
JSS Journal of Statistical Software
May 2006, Volume 16, Issue 2. doi: 10.18637/jss.v000.i00

hapassoc:

Software for likelihood inference of trait

associations with SNP haplotypes and other

attributes

Kelly Burkett

Simon Fraser University
Jinko Graham

Simon Fraser University
Brad McNeney

Simon Fraser University

Abstract

Complex medical disorders, such as heart disease and diabetes, are thought to involve
a number of genes which act in conjunction with lifestyle and environmental factors to
increase disease susceptibility. Associations between complex traits and single nucleotide
polymorphisms (SNPs) in candidate genomic regions can provide a useful tool for identi-
fying genetic risk factors. However, analysis of trait associations with single SNPs ignores
the potential for extra information from haplotypes, combinations of variants at multiple
SNPs along a chromosome inherited from a parent. When haplotype-trait associations
are of interest and haplotypes of individuals can be determined, generalized linear models
(GLMs) may be used to investigate haplotype associations while adjusting for the effects
of non-genetic cofactors or attributes. Unfortunately, haplotypes cannot always be deter-
mined cost-effectively when data is collected on unrelated subjects. Uncertain haplotypes
may be inferred on the basis of data from single SNPs. However, subsequent analyses
of risk factors must account for the resulting uncertainty in haplotype assignment in or-
der to avoid potential errors in interpretation. To account for such uncertainty, we have
developed hapassoc, software for R implementing a likelihood approach to inference of
haplotype and non-genetic effects in GLMs of trait associations. We provide a descrip-
tion of the underlying statistical method and illustrate the use of hapassoc with examples
that highlight the flexibility to specify dominant and recessive effects of genetic risk fac-
tors, a feature not shared by other software that restricts users to additive effects only.
Additionally, hapassoc can accommodate missing SNP genotypes for limited numbers of
subjects.

Keywords: genetic association, single-nucleotide polymorphisms, haplotypes, generalized lin-
ear models, missing data, EM algorithm.

https://doi.org/10.18637/jss.v000.i00

2

1. Introduction and Background

The identification of genetic factors influencing susceptibility to complex diseases such as
cancer and diabetes is important for improving our understanding of disease pathways. Ge-
netic factors are measured at multiple sites of known genomic location (genetic markers) to
determine if variants at these sites are associated with the disease trait. A common type
of genetic marker in association studies is the single nucleotide polymorphism (SNP). SNPs
generally have only two different variants, called alleles, which can be labelled as 0 or 1. For
each marker, an individual inherits one allele from their mother, and one from their father.
The genotype is the particular two alleles that are inherited. The three possible genotypes for
a SNP marker are 0/0, 0/1 and 1/1, where “/” is used to separate the alleles inherited from
each parent. The 0/0 and 1/1 genotypes are called homozygous (both alleles are the same)
and the 0/1 genotype is called heterozygous (the two alleles are different).

A haplotype denotes the alleles at multiple markers that are inherited together on the same
chromosome from a parent. For example, if an individual inherits a 0 allele at one SNP and a
0 allele at another SNP from their mother, the haplotype they inherit is 00. Because the SNPs
may be close together on the same chromosome, their alleles are not necessarily independent.
The haplotype phase is the combination of the two haplotypes that an individual inherits. For
example, the phased genotype 00/01 indicates that the two haplotypes inherited were 00 and
01; the genotype at the first SNP is 0/0 and the genotype at the second SNP is 0/1.

When associations between haplotypes and disease outcomes or traits are of interest, a poten-
tial difficulty is that haplotype phase is not necessarily known because, typically, genotypes are
only measured at individual markers. For a subject who is heterozygous at one or fewer mark-
ers, the haplotype phase can be inferred from the genotypes at individual markers. However,
for a subject who is heterozygous at two or more markers, the phase can not be determined
with certainty. This is illustrated in figure 1. Current cost-effective genotyping technology
gives the observed genotypes at the two SNPs as (0/1, 0/1). The observed genotypes could
involve the inheritance of haplotypes 00 and 11, or of haplotypes 01 and 10. Therefore, two
possible haplotype phasings, 00/11 and 01/10, are compatible with the observed data.

✣✢
✤✜

✣✢
✤✜���

❅
❅❅00 11

00/11

Observed Genotypes
0/1; 0/1

✣✢
✤✜

✣✢
✤✜���

❅
❅❅01 10

01/10

Observed Genotypes
0/1; 0/1

Figure 1: Illustration of unknown haplotype phase for certain observed genotypes

The analysis of haplotype-trait associations therefore involves handling the missing phase
data. To describe such associations, Lake et al. (2003) and Burkett et al. (2004) adopt a
generalized linear model (GLM) framework (McCullagh and Nelder 1983). GLMs provide the
flexibility to incorporate non-genetic risk factors or potential confounding variables such as

Journal of Statistical Software 3

age or sex as covariates. They also allow the incorporation of interaction between genetic
and environmental risk factors, a current research focus in the study of complex diseases.
Finally, GLMs can accommodate a variety of disease outcomes including dichotomous, count
and continuous traits. The method of Burkett et al. (2004) is implemented in hapassoc,
a contributed package for R. Standard population- and quantitative-genetic assumptions,
such as population Hardy-Weinberg equilibrium and independence of haplotypes and non-
genetic covariates, are made. Parameter estimates are obtained by use of an expectation-
maximization (EM) algorithm, called the method of weights (Ibrahim 1990), for missing
categorical covariates. Standard errors that account for the extra uncertainty due to missing
phase are calculated using Louis’ method (Louis 1982). The statistical approach implemented
in hapassoc is briefly described and the use of the program is illustrated with examples.

