
An Overview of glmnetr

Walter K. Kremers, Mayo Clinic, Rochester MN

24 October 2024

The Package

The nested.glmnetr() function of the ‘glmnetr’ package allows the user to fit multiple machine learning mod-
els on a common data set with a single function call allowing an efficient comparison of different modeling
approaches. Additionally this function uses cross validation (CV) or a boostrap method to estimate model
performances for these different modeling approaches from the hold out (out of bag) sample partitions. As
most of these machine learning models choose hyperparameters informed by a cross validation or some sort
or out of bag (OOB) performance measure, the nested.glmnetr() function provides model performance esti-
mates based upon either a nested cross validation (NCV), bootstraping or analogous approach. Measures of
model performance include concordances for survival time and binomial outcomes and R-squares for quanti-
tative numeric outcomes, as well as deviance ratios, i.e. 1-deviance(model)/deviance(nullmodel), and linear
calibration coefficients. Too often one sees performance reports including things like sensitivity, specificity or
F1 scores in absence of any consideration of calibration. In addition to providing linear calibration coefficient
estimates, we also show spline fits on the hold out datasets of the nested cross validation outer folds. The
nested.glmnetr() function also fits the respective models on the whole dataset. Performance measures and
fitted models based upon the whole dataset are stored in a single output object.

The nested.glmnetr() function fits cross validation informed lasso, relaxed lasso, ridge, gradient boosting ma-
chine (‘xgboost’), Random Forest (‘RandomForestSRC’), Oblique Random Forest (‘aorsf’), Artificial Neural
Network (ANN), Recursive Partitioning and Regression Trees (‘RPART’) and step wise regression models.
As run times may be long, the user specifies which of these models to fit. By default only the lasso model
suite is fit, including the (standard) lasso, relaxed lasso, fully relaxed lasso (gamma=0) and the ridge re-
gression models. (The program was originally written to simply compare the lasso and stepwise regression
models and thus this inclusion of the lasso by default, as well as the program name.) By default model
performances are calculated using cross validation but if the goal is to only fit the models this can be done
using the option resample=0.

As with the ‘glmnet’ package, tabular and graphical summaries can be generated using the summary and plot
functions. Use of the ‘glmnetr’ package has many similarities to the ‘glmnet’ package and the user may benefit
by a review of the documentation for the ‘glmnet’ package https://cran.r-project.org/package=glmnet, with
the “An Introduction to ‘glmnet’ ” and “The Relaxed Lasso” being especially helpful in this regard.

For some data sets, for example when the design matrix is not of full rank, ‘glmnet’ may have very long
run times when fitting the relaxed lasso model, from our experience when fitting Cox models on data with
many predictors and many patients, making it difficult to get solutions from either glmnet() or cv.glmnet().
This may be remedied with the ‘path=TRUE’ option when calling cv.glmnet(). In the ‘glmnetr’ package we
always take an approach like that of path=TRUE.

When fitting not a relaxed lasso model but an elastic-net model, the R-packages ‘nestedcv’ https://cran.
r-project.org/package=nestedcv, ‘glmnetSE’ https://cran.r-project.org/package=glmnetSE or others may
provide greater functionality when performing a nested CV.
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Installing glmnetr

Installing glmnetr is much like installing other R packages, but with a small wrinkle. As usual one submits

install.packages( 'glmnetr' )

and then loads the package from the library

library( glmnetr )

So far this is like with most packages. However, when loading the package for the first time one may be
prompted to load further software needed to run the torch library for the neural network models, for example
as in

> library( glmnetr )
i Additional software needs to be downloaded and installed for torch to work correctly.
Do you want to continue? (Yes/no/cancel)

where response Yes should allow neural network model fitting. A no answer will not install torch, and if not
already installed then attempting to run the neural network models will lead to crashes.

Data requirements

The basic data elements for input to the glmnetr analysis programs are similar to those of glmnet and
include 1) a matrix of predictors and 2) an outcome variable in vector form. For the different machine
learning modeling approaches the package is set up to model generalizations of the Cox proportional hazards
survival model, the “binomial” outcome logistic model and linear regression with independent identically
distributed errors amenable to being treated as if “gaussian”. When fitting the Cox model the outcome
model variable is interpreted as the “time” variable, and one must also specify 3) a variable for event, again
in vector form, and optionally 4) a variable for start time, also in vector form. Row i of the predictor matrix
and element i of the outcome vector(s) are to include the data for the same sampling unit.

The input vectors may optionally be specified as column matrices (with only one column each) in which case
the column name will be kept and expressed in the model summaries.

An example data set

To demonstrate usage of glmnetr we first generate a data set for analysis, run an analysis and evaluate using
the plot(), summary() and predict() functions.

