
Package ‘optic’
August 8, 2023

Type Package

Title Simulation Tool for Causal Inference Using Longitudinal Data

Version 1.0.1

Description Implements a simulation study to assess the strengths and
weaknesses of causal inference methods for estimating policy effects
using panel data. See Griffin et al. (2021)
<doi:10.1007/s10742-022-00284-w> and Griffin et al. (2022)
<doi:10.1186/s12874-021-01471-y> for a description of our methods.

License GPL-3

URL https://randcorporation.github.io/optic/,

https://github.com/randcorporation/optic

BugReports https://github.com/randcorporation/optic/issues

Depends R (>= 4.1.0)

Imports did, dplyr, future.apply, lmtest, magrittr, MASS, methods,
purrr, R6, rlang, sandwich, stats, tidyr, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Beth Ann Griffin [aut, cph] (<https://orcid.org/0000-0002-2391-4601>),
Pedro Nascimento de Lima [cre, aut]

(<https://orcid.org/0000-0001-9057-198X>),
Max Griswold [aut] (<https://orcid.org/0000-0002-6387-128X>),
Adam Scherling [aut],
Joseph Pane [aut],
Geoffrey Grimm [aut]

Maintainer Pedro Nascimento de Lima <plima@rand.org>

1

https://doi.org/10.1007/s10742-022-00284-w
https://doi.org/10.1186/s12874-021-01471-y
https://randcorporation.github.io/optic/
https://github.com/randcorporation/optic
https://github.com/randcorporation/optic/issues
https://orcid.org/0000-0002-2391-4601
https://orcid.org/0000-0001-9057-198X
https://orcid.org/0000-0002-6387-128X

2 calculate_exposure

Repository CRAN

Date/Publication 2023-08-08 13:40:02 UTC

R topics documented:
calculate_exposure . 2
dispatch_simulations . 3
exposure_list . 4
model_terms . 5
optic_model . 6
optic_simulation . 7
overdoses . 10

Index 12

calculate_exposure Calculates the exposure rate applied to each year provided month of
policy implementation and number of years to full implementation

Description

Calculates the exposure rate applied to each year provided month of policy implementation and
number of years to full implementation

Usage

calculate_exposure(month, n_years, monthly_effect = (1/n_years)/12)

Arguments

month month of year (as integer) that policy takes effect

n_years number of months until full implementation in effect

monthly_effect increment of exposure to apply each month; default is ((1/n_years) / 12) (con-
stant over the period)

Value

A vector of percentages, indicating change in exposure by year (relative to start month)

Examples

Calculate uniform increase in policy effect which ramps up across 10 years

Assume policy starts in July of the first year, then continues for 10 years
starting_month <- 7
implementation_years <- 10

dispatch_simulations 3

Assume some policy effect (which is the target effect for simulations)
policy_effect <- 2

exposure_by_year <- calculate_exposure(starting_month, implementation_years)

Based on exposure by year, calculate policy effect by year:
plot(policy_effect*exposure_by_year)

dispatch_simulations Execute simulations defined in a optic_simulation object

Description

Execute simulations defined in a optic_simulation object

Usage

dispatch_simulations(object, seed = NULL, use_future = FALSE, verbose = 0, ...)

Arguments

object Simulation scenarios object created using optic_simulation

seed Specified as either NULL or a numeric. Sets a seed, which is becomes an index
in results, for each independent set of simulations in optic_simulation.

use_future Runs simulation scenarios in parallel. Default FALSE, set to TRUE if you have
already setup a future plan (e.g., multiprocess, cluster, etc) and would like for
the iterations to be run in parallel.

verbose Default TRUE. IF TRUE, provides details on what’s currently running.

... additional parameters to be passed to future_apply. User can pass future.globals
and future.packages if your code relies on additional packages

Value

A list of dataframes, where each list entry contains results for a set of simulation parameters, with
dataframes containing estimated treatment effects and summary statistics by model and draw.