2. Statistical Description

Let yi be the measured trait and xi be the vector of covariates for the ith subject, assuming
known haplotype phase. The covariates xi provide information about the individual’s haplo-
types and non-genetic cofactors. Let P(xi | γ) be the probability of covariates xi, parametrized
by γ. For notational convenience, suppose γ is a column-vector. A GLM specifies the condi-
tional probability of the trait given the covariates as

P(yi | xi, β, φ) = exp

[
yiνi − b(νi)

ai(φ)
+ c(yi, φ)

]
,

where νi is the canonical parameter for a probability distribution in the exponential family,
φ is a dispersion parameter, ai(φ) = φ/mi for a known constant mi, and b(·) and c(·, ·) are
known functions. A link function g(µi) = ηi relates the linear model ηi = xT

i β to the mean
trait value µi = b′(νi). The regression coefficients β describe the effects of haplotypes and non-
genetic cofactors, including possible interactions, on the mean trait value. The parameters
that describe the trait and covariate data are thus θ = (βT , φ, γT)T . However, we only
consider φ and γ as needed for inference about β, which is of primary interest.

If haplotype phase were known and complete covariate information were available on all
subjects, the complete-data log-likelihood for the ith individual would be

lci(θ) = log [P(yi | xi, β, φ) × P(xi | γ)] .

Haplotypes are not necessarily known, and therefore for some subjects the genetic components
of the covariate vector xi are not available. However, the observed genotypes at individual
SNPs constrain the potential haplotype configurations. Hereafter, let xobs,i be the observed

covariate information for the ith subject and xj
i be the jth possible covariate vector (i.e.

covariates that code haplotype information and non-genetic covariates) consistent with xobs,i.

We account for missing haplotype phase by use of the EM algorithm (Dempster et al. 1977), in
which maximum likelihood estimates θ̂ are obtained by iteratively maximizing the conditional
expectation of the complete-data log-likelihood, Q(θ | θt), given the observed data and current
parameter estimates θt to determine new parameter estimates θt+1. Assuming independent
subjects, Q(θ | θt) =

∑
i Qi(θ | θt), where Qi(θ | θt) = E [lci(θ) | yi, xobs,i, θt].

Our EM algorithm is based on the method of weights (Ibrahim 1990), an implementation for
generalized linear models with categorical covariates that may be missing (see Horton and

4

Laird 1999, for a review). Let ljci(θ) = log P(yi, xj
i | θ) be the complete-data log-likelihood for

the ith subject if that subject had covariate vector xj
i . Then

Qi(θ | θt) =
∑

j

ljci(θ)P(xj
i | yi, xobs,i, θt) =

∑

j

ljci(θ) wij(θt),

where wij(θt) = P(xj
i | yi, xobs,i, θt) are the “weights”. Note that each subject’s contribu-

tion Qi(θ | θt) to Q(θ | θt) is summed over the set of covariate vectors consistent with their
observed data (yi, xobs,i). The EM algorithm involves computing weights for each possible
complete-data covariate vector (E-step), and computing new parameter estimates by maxi-
mizing a weighted log-likelihood function (M-step). Upon convergence, standard errors can
be calculated. We implemented this EM algorithm and the calculation of standard errors
in R (http://www.r-project.org) as described in detail below. Our implementation is freely
available on the Comprehensive R Archive Network (CRAN) as a package called hapassoc.

2.1. EM algorithm implemented in hapassoc

Our implementation of the algorithm is summarized by the following steps.

1. For each individual with unknown haplotypes, add a “pseudo-individual” for each pos-
sible haplotype combination consistent with that individual’s observed genotypes. The
genetic data for each pseudo-individual is a different haplotype configuration; the non-
genetic data is the same for each pseudo-individual. Initial values for regression coeffi-
cients and haplotype frequencies are set.

2. At the tth iteration:

(a) E-step: Compute the expected log-likelihood conditional on the observed data and
the current parameter estimates θt = (βT

t , φt, γT
t)T .

This step simplifies to weighting each pseudo-individual by the conditional proba-
bility of the corresponding haplotype configuration given the observed data:

wij(θt) = P(xj
i | yi, xobs,i θt) =

P(yi | xj
i , βt, φt)P(xj

i | γt)∑
k P(yi | xk

i , βt, φt)P(xk
i | γt)

.

Calculation of P(yi | xj
i , βt, φt) is straightforward using the GLM and the estimates

βt and φt from fitting the model in the M-step at iteration t. To specify the covari-
ate distribution P(xj

i | γt), two standard assumptions from the genetics literature
are made. The first is independence of the genetic and non-genetic factors:

P(xj
i | γt) = P(xj

gi| γt)P(xj
ei| γt),

where xj
gi and xj

ei code, respectively, the haplotype and non-genetic covariate in-
formation. If only the haplotype information is missing, this assumption means
that

wij(θt) =
P(yi | xj

i , βt, φt)P(xj
gi | γt)∑

k P(yi | xk
i , βt, φt)P(xk

gi | γt)
≡ wij(βt, φt, γgt)

Journal of Statistical Software 5

so that only the distribution P(xj
gi| γt) has to be specified. Such a simplification is

convenient because specifying P(xj
ei| γt) can be difficult for non-genetic covariates

that are continuous, for example.