The code

# Simulate data for use in an example for relaxed lasso fit of survival data
# First, optionally, assign a seed for random number generation to get replicable results
set.seed(116291949)
simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)

generates simulated data for analysis. We extract data in the format required for input to the glmnetr
programs.
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# Extract simulated survival data
xs = simdata$xs # matrix of predictors
y_ = simdata$y_ # vector of Gaussian (normal) outcomes
yb = simdata$yb # vector of binomial outcomes
yt = simdata$yt # vector of survival times
event = simdata$event # indicator of event vs. censoring

Inspecting the predictor matrix we see

# Check the sample size and number of predictors
print( dim(xs), quote=0 )

## [1] 1000 100

# Check the rank of the design matrix, i.e. the degrees of freedom in the predictors
# using function from the Matrix package
Matrix::rankMatrix(xs)[[1]]

## [1] 94

# Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20
## [1,] 1 1 0 0 0 0 0 0 0 1 0 1 0.1513225 -0.4034383 0.35250844
## [2,] 1 0 0 0 1 0 0 1 0 0 0 0 -1.1610480 0.5533030 0.14578868
## [3,] 1 0 0 1 0 0 1 0 0 0 0 0 -0.3292269 0.3086399 -0.48443836
## [4,] 1 1 0 0 0 0 0 0 0 1 0 0 2.0635214 -0.5500741 -0.02173104
## [5,] 1 0 0 0 1 0 0 1 0 0 0 0 0.3905722 -0.6836452 -0.37643201
## [6,] 1 0 1 0 0 0 0 0 1 0 0 0 -0.2397597 1.6909447 0.49599945
## [7,] 1 0 1 0 0 0 0 1 0 0 0 0 -0.5592424 0.2314638 -0.53198341
## [8,] 1 0 0 1 0 0 0 0 0 0 1 0 -1.0050514 0.5319574 0.54287646
## [9,] 1 0 0 1 0 0 0 0 0 0 1 0 1.2548034 0.8213164 0.17067691
## [10,] 1 0 0 0 1 0 0 0 1 0 0 0 -0.3079151 -0.6105910 -0.88711869

Performance of cross validation (CV) informed relaxed lasso model

Because the values for lambda and gamma informed by CV are specifically chosen to give a best fit, model
fit statistics for the CV informed model, when based upon the same train data used to derive the model,
will be biased. (Using the common terminology of machine learning, both the “training” and “validation”
data inform the model fit.) To address this one can perform a CV on the CV derived estimates, that is
a nested cross validation as argued for in SRDM ( Simon R, Radmacher MD, Dobbin K, McShane LM.
Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J Natl Cancer
Inst (2003) 95 (1): 14-18. https://academic.oup.com/jnci/article/95/1/14/2520188 ). For this second layer
of CV, there is no usage of information from the hold out data back to the model fit. (Using the common
terminology of machine learning, each of the hold-out subsets of this outer layer of CV is treated as a “test”
data set for calculation of model performance, and the results combined across these multiple hold out “test”
sets.) We demonstrate the model performance evaluation by nested cross validation first for the lasso models
with the evaluation of other machine learning models being similar. For this performance evaluation we use
the nested.glmnetr() function which first fits all models based upon all data and then performs the cross
validation for calculation of concordances or R-squares, deviance ratios and linear calibration summaries.
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set.seed(465783345)
nested.cox.fit = nested.glmnetr(xs, NULL, yt, event, family="cox",

dolasso=1, dostep=1, steps_n=40, folds_n=10, track=1)

Note, in the derivation of the relaxed lasso model fits, individual coefficients may be unstable even when the
model may be stable which elicits warning messages. We suppress these warnings here. The first term in
the call to nested.glmnetr(), xs, is the design matrix for predictors. The second input term, here given the
value NULL, is for the start time in case the (start, stop) time data setup is used in a Cox survival model fit.
The third term, here yt, is the outcome variable for the linear regression or logistic regression model and the
time of event or censoring in case of the Cox model, and finally the forth term is the event indicator variable
for the Cox model taking the value 1 in case of an event or 0 in case of censoring at time yt. The forth term
would be NULL for either linear or logistic regression. If one sets track=1 the program will update progress
in the R console, else for track=0 it will not. We recommend setting track=1 when running the program
interactively. Depending on the size of the data set and the different machine learning models fit, run time
can be long and it can be helpful to view the progress in calculations.

As usual with R functions and packages we use the summary function to describe output. Here the summary
function displays a brief summary of the input data before proceeding to describe model performances. The
data summary includes sample size, number of events, number of candidate model predictors, degress of
freedom in these predictors as well as average deviance and some average minus 2 log likelihoods. Model
performances are displayed for the different lasso models, e.g. standard, relaxed, fully relaxed as well as
the ridge regression and stepwise regression models. Hyperparamters considered for stepwise regression are
degress of freedom (df) and p, the p-value for entry into the regression equation, as discussed by JWHT
(James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with applications in R, 2nd
ed., Springer, New York, 2021). Performance measures include deviance ratio, linear calibration coefficients
and measures of agreement, here for the Cox model framework concordance. Additionally there are the
deviance ratio and agreement values naively calculated on the whole data set.