Examples

Set up a basic model and simulation scenario:
data(overdoses)

eff <- 0.1*mean(overdoses$crude.rate, na.rm = TRUE)
form <- formula(crude.rate ~ state + year + population + treatment_level)
mod <- optic_model(name = 'lin',

type = 'reg',
call = 'lm',

4 exposure_list

formula = form,
se_adjust = 'none')

sim <- optic_simulation(x = overdoses,
models = list(mod),
method = 'no_confounding',
unit_var = 'state',
treat_var = 'state',
time_var = 'year',
effect_magnitude = list(eff),
n_units = 2,
effect_direction = 'pos',
iters = 2,
policy_speed = 'instant',
n_implementation_periods = 1)

Finally, dispatch the simulation:
dispatch_simulations(sim)

exposure_list Applies a time-varying treatment effect

Description

Simulates a time-varying treatment effect that starts at zero in time period zero, then linearly in-
creases to a ’full treatment’ effect, based on analyst-provided choices concerning time until full
treatment effect and ’speed’

Usage

exposure_list(
sampled_time_period,
mo,
available_periods,
policy_speed,
n_implementation_periods

)

Arguments

sampled_time_period

Year that treatment is first enacted

mo Month that treatment is first enacted
available_periods

Maximum number of time periods in the data (e.g. if policy is between 1950-
2000, then available_periods == 50)

policy_speed A string which is either "instant" for the policy going into immediate effect or
"slow" for the policy effect phasing in linearly across n_implement_periods

model_terms 5

n_implementation_periods

Number of periods until full treatment effect is applied. Only used if pol-
icy_speed is ’slow’.

Value

A list, containing a vector of policy years of implementation, an integer of the starting policy im-
plementation month, and the effect of treatment within a given implementation year (as a fraction
of the total policy effect)

Examples

Set up a policy that starts in first-year of data, in July and takes
2 years for full implementation:
exposure_list(1, 7, 3, policy_speed = 'slow', n_implementation_periods = 2)

Same scenario but effect happens instantaneously:
exposure_list(1, 7, 3, policy_speed = 'instant')

model_terms Parse a formula object into its left-hand-side and right-hand-side com-
ponents

Description

Parse a formula object into its left-hand-side and right-hand-side components

Usage

model_terms(x)

Arguments

x Formula to parse

Value

list with named elements "lhs" and "rhs", containing variables on each respective side of the equa-
tion

Examples

Set up a hypothetical function, then decompose into left-hand and
right-hand sides
form <- formula(outcome ~ treatment + confounder + unit + time)
model_terms(form)

6 optic_model

optic_model Optic Model

Description

Generates model object to apply to each simulated dataset

Usage

optic_model(name, type, call, formula, se_adjust, ...)

Arguments

name Name of the model object, used to identify the model when reviewing simulation
results

type Estimator used to identify the treatment effect using simulated data. Specified as
a string, which can either be ’reg’ (regression), ’autoreg’ (autoregression, which
adds a lag for the outcome variable to a regression model), ’drdid’ (doubly-
robust difference-in-difference estimator), or ’multisynth’ (augmented synthetic
control)

call String which specifies the R function to call for applying the estimator. Package
currently supports either ’lm’ (linear model), ’feols’ (fixed-effect OLS), ’mul-
tisynth’ (pooled synthetic controls), or ’glm.nb’ (negative-binomial generalized
nearlized linear model)

formula Model specification, using R formula formatting. Must include a variable la-
beled ’treatment’ for the ’nonconf’ & ’selbias’ simulation method or variables
labeled ’treatment1’ & ’treatment2’ for the simulation method ’concurrent’

se_adjust Adjustments applied to standard errors following model estimation. Specified as
a string, OPTIC currently support ’none’ for no adjustment or ’cluster’ for clus-
tered standard errors. Clustered standard errors will use the ’unit_var’ specified
in optic_simulation for determining unit used for clustering standard errors.

... Additional arguments that are passed to the model call. Please refer to documen-
tation for each model call for additional details. If the model call expects a name,
you may need to pass your parameter using param = as.name("variable_name")
as opposed to param = variable_name.

Value

optic_model An optic_model object to be used as an input within optic_simulations. Details model
calls and parameters.