In general, the frequencies of haplotype configurations are not identifiable from the
genotypes at individual SNPs. For example, haplotype configurations resulting in
two or more heterozygous SNP genotypes are never observed unambiguously. How-
ever, under Hardy-Weinberg proportions (HWP), the probability of a haplotype
configuration can be written in terms of the haplotype frequencies, allowing both
the frequencies of haplotypes and of haplotype configurations to be estimated from
genotypes at individual SNPs. The assumption of HWP holds if the haplotype in-
herited from the mother is independent of the haplotype inherited from the father.
Assuming HWP also leads to a considerable reduction in the number of parameters
γg describing the haplotype covariate distribution P(xgi | γg). For example, when
considering haplotypes of 3 SNPs, there are 23 = 8 possible haplotypes compared
to 8(9)/2 = 36 possible phase configurations. The substantive reduction in the
number of genetic parameters leads to faster convergence of the EM algorithm and
greater stability of estimation.

(b) M-step: Maximize the conditional expected log-likelihood Q(θ | θt) to determine
the (t + 1)th parameter estimate.

Under the assumption of independence of the genetic and non-genetic covariates,
Q(θ | θt) may be re-expressed as a sum of components involving one of either (β,
φ), γg or γe:

Q(θ | θt) =
∑

i

Qi(θ | θt) =
∑

i

∑

j

wij(βt, φt, γgt)l
j
ci(θ)

=
∑

i

∑

j

wij(βt, φt, γgt) log
[
P(yi | xj

i , β, φ)P(xj
gi | γg)P(xei | γe)

]

=
∑

i

∑

j

wij(βt, φt, γgt) log P(yi | xj
i , β, φ)

+
∑

i

∑

j

wij(βt, φt, γgt) log P(xj
gi | γg)

+
∑

i

∑

j

wij(βt, φt, γgt) log P(xei | γe)

≡ Q(β, φ | βt, φt, γgt) + Q(γg | βt, φt, γgt) + Q(γe | βt, φt, γgt)

Therefore, each component is maximized separately to update the estimates of β,
φ and γg.

The summand Q(β, φ | βt, φt, γgt) is a weighted log-likelihood for regression and
dispersion parameters in a GLM. The R glm function is used to estimate βt+1

with the wij(βt, φt, γgt) input to the glm function through the “weights” option.
The summand Q(γg | βt, φt, γgt) is a weighted multinomial log-likelihood and so
its maximization is also straightforward. Since estimates of γe are not required for
the weights or for updating estimates of the other parameters, γe can be ignored
when finding maximum-likelihood estimates of the regression parameters β.

3. Repeat E- and M-steps until convergence.

6

4. Calculate the standard errors using values from the final GLM.

The variance-covariance matrix of θ̂ can be approximated by the inverse of the observed
information matrix I(θ̂). Louis (1982) gives an expression for the observed information
in missing data problems. With ambiguous haplotype configurations, the expression
consists of a term for the expected complete-data information given the observed geno-
types minus a penalty for unknown phase (Schaid et al. 2002). Factorization of the
likelihood implies that only the observed information I(β̂, φ̂, γ̂g) is required to obtain

standard errors for β̂. The variance of β̂ is approximated by the appropriate submatrix
of I−1(β̂, φ̂, γ̂g). Appendix A provides details of the derivation of I−1(β̂, φ̂, γ̂g).

3. Using hapassoc and its features

Our contributed R package hapassoc can be downloaded from the CRAN webpage using the
install command at the R command line (>):

> install.packages('hapassoc')

hapassoc does not depend on any optional R packages. After it has been installed, the package
may be loaded with:

> library(hapassoc)

There are four main functions for the user of hapassoc: pre.hapassoc, hapassoc, summary.hapassoc

and anova.hapassoc. The function pre.hapassoc takes the input dataset, with columns of
genotype data, and outputs an augmented dataset consisting of all pseudo-individuals. The
function hapassoc fits the user-specified generalized linear model, with haplotypes as co-
variates. The summary function provides a summary of the results while anova returns a
likelihood ratio test of two nested models fit with hapassoc. Further details on each of these
functions are now given.

The function pre.hapassoc pre-processes the input dataset for hapassoc. This pre-processing
involves converting the genotype data into haplotype data and adding rows to the input
dataset representing haplotype configurations compatible with the observed genotype data
for a subject. If the haplotype configuration of a subject is known, no extra rows are added
for this subject. The pre-processing also involves obtaining initial estimates for haplotype
frequencies based on the genotype data from all subjects combined. Haplotypes with non-
negligible frequency below a user-defined pooling tolerance (pooling.tol) are then grouped
together. The function requires the input dataset to have the following form:

1. Each row represents an individual. Columns represent the trait (response), non-genetic
covariate information and genotype information.

2. The columns of genotype information may have one of two formats. For the “allelic”
format, each genotype is denoted by two columns, one column for each allele, with
alleles coded as either 0 or 1. For the “genotypic” format, the genotype at each locus
is given in one column by a character string or factor. Only two possible variants or

Journal of Statistical Software 7

alleles are permitted, forming three possible genotypes. Genotypes with more than two
alleles will cause pre.hapassoc to issue an error and stop execution. Examples of both
allelic and genotypic formats are given in section 4.

3. If there are n SNPs, the final n columns of the “genotypic” dataset or 2n columns of the
“allelic” dataset contain the genotype data. By default, pre.hapassoc prints a list of
genotype variables used to form haplotypes and a list of other “non-genetic” variables
passed to the function.

4. There are no restrictions on the non-genetic covariate columns, except that missing
data should be coded as NA. Note that only missing genotype data is handled by hapas-

soc; individuals with missing non-genetic data will be removed from the dataset and a
warning will be given to the user.

5. Missing allelic data should be coded as NA or ‘ ’. Missing genotypic data should be coded
as, e.g., ‘A’, if one allele is missing and the other allele is the nucleotide adenine (say),
and ‘ ’ or NA if both alleles are missing.

