
Analysing bathymetric data in R with marmap

Eric Pante & Benoit Simon Bouhet

November 12, 2022

Contents

1 Extracting information from bathymetric data 1

1.1 Depth and altitude along a transect or path. 1
1.2 Getting information about points on a bathymetric map 4
1.3 Computation of projected surfaces 7

2 Computing distances 8

2.1 Using bathymetric data for least-cost path analysis 8
2.2 Landscape Genetics . 11
2.3 Shortest Great Circle Distances between points and isobath . . . 11

3 3D plotting 13

4 Working with big files 15

5 Interactions with other packages, projections 16

1 Extracting information from bathymetric data

1.1 Depth and altitude along a transect or path.

Let’s start by getting some data into R from the NOAA ETOPO 2022 database
[1]:

library(marmap)

papoue <- getNOAA.bathy(lon1 = 140, lon2 = 155,

lat1 = -13, lat2 = 0, resolution = 4)

We can map these data using plot.bathy():

Creating color palettes

blues <- c("lightsteelblue4", "lightsteelblue3",

"lightsteelblue2", "lightsteelblue1")

greys <- c(grey(0.6), grey(0.93), grey(0.99))

1

plot(papoue, image = TRUE, land = TRUE, lwd = 0.03,

bpal = list(c(0, max(papoue), greys),

c(min(papoue), 0, blues)))

Add coastline

plot(papoue, n = 1, lwd = 0.4, add = TRUE)

Basic information about the whole area can be displayed by summary.bathy():

summary(papoue)

Bathymetric data of class ’bathy’, with 225 rows and 195 columns

Latitudinal range: -12.97 to -0.03 (12.97 S to 0.03 S)

Longitudinal range: 140.03 to 154.97 (140.03 E to 154.97 E)

Cell size: 4 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8823 -3092 -1515 -1624 -5 4096

First 5 columns and rows of the bathymetric matrix:

2

-12.9666666666667 -12.9 -12.8333333333333

140.033333333333 -36 -36 -36

140.1 -37 -36 -36

140.166666666667 -36 -35 -35

140.233333333333 -36 -36 -34

140.3 -35 -34 -34

-12.7666666666667 -12.7

140.033333333333 -37 -37

140.1 -36 -36

140.166666666667 -35 -36

140.233333333333 -34 -35

140.3 -33 -34

We can use the get.transect() and plotProfile() functions to extract
and plot a depth cross section from the papoue dataset. get.transect() will
use the coordinates you input to calculate the coordinates and depths along your
transect, and calculate the great circle distance separating each point along the
transect from the point of origin (in kilometers).

trsect <- get.transect(papoue, 150, -5, 153, -7, distance = TRUE)

head(trsect)

lon lat dist.km depth

1 149.9667 -5.033333 0.00000 -175

2 150.0333 -5.077778 8.88533 100

3 150.1000 -5.122222 17.77024 -9

4 150.1667 -5.166667 26.65472 -223

5 150.2333 -5.211111 35.53877 -367

6 150.3000 -5.255556 44.42238 -270

We can plot that information on a map and make a cross section plot with
plotProfile(). By setting the locator option of get.transect() to TRUE,
you can get transect information and make a cross-section plot directly by click-
ing on a bathemetric map.

plotProfile(trsect)

0 100 200 300 400

−
6

0
0

0
−

4
0

0
0

−
2

0
0

0
0

Distance from start of transect (km)

D
e

p
th

 (
m

)

3

The function path.profile() takes advantage of both get.transect() and
plotProfile() to retrieve and plot bathymetric information along a path that
is not limited to a straight transect between 2 points. See the help file of
plotProfile() for more details.

1.2 Getting information about points on a bathymetric

map

The get.depth() function can be used to retrieve depth information by either
clicking on the map or by providing a set of longitude/latitude pairs. This is
helpfull to get depth information along a GPS track record for instance. If the
argument distance is set to TRUE, the haversine distance (in km) from the first
data point on will also be computed. The output will look like this:

get.depth(papoue, distance = TRUE)