Examples

Set up a simple linear model
form <- formula(crude.rate ~ state + year + population + treatment_level)

optic_simulation 7

mod <- optic_model(name = 'lin',
type = 'reg',
call = 'lm',
formula = form,
se_adjust = 'none')

Deploy an auto-regressive model.
type = "autoreg" will make AR term
automatically when the model is deployed; also note
in formula the use of "treatment_change" as the treatment variable
rather than "treatment_level" like in the previous example:

form_ar <- formula(crude.rate ~ state + year + population + treatment_change)
mod_ar <- optic_model(name = "auto_regressive_linear",

type = "autoreg",
call = "lm",
formula = form_ar,
se_adjust = "none")

One could also use a different call, assuming the right packages
are installed and the model uses a familiar formula framework.
Example with random intercept for states, using lme4 package.

form_me <- formula(crude.rate ~
population + year + treatment_level + (1|state))

mod_me <- optic_model(name = "mixed_effect",
type = "reg",
call = "lmer",
formula = form_me,
se_adjust = "none")

optic_simulation Create a configuration object used to run simulations

Description

Performs validation on inputs and produces a configuration object that contains all required param-
eters to dispatch simulation runs for the empirical data provided.

Usage

optic_simulation(
x,
models,
iters,
unit_var,
time_var,
conf_var,

8 optic_simulation

effect_magnitude,
n_units,
effect_direction,
policy_speed,
prior_control = "level",
bias_size = NULL,
bias_type = NULL,
treat_var = NULL,
n_implementation_periods,
rhos = NULL,
years_apart = NULL,
ordered = NULL,
method,
method_sample,
method_model,
method_results,
method_pre_model,
method_post_model,
globals = NULL,
verbose = TRUE

)

Arguments

x Empirical data used to simulate synthetic datasets with specified treatment ef-
fect.

models List of ‘optic_model‘ objects that should be run for each iteration and simulation
scenario. The elements must be created using the ‘optic_model‘ function.

iters A numeric, specifying number of iterations for each simulation scenario.

unit_var A string variable, used to determine clusters for clustered standard errors.

time_var A string variable, specifying time units (e.g. "year", "time to treat", etc). Must
be specified in terms of years (fractional years are accepted).

conf_var An unobserved confounding variable. Only used for the ’confound-method’.
effect_magnitude

A vector of numerics, specifying ’true’ effect sizes for treatment scenarios. See
vignette for more details. Synthetic datasets will be generated for each entry in
the vector.

n_units A numeric, determining number of units to simulate treatment effects. Synthetic
datasets will be generated for each entry in the vector.

effect_direction

A vector containing either ’neg’, ’null’, or ’pos’. Determines the direction of
the simulated effect. Synthetic datasets will be generated for each entry in the
vector.

policy_speed A vector of strings, containing either ’instant’ or ’slow’ entries, determining
how quickly treated units obtain the simulated effect. Synthetic datasets will be
generated for each entry in the vector. Can either be ’instant" (so treatment effect

optic_simulation 9

applies fully in the first treated time period) or ’slow’ (treatment effect ramps up
linearly to the desired effect size, based on ‘n_implementation_periods‘.

prior_control Only used for confounding method. Adds an additional set of variables which
control for the outcome in previous periods (either a moving average of previous
time periods or an autoregressive term)

bias_size A string, either "small" "medium" or "large". Specifies relative size of bias for
’confounding’ method.

bias_type A string, either linear" or "nonlinear". Specifies type of bias for ’confounding’
method

treat_var A string variable, referring to the unit-of-analysis for treatment (which may not
be the same as the unit var argument, e.g. treated classrooms within clustered
schools)

n_implementation_periods

A vector of numerics, determining number of periods after implementation until
treated units reach the desired simulated treatment effect. Synthetic datasets will
be generated for each entry in the vector.

rhos A vector of values between 0-1, indicating the correlation between the primary
policy and a concurrent policy. Only applies when ’method’ == ’concurrent’.
Synthetic datasets will be generated for each entry in the vector.

years_apart A numeric, for number of years between the primary policy being implemented
and the concurrent policy. Only applies when ’method’ == ’concurrent’.