This function has a number of optional parameters that may be set by the user. The option
maxMissingGenos specifies the maximum number of SNPs which may be missing genotypes
for a subject in order for that subject to be included in the analysis, with a default of 1.
Each SNP with a missing genotype leads to more haplotype configurations being added for
that subject in the augmented dataset. To avoid convergence problems due to haplotypes of
low frequency, pooling.tol can be used to specify a threshold frequency below which haplo-
types will be pooled into a single category. The threshold is applied to the initial haplotype
frequencies provided by pre.hapassoc. The “pooled” category returned by pre.hapassoc

is not updated with the haplotype frequencies from subsequent iterations of the EM algo-
rithm in hapassoc. The default pooling threshold is set to 0.05. Similarly, the parameter
zero.tol gives the frequency below which it is assumed that a haplotype does not exist. The
default threshold is the inverse of ten times the total number of haplotypes in all subjects.
Pseudo-individuals carrying haplotypes of estimated frequency below this zero threshold will
be removed from the augmented dataset. The verbose flag, if TRUE (the default), causes
pre.hapassoc to print a list of the genotype variables used to form haplotypes and a list of
other non-genetic variables.

The function pre.hapassoc will return a list with components required for hapassoc. The
components include two data frames, haploMat and haploDM, with the haplotype information.
The data frame haploMat consists of two columns, one for each of the inferred haplotypes,
and a row for each pseudo-individual in the dataset. The data frame haploDM consists of a
column for each of the haplotypes inferred to be present in the dataset and a row for each
pseudo-individual. Each pseudo-individual is given a code of 0, 1 or 2 in each column for
the number of copies they have of that haplotype. Therefore, all rows of haploDM should
sum to 2, as each individual can have only two haplotypes. The non-haplotype data is
returned in the data frame nonHaploDM. Some rows of nonHaploDM may be identical, as
they represent the trait value and non-genetic covariate information for the same individual
who has multiple haplotype configurations compatible with their observed genotype data.
Other components of the list returned by pre.hapassoc include a vector initFreq of initial
estimates of all haplotype frequencies (including pooled haplotypes), vectors zeroFreqHaplos

8

and pooledHaplos of the zero-frequency and pooled haplotypes, respectively, and a vector
wt of the initial estimates for the weights. For more information on this function, type

> help(pre.hapassoc)

The function hapassoc uses the list returned from pre.hapassoc as input, and fits the linear
model provided in the model-formula argument. The model formula is specified the same way
as it would be for the glm or lm functions in R. The elements of the model formula must have
names from among the names of columns in the data frames nonHaploDM and haploDM. The
availability of haploDM provides the user with the flexibility to specify recessive, dominant or
other types of genetic risk models. See the examples in section 4 below for more details on
specifying the model equation. As with glm, the family of the GLM is specified with the family
parameter. Currently the binomial, gaussian, poisson, and Gamma families are supported
by hapassoc. Unlike glm, we have opted for a binomial family as the default, since in most
of the biomedical applications we have encountered binary traits (e.g. diseased/not diseased)
have been investigated. Other optional parameters can be set including the initial estimates
of haplotype frequencies and of regression coefficients used to start the EM algorithm, the
maximum number of iterations for the algorithm, the tolerance for convergence, and a verbose

flag that controls printing of the iteration number and the value of the covergence criterion
at each iteration.

The function returns a list of class “hapassoc" with components such as the estimated regres-
sion coefficients, the estimated haplotype frequencies and an estimate of their joint variance-
covariance matrix. The associated help file, found by typing help(hapassoc), provides a
detailed description of the components of the returned list. The function summary.hapassoc

is the summary method for the class and provides a nicer way of viewing the results. The
summary includes a table of the estimated regression coefficients and the associated standard
errors, Z scores and p-values, a table of the estimated haplotype frequencies and their standard
errors, and the estimated dispersion parameter (when appropriate). Likelihood ratio tests to
compare two nested models fit with hapassoc may be performed with anova.hapassoc.

4. Examples

This section illustrates the use of hapassoc with examples of logistic and linear regression,
when input genotypes are in “allelic" and “genotypic" format, respectively.

4.1. Logistic regression with input genotypes in “allelic” format

The “hypoDat” dataset from the hapassoc package will be used for this example. The dataset
can be loaded into R with the command

> data(hypoDat)

The first five rows of the dataset are shown

> hypoDat[1:5,]

Journal of Statistical Software 9

affected attr M1.1 M1.2 M2.1 M2.2 M3.1 M3.2

1 0 -1.0457877 0 0 0 1 1 1

2 0 -1.3604013 0 0 0 0 0 1

3 0 0.5672941 0 0 0 1 0 1

4 0 -0.2220068 1 1 0 0 0 0

5 0 1.8051683 0 0 0 1 0 1

The data consists of eight columns, the affection status (0/1), a continuous non-genetic co-
variate, and information on three diallelic genetic markers. The genotype data is in “allelic”
format, so there are six genotype columns for the three SNPs. The genotype of the first SNP
is represented by the two columns M1.1 and M1.2. For example, the fourth individual has
genotype 1/1 (two copies of allele 1) at the first SNP.