Waiting for interactive input: click any number of times

on the map, then press 'Esc'

lon lat dist.km depth

1 146.0200 -2.601702 0.0000 -758

2 147.6167 -1.844152 196.3933 -583

3 149.3193 -2.607345 366.4942 -2121

4 150.7295 -4.249027 553.8867 -2289

get.sample() can be used in combination with a table containing sampling
information to retrieve sample information by clicking on the map. Let’s make a
fake table of sampling data and use it for plotting and use with get.sample():

x <- c(142.1390, 142.9593, 144.0466, 145.9141, 145.9372,

146.0115, 145.9141, 146.8589, 146.6651, 147.1772,

147.2856, 152.7475, 152.5025, 152.7816, 152.9010)

y <- c(-2.972065, -3.209449, -3.391399, -4.675720, -4.914153,

-5.130116, -5.329641, -2.587792, -2.897221, -3.250368,

-2.720080, -6.005769, -6.211152, -6.326915, -5.990206)

station <- paste("station", 1:15, sep = "")

sampling <- data.frame(x, y, station)

We have now created a small table that we can use for further analysis. Let’s
plot them on a map:

head(sampling) # a preview of the first 6 lines of the dataset.

x y station

1 142.1390 -2.972065 station1

2 142.9593 -3.209449 station2

3 144.0466 -3.391399 station3

4 145.9141 -4.675720 station4

5 145.9372 -4.914153 station5

6 146.0115 -5.130116 station6

4

plot(papoue, image = TRUE, land = TRUE, n=1,

bpal = list(c(0, max(papoue), greys),

c(min(papoue), 0, blues)))

add sampling points, and add text to the plot:

points(sampling$x, sampling$y, pch = 21, col = "black",

bg = "yellow", cex = 1.3)

text(152, -7.2, "New Britain\nTrench", col = "white", font = 3)

140 142 144 146 148 150 152 154

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

Longitude

L
a

ti
tu

d
e

New Britain

Trench

By clicking on the map, we can select the area in the New Britain Trench,
to get information on the sampling stations of that area. get.sample() will
detect that there are samples in the area selected and return the locations of
these samples.

click twice on the map to delimit an area:

get.sample(papoue, sampling, col.lon = 1, col.lat = 2)

x y station

12 152.7475 -6.005769 station12

13 152.5025 -6.211152 station13

14 152.7816 -6.326915 station14

5

15 152.9010 -5.990206 station15

16 153.2314 -6.023344 station16

Instead of using a heat map to represent depth, we can use a simple contour
plot for the bathymetry, add a color legend for the depth and associate the color
of each point to the desired depth. First, let’s get the depth associated with
each sampling point in sampling using get.depth():

Get the depth for each sampling point

sp <- get.depth(papoue, sampling[,1:2], locator = FALSE)

sp

lon lat depth

1 142.1390 -2.972065 -29

2 142.9593 -3.209449 -821

3 144.0466 -3.391399 -1215

4 145.9141 -4.675720 119

5 145.9372 -4.914153 -1265

6 146.0115 -5.130116 -1310

7 145.9141 -5.329641 -955

8 146.8589 -2.587792 -683

9 146.6651 -2.897221 -1422

10 147.1772 -3.250368 -1707

11 147.2856 -2.720080 -653

12 152.7475 -6.005769 -5631

13 152.5025 -6.211152 -4899

14 152.7816 -6.326915 -4272

15 152.9010 -5.990206 -6047

Then, create a map, a color legend and add the sampling points:

create a contour plot for the bathymetry and add a scale

par(mai=c(1,1,1,1.5))

plot(papoue, lwd = c(0.3, 1), lty = c(1, 1),

deep = c(-4500, 0), shallow = c(-50, 0), step = c(500, 0),

col = c("grey", "black"), drawlabels = c(FALSE, FALSE))

scaleBathy(papoue, deg = 3, x = "bottomleft", inset = 5)

set color palette for depth

library(shape)

mx <- abs(min(sp$depth, na.rm = TRUE))

col.points <- femmecol(mx)

plot points and color depth scale

points(sp[,1:2], col = "black", bg = col.points[abs(sp$depth)],

pch = 21, cex = 1.5)

colorlegend(zlim = c(mx, 0), col = rev(col.points),

main = "depth (m)", posx = c(0.85, 0.88))

6

Longitude

L
a

ti
tu

d
e

140 145 150 155

−
1

5
−

1
0

−
5

0

326 km

0

1000

2000

3000

4000

5000

6000

depth (m)

