fnchk() is mainly a tool to ensure that the supplied function returns a finite scalar value when evaluated at
the supplied parameters.

The other routines use numerical approximations (e.g., from numDeriv) to check the derivative functions
supplied by the user.

bmchk()

This routine (mentioned above) is intended to trap errors in setting up bounds and masks for function
minimization problems. In particular, we are looking for situations where parameters are outside the bounds
or where bounds are impossible to satisfy (e.g., lower > upper). This routine creates an indicator vector called
bdmsk whose values are 1 for free parameters, 0 for masked (fixed) parameters, -3 for parameters at their
lower bound and -1 for those at their upper bound. (The particular values are related to a coding trick for
BASIC in the early 1980s that was used in John C. Nash and Walker-Smith (1987).) Note that this function
allows parameter values outside the bounds to be shifted to the nearest bound (when shift2bound=TRUE,
which is the default behaviour).

scalechk()

This routine is an attempt to check if the parameters and bounds are roughly similar in their scale. Unequal
scaling can result in poor outcomes when trying to optimize functions using derivative free methods that try
to search the parameter space. Note that the attempt to include parameter scaling for all methods is intended
to provide a work-around for such bad scaling. Because nonlinear functions have scaling that changes across
the parameter domain, scalechk() should be treated with caution.

checkallsolvers()

Running this function (no argument is needed) will test if all required solvers are available in the current
computing environment. This is provided as a tool to be used BEFORE trying to run opm() or optimr().
We used it to list the available solvers.

proptimr()

This little function is intended to provide compact output for reporting the results of running optimr().
Where available, the “status” flags are reported. These are an indicator for humans – “-”,“L”,“F”,“U”,“+”,“M”,
“?”,“!” for out-of-bounds-low (-), lower bound (L), free (F or blank), upper bound (U), out-of-bounds-high
(+), masked or fixed (M)), unknown (?), and inadmissible (!). This function can be used on other solver
outputs, but the “status” flags may be missing. Moreover, some solvers do not return information for some of
the information proptimr() attempts to display. For example, the “nlm” solver (nlm() from base R) only
returns “iterations” (likely computed gradient evaluations) but not function evaluations.

20

Where possible, proptimr() uses extra function, gradient and hessian count information generated by
optimr(). Note that the counts vector of function and/or gradient or iteration counts is still returned by
optimr but many methods return only partial information and none appear to give the hessian evaluation
count. opm() also returns this information and summary.opm() displays this information.

References
Borchers, Hans Werner. 2017. Pracma: Practical Numerical Math Functions. https://CRAN.R-project.org/

package=pracma.
Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ci You Zhu. 1995. “A Limited Memory Algorithm

for Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16 (5): 1190–1208.
https://doi.org/10.1137/0916069.

Dai, Y. H., and Y. Yuan. 2001. “An Efficient Hybrid Conjugate Gradient Method for Unconstrained
Optimization.” Annals of Operations Research 103 (1-4): 33–47.

Elzhov, Timur V., Katharine M. Mullen, Andrej-Nikolai Spiess, and Ben Bolker. 2012. Minpack.lm: R
Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support
for Bounds. R Project for Statistical Computing. http://CRAN.R-project.org/package=minpack.lm.

Fidler, Matthew L, John C Nash, Ciyou Zhu, Richard Byrd, Jorge Nocedal, and Jose Luis Morales. 2018.
Lbfgsb3c: Limited Memory BFGS Minimizer with Bounds on Parameters with Optim() ’c’ Interface.
https://CRAN.R-project.org/package=lbfgsb3c.

Fletcher, R. 1970. “A New Approach to Variable Metric Algorithms.” Computer Journal 13 (3): 317–22.
Hooke, Robert, and T. A. Jeeves. 1961. “‘Direct Search’ Solution of Numerical and Statistical Problems.” J.

ACM 8 (2): 212–29.
John C Nash, and Duncan Murdoch. 2023. nlsr: Functions for Nonlinear Least Squares Solutions.
Levenberg, Kenneth. 1944. “A Method for the Solution of Certain Non-Linear Problems in Least Squares.”

Quarterly of Applied Mathematics 2: 164--168.
Marquardt, Donald W. 1963. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” SIAM

Journal on Applied Mathematics 11 (2): 431–41.
Morales, José Luis, and Jorge Nocedal. 2011. “Remark on Algorithm 778: L-BFGS-B: Fortran subroutines

for large-scale bound constrained optimization.” ACM Trans. Math. Softw. 38 (1): 7:1–4. http:
//doi.acm.org/10.1145/2049662.2049669.

Nash, John C. 1979. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation.
Bristol: Adam Hilger.

Nash, John C, and Ravi Varadhan. 2011. Optimx: A Replacement and Extension of the optim() Function.
Nash Information Services Inc.; Johns Hopkins University.

Nash, John C., and Mary Walker-Smith. 1987. Nonlinear Parameter Estimation: An Integrated System in
BASIC. Book. New York: Marcel Dekker.

Nash, Stephen G. 1983. “Truncated-Newton Methods for Large-Scale Minimization.” In Applications of
Nonlinear Programming to Optimization and Control, edited by H. E. Rauch, 91–100.

———. 2000. “A Survey of Truncated-Newton Methods.” Journal of Computational and Applied Mathematics
124: 45–59.

Zhu, Ciyou, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. “Algorithm 778: L-BFGS-b: Fortran
Subroutines for Large-Scale Bound-Constrained Optimization.” ACM Trans. Math. Softw. 23 (4): 550–60.
https://doi.org/10.1145/279232.279236.

21

https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma
https://doi.org/10.1137/0916069
http://CRAN.R-project.org/package=minpack.lm
https://CRAN.R-project.org/package=lbfgsb3c
http://doi.acm.org/10.1145/2049662.2049669
http://doi.acm.org/10.1145/2049662.2049669
https://doi.org/10.1145/279232.279236

	Abstract
	Background
	``Optimization''
	Intent of package optimx
	Unifying the syntax
	Available solvers
	An example
	Excluded [1D] solver

	More than one method at a time
	Using named arguments
	Examples of usage
	Additional resources

	Developments of the optimx() function
	Running multiple methods – opm()
	Polyalgorithms – multiple methods in sequence
	Multiple sets of starting parameters
	Bounds
	Infeasible parameters
	Display of solution status w.r.t. bounds

	Function and parameter scaling
	Access to solver-specific controls
	Example of use of local control parameters

	Derivatives
	Legacy optimx() function
	Solvers provided with the optimx package
	Hooke and Jeeves method
	Newton-like methods
	Conjugate gradient methods
	Variable metric methods
	Truncated Newton methods

	Some other functions in the package
	optchk()
	ctrldefault()
	dispdefault()

	Functions that were formerly in the optextras package
	axsearch()
	kktchk()
	grfwd(), grback(), grcentral(), grnd() and grpracma()
	fnchk(), grchk() and hesschk()
	bmchk()
	scalechk()
	checkallsolvers()
	proptimr()

	References