The genotype data is converted to haplotype data by the pre.hapassoc function. Data
frames passed to pre.hapassoc are assumed to contain the response, an arbitrary number of
non-genetic covariates and the genotype data. The user must tell the function explicitly how
to separate the genetic and non-genetic data by specifying numSNPs and by passing a data
frame whose last 2×numSNPs (allelic format) or last numSNPs (genotypic format) columns
comprise the data on genotypes. The data frame hypoDat is in allelic format and so the
appropriate call is

> example1.haplos <- pre.hapassoc(hypoDat,numSNPs=3)

Haplotypes will be based on the following SNPs (allelic format):

SNP 1: M1.1/M1.2

SNP 2: M2.1/M2.2

SNP 3: M3.1/M3.2

Remaining variables are:

affected, attr

As an aside, if only the first and third SNPs were of interest for haplotype effects, the call to
pre.hapassoc could be modified to

> example2.haplos <- pre.hapassoc(hypoDat[,c(1:4,7:8)],numSNPs=2)

Haplotypes will be based on the following SNPs (allelic format):

SNP 1: M1.1/M1.2

SNP 2: M3.1/M3.2

Remaining variables are:

affected, attr

Similarly, if only the first two SNPs were of interest the call would be

> example2.haplos <- pre.hapassoc(hypoDat[,1:6],numSNPs=2)

Haplotypes will be based on the following SNPs (allelic format):

SNP 1: M1.1/M1.2

SNP 2: M2.1/M2.2

Remaining variables are:

affected, attr

10

Finally, if the last two SNPs were of interest the possible calls are

> example2.haplos <- pre.hapassoc(hypoDat[,c(1:2,5:8)],numSNPs=2)

Haplotypes will be based on the following SNPs (allelic format):

SNP 1: M2.1/M2.2

SNP 2: M3.1/M3.2

Remaining variables are:

affected, attr

> example2.haplos <- pre.hapassoc(hypoDat,numSNPs=2)

Haplotypes will be based on the following SNPs (allelic format):

SNP 1: M2.1/M2.2

SNP 2: M3.1/M3.2

Remaining variables are:

affected, attr, M1.1, M1.2

We prefer the first of these calls since it will exclude the data on the first SNP, M1.1 and
M1.2, from the non-haplotype data frame nonHaploDM output by pre.hapassoc. The second
call includes the columns M1.1 and M1.2 describing the first SNP in nonHaploDM.

The first two individuals in the hypoDat dataset have haplotype configurations that can
be inferred with certainty. However, the haplotype configuration of the third individual is
uncertain. This subject either has haplotypes 000/011 or 001/010. The uncertain haplotype
phasing for this subject is reflected in the data frames haploDM and nonHaploDM returned by
pre.hapassoc. The rows of haploDM corresponding to the first five rows of hypoDat are

> example1.haplos$haploDM[1:7,]

h000 h001 h010 h011 h100 pooled

1 0 1 0 1 0 0

2 1 1 0 0 0 0

3 1 0 0 1 0 0

4 0 1 1 0 0 0

5 0 0 0 0 2 0

6 1 0 0 1 0 0

7 0 1 1 0 0 0

Rows three and four of haploDM correspond to row three of hypoDat for the third subject with
the uncertain haplotype configuration. The column for the “pooled” category of haploDM is
comprised of haplotypes 101, 110 and 111 (see the estimated haplotype frequencies below).
The rows of nonHaploDM corresponding to the first five subjects in hypoDat are:

> example1.haplos$nonHaploDM[1:7,]

Journal of Statistical Software 11

affected attr

1 0 -1.0457877

2 0 -1.3604013

3 0 0.5672941

4 0 0.5672941

5 0 -0.2220068

6 0 1.8051683

7 0 1.8051683

As with HaploDM, rows three and four of nonHaploDM are pseudo-individuals that correspond
to the subject in row three of hypoDat, and therefore have the same trait and non-genetic
covariate data.

The initial estimates of haplotype frequencies are

> example1.haplos$initFreq

h000 h001 h010 h011 h100 h101 h110

0.25179111 0.26050418 0.23606001 0.09164470 0.10133627 0.02636844 0.01081260

h111

0.02148268

Haplotypes h101, h110, and h111 all have frequencies below the default pooling threshold of
0.05 and so they comprise the pooled category in example1.haplos$haploDM.

Logistic regression is now performed to determine the effects of haplotypes on affection status,
after adjusting for the non-genetic covariate “attr”.

> example1.regr1<-hapassoc(affected ~ attr+h000+h010+h011+h100+pooled,

+ example1.haplos,family=binomial())

The same regression can be fit with

> example1.regr<-hapassoc(affected ~ .,baseline="h001",

+ example1.haplos,family=binomial())

where the “.” in the model formula is an R short form for the other columns in the data
matrix. Haplotype h001 was chosen as the baseline haplotype in this example because it is
the most frequent (the default in hapassoc). Users are free to choose their own baseline
haplotype, but are cautioned that using a rare haplotype (or the pooled category, if rare) as
the baseline can lead to unstable parameter estimates.

Other formula syntax is supported in the hapassoc function. For example,

> example1.regr<-hapassoc(affected == 0 ~ attr+h000+h010+h011+h100+pooled,

+ example1.haplos,family=binomial())

can be used to specify that the probability that affection status is 0 is modelled, rather than
1. This feature can be useful if the binary outcome is specified by character strings, such

12

as “yes”/“no”, since the formula may then be specified as hapassoc(affected == ’yes’ ~

...)

Additionally, different models for haplotype effects can be fit using R formula syntax. The
default is an additive effect for each copy of the haplotype on the scale of the linear predictor.
The following command fits recessive effects for haplotypes h000 and h001 (i.e., the haplotype
has an effect only if the individual has two copies).