1.3 Computation of projected surfaces

The function get.area() can be used to calculate projected surface areas (the
projecting surface being the ocean surface). This functions depends on the
geosphere package [9]. For example, in the case of the Hawaiian Archipelago,
we can calculate the surface area of the bathyal (1,000 to 4,000 m) and abyssal
regions (4,000 to about 6,000 m).

data(hawaii)

bathyal <- get.area(hawaii, level.inf = -4000, level.sup = -1000)

abyssal <- get.area(hawaii, level.inf = min(hawaii),

level.sup = -4000)

ba <- round(bathyal$Square.Km, 0)

ab <- round(abyssal$Square.Km, 0)

The function get.area() returns a list of 4 elements. The surface area in
square kilometers ($Square.Km), a matrix of zeros and ones delimiting the area
of interest (Area) and 2 vectors ($Lon and $Lat) containing the longitudes and
latitudes of the area of interest. Such lists can be used to highlight the projected
surfaces on an existing bathymetric map using function the plotArea():

7

plot(hawaii, lwd = 0.2)

col.bath <- rgb(0.7, 0, 0, 0.3)

col.abys <- rgb(0.7, 0.7, 0.3, 0.3)

plotArea(bathyal, col = col.bath)

plotArea(abyssal, col = col.abys)

Finally, we can add a legend with the calculated surface for both areas:

legend(x="bottomleft",

legend=c(paste("bathyal:",ba,"km2"),

paste("abyssal:",ab,"km2")),

col="black", pch=21,

pt.bg=c(col.meso,col.bath,col.abys))

2 Computing distances

2.1 Using bathymetric data for least-cost path analysis

marmap contains functions to facilitate least-cost path analysis that are based
on the raster [10] and gdistance [8] packages. gdistance calculates routes

8

in a heterogeneous landscape, taking obstacles into account. These obstacles
can be defined in marmap based on bathymetric data. We will use the Hawaiian
islands as our playground for this section.

data(hawaii, hawaii.sites)

sites <- hawaii.sites[-c(1,4),]

rownames(sites) <- 1:4

We first compute a transition matrix to be used by lc.dist() to com-
pute least cost distances between locations. The transition object generated by
trans.mat() contains the probability of transition from one cell of a bathymet-
ric grid to adjacent cells, and depends on user defined parameters. trans.mat()
is especially usefull when least cost distances need to be calculated between
several locations at sea. The default values for arguments min.depth and
max.depth of trans.mat() ensure that the path computed by lc.dist() will
be the shortest path possible at sea avoiding land masses. The path can be con-
strained to a given depth range by setting manually min.depth and max.depth.
For instance, it is possible to limit the possible paths to the continental shelf by
setting max.depth=-200. Inaccuracies of the bathymetric data can occasionally
result in paths crossing land masses. Setting min.depth to low negative values
(e.g. -10 meters) can limit this problem.

Here, trans1 is a transition object constrained only by land masses. trans2
is a transition object that makes travel impossible in waters shallower than 200
meters depth. This step takes a little time.

trans1 <- trans.mat(hawaii)

trans2 <- trans.mat(hawaii, min.depth = -200)

We can now use these transition objects to calculate least cost distances for
trans1 and trans2. The output of lc.dist() is a list of geographic positions
corresponding to the least-cost path.

out1 <- lc.dist(trans1, sites, res = "path")

|===| 100%

out2 <- lc.dist(trans2, sites, res = "path")

|===| 100%

We use the lapply() function to extract information from these lists and
plot lines. Thick orange lines correspond to least-cost paths only constrained by
landmasses. Thin black lines are paths constrained by the 200 m isobath. We
store the result of lapply() in a dummy variable to avoid printing of unnecessary
information. The coastline is in black, the 200 m isobath is in blue, and isobaths
between 5000 and 200 m depth are in grey. Our sampling points are in blue.

plot(hawaii, xlim = c(-161, -154), ylim = c(18, 23),

deep = c(-5000, -200, 0), shallow = c(-200, 0, 0),

col = c("grey", "blue", "black"), step = c(1000, 200, 1),

9

lty = c(1, 1, 1), lwd = c(0.6, 0.6, 1.2),

draw = c(FALSE, FALSE, FALSE))

points(sites, pch = 21, col = "blue", bg = col2alpha("blue", .9),

cex = 1.2)

text(sites[,1], sites[,2], lab = rownames(sites),

pos = c(3, 4, 1, 2), col = "blue")