ordered A boolean, determines if the primary policy always occurs before the concurrent
policy (‘TRUE‘) or if the policies are randomly ordered (‘FALSE‘).

method A string, determing the simulation method. Can be either ’no_confounding’,
’confounding’ or ’concurrent’

method_sample Underlying function for the sampling method to determine treatment status. Pro-
vided here for convenience so that the user does not need to modify the actual
underlying function’s script.

method_model Another convenience function, which can be modified to control the model call.

method_results Another convenience function, which can be modified to control the simulation
results that are returned.

method_pre_model

Similar to method_sample argument, this variable is provided as a convenience
for the user. This function transforms the treatment effect, after it’s simulated
within the synthetic data.

method_post_model

Another convenience function, which can be modified to control transformations
to the simulated effect, after modeling.

globals Additional globals to pass to the simulate function, such as parallelization pack-
ages or additional R packages used by method calls (e.g. modeling packages,
like "FEOLS").

verbose Boolean, default True. If TRUE, provides summary details on simulation runs
across iterations

10 overdoses

Details

The resulting configuration object is used to pass simulation scenarios to the ’simulate’ function.
Provided as a convenience function to the user so they can investigate simulation arguments prior
to running models.

Value

An OpticSim object, which contains simulation and model parameters for simulation runs, which
is used as an input for dispatch_simulations.

Examples

Load data for simulation and set up a hypothetical policy effect:

data(overdoses)
eff <- 0.1*mean(overdoses$crude.rate, na.rm = TRUE)

Set up a simple linear model
form <- formula(crude.rate ~ state + year + population + treatment_level)
mod <- optic_model(name = 'lin',

type = 'reg',
call = 'lm',
formula = form,
se_adjust = 'none')

Create simulation object, with desired parameters for simulations:
sim <- optic_simulation(x = overdoses,

models = list(mod),
method = 'no_confounding',
unit_var = 'state',
treat_var = 'state',
time_var = 'year',
effect_magnitude = list(eff),
n_units = 10,
effect_direction = 'pos',
iters = 10,
policy_speed = 'instant',
n_implementation_periods = 1)

overdoses OPTIC Overdoses example data.

Description

An example dataset for performing simulations using the OPTIC library, consisting of state-year
overdose data from the US Bureau of Labor Statistics, the Centers from Disease Control and Pre-
vention, and IQVIA Xponent.

overdoses 11

Usage

overdoses

Format

A data frame with 969 rows and 7 variables:

state US state

year Year

population Population estimate (Centers for Disease Control and Prevention, National Center for
Health Statistics)

unemploymentrate Average annual unemployment rate (US Bureau of Labor Statistics)

opioid_rx Estimated number of annual opioid prescriptions dispensed per 100 residents (Centers
for Disease Control and Prevention, IQVIA)

deaths Annual number of drug-induced deaths (all drug overdose) (Centers for Disease Control
and Prevention, National Center for Health Statistics)

crude.rate Crude rate of drug-induced deaths (all drug overdose) per 100,000 residents (Centers
for Disease Control and Prevention, National Center for Health Statistics)

Source

US Bureau of Labor Statistics. Local Area Unemployment Statistics April 2019 release. Accessed
at https://www.bls.gov/lau/.

Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause
of Death 1999-2019 on CDC WONDER Online Database, released in 2020. Data are from the
Multiple Cause of Death Files, 1999-2019, as compiled from data provided by the 57 vital statistics
jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.
gov/mcd-icd10.html.

Centers for Disease Control and Prevention, IQVIA Xponent 2006–2019. U.S. Opioid Dispensing
Rate Maps. Accessed at https://www.cdc.gov/drugoverdose/rxrate-maps/index.html.

http://wonder.cdc.gov/mcd-icd10.html
http://wonder.cdc.gov/mcd-icd10.html

Index

∗ datasets
overdoses, 10

calculate_exposure, 2

dispatch_simulations, 3

exposure_list, 4

model_terms, 5

optic_model, 6
optic_simulation, 7
overdoses, 10

12

	calculate_exposure
	dispatch_simulations
	exposure_list
	model_terms
	optic_model
	optic_simulation
	overdoses
	Index