> example1.regr2 <- hapassoc(affected ~ attr + I(h000==2) + I(h001==2),

+ example1.haplos, family=binomial())

The output of hapassoc may be summarized with:

> summary(example1.regr)

Call:

hapassoc(form = affected == 0 ~ attr + h000 + h010 + h011 + h100 +

pooled, haplos.list = example1.haplos, family = binomial())

Number of subjects used in analysis: 100

Coefficients:

Estimate Std. Error zscore Pr(>|z|)

(Intercept) 1.24304712 0.7826121 1.58833114 0.11221148

attr -0.74117082 0.2919206 -2.53894658 0.01111868

h000 -1.15178187 0.5942128 -1.93833229 0.05258270

h010 0.59528765 0.6570407 0.90601329 0.36492882

h011 0.03426242 0.9155250 0.03742379 0.97014710

h100 0.85628090 1.0199383 0.83954187 0.40116530

pooled -0.38745841 0.8775181 -0.44153893 0.65882289

Estimated haplotype frequencies:

Estimate Std. Error

f.h000 0.26732097 0.03930403

f.h001 0.25180046 0.03865720

f.h010 0.21981267 0.03877367

f.h011 0.10106590 0.02949351

f.h100 0.09501225 0.02369630

f.h101 0.02586632 0.01412337

f.h110 0.01785410 0.01384235

f.h111 0.02126733 0.01247509

(Dispersion parameter for binomial family taken to be 1)

Log-likelihood: -322.155788349086

A global hypothesis test for haplotype effects may be performed with:

Journal of Statistical Software 13

> example1.regr2 <- hapassoc(affected ~ attr, example1.haplos, family=binomial())

> anova(example1.regr1,example1.regr2)

hapassoc: likelihood ratio test

Full model: affected ~ attr + h000 + h010 + h011 + h100 + pooled

Reduced model: affected ~ attr

LR statistic = 11.2107 , df = 5 , p-value = 0.0474

4.2. Linear regression with input genotypes in “genotypic” format

An example of the “genotypic" input format is found in the dataset hypoDatGeno. The first
five rows are shown below.

> data(hypoDatGeno)

> hypoDatGeno[1:5,]

affected attr M1 M2 M3

1 0 -1.0457877 AA AC CC

2 0 -1.3604013 AA AA AC

3 0 0.5672941 AA AC AC

4 0 -0.2220068 CC AA AA

5 0 1.8051683 AA AC AC

In this case, the alleles at all three SNPs are now represented with A’s and C’s rather than
0’s and 1’s. Additionally, the genotype at each SNP is given in one column.

To illustrate how hapassoc handles missing genotype data, we introduce missing genotypic
information for SNPs M1 and M2, as shown below. We modify the first subject’s genotype at
M1 so that it is completely missing. We modify the second subject’s genotype at M2 so that
only one allele, an ‘A’, is known. Since the data frame hypoDataGeno is in genotypic format,
M2 is a factor. Therefore, before modifying the second subject’s M2 genotype, we must add
a level ‘A’ to M2:

> hypoDatGeno[1,"M1"]<-NA #First subject missing genotype at M1

> #Add a level 'A' to M2

> levels(hypoDatGeno[,"M2"])<-c(levels(hypoDatGeno[,"M2"]),"A")

> hypoDatGeno[2,"M2"]<-"A" #Modify second subject's genotype

The data in hypoDatGeno is now pre-processed by pre.hapassoc. For illustration, the op-
tional parameter maxMissingGenos has been changed from its default value of one to two.

> example2.haplos<-pre.hapassoc(hypoDatGeno,3,maxMissingGenos=2,allelic=F)

Haplotypes will be based on the following SNPs (genotypic format):

M1, M2, M3

Remaining variables are:

affected, attr

14

> example2.haplos$nonHaploDM[142:148,]

affected attr

142 0 -1.045788

143 0 -1.045788

144 0 -1.045788

145 0 -1.045788

146 0 -1.360401

147 0 -1.360401

148 0 -1.360401

When there are no more than maxMissingGenos SNPs with missing genotype data, rows
corresponding to haplotype configurations compatible with the missing genotype data for
a subject are added to the end of the augmented data matrices haploDM and nonhaploDM

returned by pre.hapassoc. For example, rows 142 to 145 of nonHaploDM correspond to the
first subject in hypoDatGeno and rows 146 to 148 of nonHaploDM correspond to the second
subject in hypoDatGeno. When there are more missing genotypes than are allowed by the user,
as in the following command, a warning message is given to indicate that some individuals
have been removed from the dataset.

> pre.hapassoc(hypoDatGeno,3,maxMissingGenos=0,allelic=F,verbose=FALSE)

Warning message:

2 subjects with missing data in more than 0 genotype(s) removed

in: handleMissings(SNPdat, nonSNPdat, numSNPs, maxMissingGenos)

With SNP data in genotypic format, the haplotypes are now denoted by combinations of the
A and C alleles at each SNP, as can be seen in the display of the initial haplotype frequency
estimates.

> example2.haplos$init

hAAA hAAC hACA hACC hCAA hCAC hCCA

0.24859595 0.26034040 0.23949970 0.09008737 0.10150449 0.02672430 0.01039986

hCCC

0.02284793

To illustrate linear regression, the continuous non-genetic covariate attr will be used as a
continuous trait in the call to hapassoc:

> example2.regr<-hapassoc(attr~hAAA+hACA+hACC+hCAA+pooled,

+ example2.haplos,family=gaussian())

> summary(example2.regr)

Call:

hapassoc(form = attr ~ hAAA + hACA + hACC + hCAA + pooled, haplos.list = example2.haplos,

Journal of Statistical Software 15

family = gaussian())

Number of subjects used in analysis: 100

Coefficients:

Estimate Std. Error zscore Pr(>|z|)

(Intercept) -0.198910820 0.3145337 -0.63239909 0.5271261

hAAA -0.003337329 0.2422522 -0.01377626 0.9890085

hACA -0.005089539 0.2213682 -0.02299129 0.9816572

hACC 0.423914584 0.4979658 0.85129263 0.3946068

hCAA 0.300230129 0.2938526 1.02170329 0.3069214

pooled 0.019130817 0.3311376 0.05777302 0.9539294

Estimated haplotype frequencies:

Estimate Std. Error

f.hAAA 0.248400660 0.03590094

f.hAAC 0.257565353 0.03806208

f.hACA 0.241325932 0.03550967

f.hACC 0.090867626 0.02673329

f.hCAA 0.101119710 0.02355280

f.hCAC 0.030216413 0.01611531

f.hCCA 0.009153699 0.00911681

f.hCCC 0.021350608 0.01213278

(Dispersion parameter for gaussian family taken to be 1.009584127756)

Log-likelihood: -410.627503879034

The dispersion reported by the summary function is the maximum likelihood estimate of
the error variance in the linear model.