lapply(out1, lines, col = "orange", lwd = 5, lty = 1) -> dummy

lapply(out2, lines, col = "black", lwd = 1, lty = 1) -> dummy

Longitude

L
a
ti
tu

d
e

−161 −160 −159 −158 −157 −156 −155 −154

1
8

1
9

2
0

2
1

2
2

2
3

1

2

3

4

The argument res of lc.dist() controls whether path coordinates or dis-
tances between points (in kilometers) are outputted. Let’s see how these dif-
ferent scenarios (no constraint: great-circle distance, dist0 ; avoid landmasses:
dist1 ; avoid areas shallower than 200 m: dist2) affect distances between
sampling points:

library(fossil)

dist0 <- round(earth.dist(sites), 0)

dist1 <- lc.dist(trans1, sites, res = "dist")

dist2 <- lc.dist(trans2, sites, res = "dist")

10

dist0

1 2 3

2 226

3 387 381

4 355 517 331

dist1

1 2 3

2 230

3 391 401

4 365 529 334

dist2

1 2 3

2 230

3 423 403

4 365 533 334

Note: You can check out the help file for lc.dist() to see how we can
combine these functions with cross-section calculations and plotting.

2.2 Landscape Genetics

The distance objects created in the section above are formatted as matrices that
can be used in R or exported to be used in GenePop [15], TESS [7], or other
software. As an example, these distances can be used to perform a Mantel test,
as implemented in the package ade4 (mantel.rtest() function ; [3, 5, 6]). The
matrices produced in marmap are ready for use with ade4. For export and use
in external programs, the function write.matrix() of the MASS package [16] or
write.table() of the utils package will be helpful.

2.3 Shortest Great Circle Distances between points and

isobath

Two functions of marmap allow for computing and plotting the shortest path fol-
lowing a great circle distance between a set of points on a map and an arbitrary
isobath line. The function dist2isobath() depends on functions from packages
sp [14] and geosphere [9] to compute the distances. By default (isobath = 0),
the nearest location along the coastline is computed for each point.

Load NW Atlantic xyz data and convert to class bathy

data(nw.atlantic)

atl <- as.bathy(nw.atlantic)

Create vectors of latitude and longitude for 5 points

lon <- c(-70, -65, -63, -55, -48)

11

lat <- c(33, 35, 40, 37, 33)

Compute distances between each point and the nearest location

along the coastline

d <- dist2isobath(atl, lon, lat, isobath = 0)

d

distance start.lon start.lat end.lon end.lat

1 487881.3 -70 33 -64.87297 32.26667

2 296545.9 -65 35 -64.73333 32.33571

3 434960.9 -63 40 -65.43333 43.46667

4 873559.4 -55 37 -59.73333 43.99167

5 1568427.9 -48 33 -64.71944 32.33333

We can then plot the bathymetry, add the 5 points, and plot the great circle
lines to the nearest points on the coast using the function linesGC():

Plot the bathymetry

plot(atl, image = TRUE, lwd = 0.1, land = TRUE,

bpal = list(c(0, max(atl), "grey"), c(min(atl), 0, blues)))

Make the coastline more visible

plot(atl, deep = 0, shallow = 0, step = 0, lwd = 0.6, add = TRUE)

Add the 5 points

points(lon, lat, pch = 21, bg = "orange2", cex = 0.8)

Add great circle lines

linesGC(d[, 2:3], d[, 4:5])

The same process can be used to compute and visualize the shortest great
circle distance between a set of points and any arbitrary isoline of depth or
altitude by setting the isobath argument of dist2isobath() to non-zero values
(the chosen value must be within the range of altitude/depth for the region used
to compute the distances).

12

3 3D plotting

R contains tools to plot data in three dimensions. We can use the function
wireframe() of the package lattice [4] to make a 3D representation of the
NW Atlantic and its seamount chains. wireframe() is not part of marmap, and
was therefore not meant to work with objects of class bathy. We need to use
the function unclass() to make our data available to wireframe(). Make sure
to adjust the aspect option of wireframe(), to minimize vertical exaggeration
and biased latitude / longitude aspect ratio.