5. Summary

hapassoc is an R package for haplotype-trait associations in the presence of uncertain haplo-
type phase, for dichotomous or continuous traits. It uses an EM algorithm called the method
of weights to handle the missing haplotype-phase information. Non-genetic attributes, envi-
ronmental covariates and haplotype-environment interactions can be included in generalized
linear models of trait associations. Assumptions of Hardy-Weinberg proportions and inde-
pendence of genetic and non-genetic covariates are made. In addition to additive effects,
dominant and recessive effects of the haplotype risk factors can also be specified in hapassoc,
in contrast to similar haplotype-trait association software. Missing genotype data is also han-
dled by hapassoc so that those individuals with a limited amount of missing genotype data
are not removed during the analysis.

hapassoc relies on many of the R base functions, and for that reason it uses much of the same
syntax. For someone familiar with the R glm and lm functions, using hapassoc should be
relatively straightforward, as the specification of model formulae is identical, the output of the

16

summary method is similar and the anova method is similar when used to compare two nested
models. Currently anova.hapassoc differs from the anova methods for lm and glm in that
anova.hapassoc requires exactly two models as input. By contrast, anova.lm and anova.glm

take either one fitted model, in which case a sequence of possible sub-models are compared,
or an arbitrary number of nested models. Work to make anova.hapassoc behave more like
anova.lm and anova.glm is underway and will be included in a future version of hapassoc.
As an alternative to likelihood ratio tests, users may construct the appropriate Wald statistics
in the usual way, with the estimated coefficients and variance-covariance matrix returned by
the hapassoc function.

Acknowledgements

We would like to thank Matthew Pratola for optimizing the R code and initiating its conver-
sion to an R package, and Sigal Blay for code optimization and package maintenence. We
would also like to thank the hapassoc users for their valuable feedback in bug reports. This
research was supported by Natural Sciences and Engineering Research Council of Canada
grants 227972-00 and 213124-03, by Juvenile Diabetes Research Foundation International
grant 1-2001-873, by Canadian Institutes of Health Research grants NPG-64869, ATF-66667
and GEI-53960, and in part by the Mathematics of Information Technology and Complex
Systems, Canadian National Centres of Excellence. JG is a Scholar of the BC Michael Smith
Foundation for Health Research.

References

Burkett K (2002). Logistic Regression with Missing Haplotypes. Master’s thesis, Statistics
and Actuarial Science: Simon Fraser University.

Burkett K, McNeney B, Graham J (2004). “A Note on Inference of Trait Associations with
SNP Haplotypes and Other Attributes in Generalized Linear Models.” Human Heredity,
57, 200–206.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” Journal of the Royal Statistical Society B, 39, 1–38. With discussion.

Horton NJ, Laird NM (1999). “Maximum Likelihood Analysis of Generalized Linear Models
with Missing Covariates.” Statistical Methods in Medical Research, 8, 37–50.

Ibrahim JG (1990). “Incomplete Data in Generalized Linear Models.” Journal of the American
Statistical Association, 85, 765–769.

Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ (2003). “Es-
timation and Tests of Haplotype-Environment Interaction when Linkage Phase is Ambigu-
ous.” Human Heredity, 55, 56–65.

Lipsitz SR, Ibrahim JG (1996). “A Conditional Model for Incomplete Covariates in Parametric
Regression Models.” Biometrika, 83, 916–922.

Journal of Statistical Software 17

Louis TA (1982). “Finding the Observed Information Matrix when Using the EM Algorithm.”
Journal of the Royal Statistical Society B, 44, 226–233.

McCullagh P, Nelder JA (1983). Generalized Linear Models. Chapman and Hall, London.

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002). “Score Tests for
Association Between Traits and Haplotypes when Linkage Phase is Ambiguous.” American
Journal of Human Genetics, 70, 425–434.

Appendix: Details on the computation of the standard errors

>From standard likelihood theory (e.g. McCullagh and Nelder 1983), the variance-covariance
matrix of the maximum likelihood estimators θ̂ can be approximated by the inverse of the
Fisher information matrix

I(θ0) = E [I(θ0)] ≡ E

[
−

∂2

∂θ∂θT
l(θ0)

]

where θ0 is the “true” value of θ and l(θ) is the observed-data log-likelihood. The usual
estimate of I(θ0) is the observed information I(θ̂).

Under independence of genetic and non-genetic covariates, the observed-data likelihood L(θ)
factors into a term involving β, φ and γg and another term involving γe:

L(θ) =
∏

i

P(yi, xobs,i | θ) =
∏

i

∑

j

P(yi, xj
i | θ)

=
∏

i

∑

j

P(yi | xj
i , β, φ)P(xj

gi | γg)P(xei | γe)

=
∏

i

P(xei | γe)
∑

j

P(yi | xj
i , β, φ)P(xj

gi | γg)

=

∏

i

∑

j

P(yi | xj
i , β, φ)P(xj

gi | γg)

×

∏

i

P(xei | γe)

The observed information I(θ) is therefore block-diagonal:

I(θ) =

[
I(β, φ, γg) 0
0 I(γe)

]
, and so I−1(θ) =

[
I−1(β, φ, γg) 0
0 I−1(γe)

]
.