Load NW Atlantic xyz data and convert to class bathy

data(nw.atlantic)

atl <- as.bathy(nw.atlantic)

library(lattice)

wireframe(unclass(atl), shade = TRUE, aspect = c(1/2, 0.1))

The marmap function get.box() can be coupled with the lattice function
wireframe() to produce 3D plots of belt transects of given width. Let’s use the
NW Atlantic data to investigate these functions, and look at the New England
and Corner Rise seamount chains.

data(nw.atlantic)

atl <- as.bathy(nw.atlantic)

plot(atl, xlim = c(-70, -52),

deep = c(-5000, 0), shallow = c(0, 0), step = c(1000, 0),

col = c("lightgrey", "black"), lwd = c(0.8, 1),

lty = c(1, 1), draw = c(FALSE, FALSE))

belt <- get.box(atl, x1 = -68.6, x2 = -53.7, y1 = 42.4, y2 = 32.5,

width = 3, col = "red")

13

Longitude

L
a

ti
tu

d
e

−70 −65 −60 −55

3
0

3
5

4
0

4
5

library(lattice)

wireframe(belt, shade = TRUE, zoom = 1.1,

aspect = c(1/4, 0.1),

screen = list(z = -60, x = -55),

par.settings = list(axis.line = list(col = "transparent")),

par.box = c(col = rgb(0, 0, 0, 0.1)))

14

row

4 Working with big files

Data files containing bathymetry information can rapidely become huge (e.g.
tens to hundreds of Mega-octets, millions of latitude-longitude-depth/altitude
triplets), especially for hi-resolution bathymetry data recorded over large ar-
eas. If marmap can usually import large xyz files1 to create bathy objects using
read.bathy(), working with such objects can be difficult (if not impossible)
depending on the amount of RAM available on your computer. More specif-
ically, ressource-intensive tasks such as computing least cost paths might be
extremely time consumming with datasets of millions of points. Even plotting
with plot.bathy() can be very slow when too many countour lines are used,
or when image is set to TRUE. In such situations, it is very useful to subset a big
bathy object by either:

1. selecting a smaller region of a large bathy object while conserving its full
resolution

2. lowering the resolution of the bathy object over the whole area

1The netcdf format is especially useful when dealing with big bathymetric files. Importing

netcdf files to work with marmap is discussed in the marmap-ImportExport vignette.

15

3. a combination of the first 2 options, i.e. decreasing the resolution of
the bathy object and selecting a smaller area for plotting or for other
ressource-intensive computations.

For option 1, you can either use get.box() (see above), or subsetBathy()
to select a smaller area of a large bathy object. subsetBathy() allows the se-
lection of a non-rectangular area within a large bathy object to create a new,
smaller bathy object of the same resolution. This function also has an interac-
tive mode so that you can select an area of interest by clicking on a map.

For option 2, there is no built-in solution in marmap. However, it is pretty
straightforward to decrease the resolution of a bathy object since it is just a
matrix with a special class. If you have a big bathy object called dat, here is
a solution:

Derease the resolution of dat by a factor n

n <- 2

dat.lowres <- dat[seq(1, nrow(dat), by = n),

seq(1, ncol(dat), by = n)]

Specify the class of the new object

class(dat.lowres) <- "bathy"

dat.lowres is now a new bathy object with a resolution 2 times lower than
it was for dat.

Option 3 is just a combination of the 2 previous methods: first, create a
dat.lowres object, then use get.box() or subsetBathy() to extract a smaller
region out of it.

5 Interactions with other packages, projections

marmap interacts with multiple existing R packages for visualization and anal-
ysis, such as lattice for building three-dimensional plots, and gdistance for
least-cost path calculations (see above). marmap also contains functions to ease
interactions with other packages dedicated to the analysis of spatial data. Data
of class bathy can be transformed into RasterLayer objets for use in the raster
package [10] or into SpatialGridDataFrame objects for use in the packages
sp [2, 14]. The full range of spatial analyses implemented in packages taking
advantage of these classes are thus available for bathymetric data. The simple
examples presented below illustrate how to apply an arbitrary projection to
bathy objects using the function projectRaster() from the raster package
(n.b. a working installation of the rgdal package is needed to use this function).

library(raster)

Loads data of class bathy

data(hawaii)

16

Creates an object of class raster

r1 <- marmap::as.raster(hawaii)

Defines the target projection

newproj <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100

+ellps=WGS84"

Creates a new projected raster object

r2 <- projectRaster(r1, crs = newproj)

Switches back to a bathy object

hawaii.projected <- as.bathy(r2)

Plots both the original and projected bathy objects

plot(hawaii, image = TRUE, lwd = 0.3)

plot(hawaii.projected, image = TRUE, lwd = 0.3,

xlab = "", ylab = "", axes = FALSE)

17

Here is another example for an orthographic projection of the whole world:

library(raster)

Get data for the whole world. Careful: ca. 21 Mo!

world <- getNOAA.bathy(-180, 180, -90, 90, res = 15, keep = TRUE)

Switch to raster

world.ras <- marmap::as.raster(world)

Set the projection and project

my.proj <- "+proj=ortho +lat_0=0 +lon_0=50 +x_0=0 +y_0=0"

world.ras.proj <- projectRaster(world.ras,crs = my.proj)

Switch back to a bathy object

world.proj <- as.bathy(world.ras.proj)

Set colors for oceans and land masses

blues <- c("lightsteelblue4", "lightsteelblue3",

"lightsteelblue2", "lightsteelblue1")

greys <- c(grey(0.6), grey(0.93), grey(0.99))

18

And plot!

plot(world.proj, image = TRUE, land = TRUE, lwd = 0.05,

bpal = list(c(0, max(world.proj, na.rm = T), greys),

c(min(world.proj, na.rm = T), 0, blues)),

axes = FALSE, xlab = "", ylab = "")

plot(world.proj, n = 1, lwd = 0.4, add = TRUE)

A great list of available projections is available at http://www.remotesensing.
org/geotiff/proj_list/

References

[1] NOAA National Centers for Environmental Information (2022) ETOPO
2022 15 Arc-Second Global Relief Model. NOAA National Centers for En-
vironmental Information. URL https://doi.org/10.25921/fd45-gt74

[2] Bivand RS, Pebesma EJ, Gomez-Rubio V (2013) Applied spatial data anal-
ysis with R, Second edition. Springer, NY.

19

http://www.remotesensing.org/geotiff/proj_list/
http://www.remotesensing.org/geotiff/proj_list/
https://doi.org/10.25921/fd45-gt74

[3] Chessel D, Dufour A, Thioulouse J (2004) The ade4 package -I- One-table
methods. R News 4: 5-10.

[4] Deepayan S, (2008) Lattice: Multivariate Data Visualization with R.
Springer, New York.

[5] Dray S, Dufour A, Chessel D (2007) The ade4 package-II: Two-table and
K-table methods. R News 7: 47-52.

[6] Dray S, Dufour A (2007) The ade4 package: implementing the duality
diagram for ecologists. Journal of Statistical Software 22: 1-20.

[7] Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of
admixture proportions and secondary contact zones. Molecular Biology
and Evolution 26: 1963-1973.

[8] van Etten J (2014) gdistance: distances and routes on geographical grids.
URL http://CRAN.R-project.org/package=gdistance. R package ver-
sion 1.1-5.

[9] Hijmans RJ (2014) geosphere: Spherical Trigonometry. URL http://

CRAN.R-project.org/package=geosphere. R package version 1.3-11.

[10] Hijmans RJ (2014) raster: Geographic data analysis and modeling. URL
http://CRAN.R-project.org/package=raster. R package version 2.3-0.

[11] James DA, Falcon S (2013) RSQLite: SQLite interface for R. URL http:

//CRAN.R-project.org/package=RSQLite. R package version 0.11.4.

[12] NOAA National Geophysical Data Center. GEODAS Grid Transla-
tor - Design a grid. URL http://www.ngdc.noaa.gov/mgg/gdas/gd_

designagrid.html.

[13] Pante E, Simon-Bouhet B (2013) marmap: A Package for Importing, Plot-
ting and Analyzing Bathymetric and Topographic Data in R. PLoS ONE
8:e73051

[14] Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R.
R News. 5:9-13.

[15] Rousset F, (2008) GENEPOP’007: a complete re-implementation of the
genepop software for Windows and Linux. Molecular Ecology Resources 8:
103-106.

[16] Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth
edition. Springer, NY.

20

http://CRAN.R-project.org/package=gdistance
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=RSQLite
http://CRAN.R-project.org/package=RSQLite
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html

	Extracting information from bathymetric data
	Depth and altitude along a transect or path.
	Getting information about points on a bathymetric map
	Computation of projected surfaces

	Computing distances
	Using bathymetric data for least-cost path analysis
	Landscape Genetics
	Shortest Great Circle Distances between points and isobath

	3D plotting
	Working with big files
	Interactions with other packages, projections