Thus, only I(β, φ, γg) is required for inference of β.

Information matrix for β, φ and γg

Louis (1982) derived an expression for the observed information in missing data problems
in terms of complete-data score vectors and information matrices. Let Sc(β, φ, γg) and
Sci(β, φ, γg) be the complete-data score functions for all subjects and for the ith subject,
respectively. Define Ic(β, φ, γg) and Ici(β, φ, γg) to be the corresponding observed informa-

tion matrices. Further, let Sj
ci(β, φ, γg) and Ij

ci(β, φ, γg) be, respectively, the complete-data

score function and observed information for the ith subject with covariate vector xj
i . Under

18

the linear model, recall ηj
i = xj

i
T β and µj

i = g−1(ηj
i) = b′(νj

i). Define dij = yiν
j
i − b(νj

i) and
let c′(y, φ) and c′′(y, φ) denote the first and second derivatives of c(y, φ) with respect to φ.

Then Sj
ci(β, φ, γg)T =

[
Sj

ci(β)T , Sj
ci(φ), Sj

ci(γg)T
]

where

Sj
ci(β) =

∂

∂β
log P (yi | xj

i , β, φ) =
mi(yi − µj

i)

φ
xj

i ,

Sj
ci(φ) =

∂

∂φ
log P (yi | xj

i , β, φ) = −
midij

φ2
+ c′(yi, φ)

and Sj
ci(γg) =

∂

∂γg

log P (xj
i | γg).

The observed information Ij
ci(β, φ, γg) has three submatrices along its diagonal. In the top

left-hand corner,

Ij
ci(β, β) = −

∂2

∂β∂βT
log P (yi | xj

i , β, φ) =
mi xj

i xj
i

T

φ g′(µj
i)

,

where g′(µj
i) is the derivative of the link function with respect to µ, evaluated at µj

i . The
next diagonal submatrix is

Ij
ci(φ, φ) = −

∂2

∂φ∂φ
log P (yi | xj

i , β, φ) = −
2midij

φ3
− c′′(yi, φ).

Finally, in the bottom right-hand corner

Ij
ci(γg, γg) = −

∂2

∂γg∂γT
g

log P (xj
i | γg).

The three off-diagonal submatrices are Ij
ci(β, γg) = Ij

ci(φ, γg) = 0 and

Ij
ci(β, φ) = −

∂2

∂β∂φ
log P (yi | xj

i , β, φ).

The expressions for Sj
ci(γg) and Ij

ci(γg, γg) depend on the distribution of genetic covariates. For
example, suppose that the jth possible haplotype configuration consistent with the observed
SNP genotypes of the ith subject has xj

gi = (n1, . . . , nH+1), where nh = 0, 1, 2 codes the
number of copies of haplotype h and there are H + 1 haplotypes in the population. Then,
under HWP,

P(xj
gi|γg) ∝ γg1

n1 × γg2
n2 × · · · × γgH

nH ×

(
1 −

H∑

h=1

γgh

)nH+1

,

where γgh is the population frequency of haplotype h. The score vector is

Sj
ci(γg) =

(
n1

γg1

, · · · ,
nH

γgH

)T

−
nH+1

1 −
∑H

h=1 γgh

(1, · · · , 1)T

Journal of Statistical Software 19

and Ij
ci(γg, γg) = −diag

(
n1

γ2
g1

, · · · ,
nH

γ2
gH

)
−

nH+1(
1 −

∑H
h=1 γgh

)2
J,

where J is an H × H matrix of ones.

Louis (1982) writes the observed information as

I(β, φ, γg) = E[Ic(β, φ, γg)|xobs, y] − Var[Sc(β, φ, γg)|xobs, y].

Under independence of subjects, it follows that

I(β, φ, γg) =
∑

i

E[Ici(β, φ, γg)|xobs,i, yi] −
∑

i

VAR[Sci(β, φ, γg)|xobs,i, yi]

where
E[Ici(β, φ, γg)|xobs,i, yi] =

∑

j

wij(β, φ, γg)Ij
ci(β, φ, γg) (1)

and

VAR[Sci(β, φ, γg)|xobs,i, yi] =
∑

j

wij(β, φ, γg)Sj
ci(β, φ, γg)Sj

ci(β, φ, γg)T −

{∑

k

wik(β, φ, γg)Sk
ci(β, φ, γg)

}{∑

l

wil(β, φ, γg)Sl
ci(β, φ, γg)T

}

(Lipsitz and Ibrahim 1996; Burkett 2002)

It can be shown that the expected value of
∑

j wijIj
ci(β, φ) is a vector of zeroes. Thus, to

estimate the Fisher information, we may replace the Ij
ci(β, φ) submatrix of Ij

ci(β, φ, γg) in

equation (1) by a vector of zeros and take Ij
ci(β, φ, γg) to be a block-diagonal matrix.

Affiliation:

Kelly Burkett
Department of Statistics and Actuarial Science
Simon Fraser University
8888 University Drive
Burnaby BC, Canada,V5A 1S6
E-mail: kburkett@sfu.ca
URL: http://stat-db.stat.sfu.ca:8080/statgen

Journal of Statistical Software https://www.jstatsoft.org/

published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2006, Volume 16, Issue 2 Submitted: 2005-10-20
doi:10.18637/jss.v000.i00 Accepted: 2006-04-26

https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction and Background
	Statistical Description
	EM algorithm implemented in hapassoc

	Using hapassoc and its features
	Examples
	Logistic regression with input genotypes in ``allelic'' format
	Linear regression with input genotypes in ``genotypic'' format

	Summary