# Summarize relaxed lasso model performance informed by cross validation
summary(nested.cox.fit, width=84)

## Sample information including number of records, events, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n nevent
## cox 1000 698
## xs.columns xs.df null.dev/nevent
## 100 94 12.43
## null.m2LogLik/nevent sat.m2LogLik/nevent
## 12.43 0
##
## For LASSO, and Stepwise regression tuned by df and p, average (Ave) model
## performance measures from the 10-fold (NESTED) Cross Validation are given together
## with naive summaries calculated using all data without cross validation
##
## Ave DevRat Ave Slope Ave Concordance Ave Non Zero
## LASSO min 0.2446 1.0742 0.8705 45.4
## LASSO minR 0.2434 0.9790 0.8701 17.7
## LASSO minR.G0 0.2410 0.9320 0.8691 16.2
## Ridge 0.2244 1.2850 0.8626 99.0
## Naive DevRat Naive Concordance Non Zero
## LASSO min 0.1696 0.8794 42
## LASSO minR 0.1720 0.8793 22
## LASSO minR.G0 0.1728 0.8796 20
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## Ridge 0.1718 0.8822 99
##
## Ave DevRat Ave Slope Ave Concordance Ave Non Zero
## Stepwise df tuned 0.2501 0.9590 0.8738 14.7
## Stepwise p tuned 0.2527 0.9677 0.8747 14.8
## Naive DevRat Naive Concordance Non Zero
## Stepwise df tuned 0.1711 0.8785 15
## Stepwise p tuned 0.1711 0.8785 15

Here we see, not unexpectedly, that the concordances estimated from the nested CV are smaller than the
concordances naively calculated using original data set. Depending on the data the nested CV and naive
agreement measures, here concordance, can be very similar or disparate. Possibly surprisingly the deviance
ratios are larger for the (nested) cross validation than naively calculated using all data. This flip in direction
has not to do with the strength of association being stronger in the hold out data, but from the hold out data
set being smaller and how this impacts average risk set size in the partial likelihood of the “cox” model. Such
a flip in direction will generally not be the case for “binomial” and “gaussian” data. Despite this flip, the
value of the cross validation estimated deviance ratios for comparing the machine learning models remains.

From this output we also see the number of non-zero coefficients in the different models, reflecting model
complexity at least for the lasso model, along with the linear calibration coefficients obtained by regressing
the outcome on the predicteds, i.e. the XBeta or the log(hazard ratio). (Many machine learning fitting
routines use as predicteds the hazard ratio for “cox” model generalizations or the probability for “binomial”
data. We give predicteds as the XBeta term which applies to the different data types. For the “binomial”
case this is log(P/(1-P)) where P is the predicted probability.)

Model performance measures from the nested cross validation (NCV) can also be visualized with a plot
which shows the calculated performances for the individual folds of the cross validation.

# Summarize relaxed lasso model performance informed by cross validation
plot(nested.cox.fit, type="agree", ylim=c(0.8,1.0))
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The performance measure estimates, here of concordance, from the individual (outer) cross validation for
each fold are depicted by thin lines of different colors and styles, while the composite value from all folds
is depicted by a thicker black line, and the performance estimates naively calculated on all data, the same
as the data used for model derivation, are depicted in a thicker red line. Here we see that the performance
measures for the different models are quite variable across the folds, yet highly correlated with each other.
Also, as expected the concordance for the model derived uisng the the full data set, naively calculated on the
same data (i.e. the full data set) as used in model derivation, are larger than the average of the concordances
from the different folds. Plots can also be constructed using option “devrat” for deviance ratios, “intcal” for
linear calibration intercept coefficients and “lincal” for linear calibration slope coefficients.

The CV informed relaxed lasso model fit

As mentioned, the nested.glmnetr() function also derives the models using all data and stores these for
further examination and usage. The choice of lambda and gamma hyperparameters for the relaxed lasso
model is based upon a search across two dimensions for the pair that maximizes the likelihood, or similarly
minimizes the deviances, as informed by a cross validation. The next plot depicts the deviances across these
two dimensions for the full data set.

# Plot cross validation average deviances for a relaxed lasso model
plot(nested.cox.fit, type="lasso")

## min CV average deviance (max log likelihood) for
## relaxed at log(lambda) = -3.269, gamma.min = 0.25, df = 20
## fully relaxed at log(lambda) = -3.269, df = 20
## fully penalized at log(lambda) = -3.827, df = 42
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This figure has multiple lines, depicting deviance as a function of lambda for different gamma values. Whereas
there is no legend here for gamma, when non-zero coefficients start to enter the model as the penalty is
reduced, here shown at the right, deviances tend to be smaller for gamma = 0, greater for gamma = 1 and
in between for other gammas values. The minimizing lambda and gamma pair is indicated by the left most
vertical line, here about log(lambda) = -3.27. The minimizing lambda can be read from the horizontal axis.
Because the different lines depicting deviances for the different values of gamma can be nearly overlapping,
the minimizing gamma is described in the title, here 0.25. From this figure we also see that at log(lambda)=-
3.27 the deviance is hardly distinguishable for gamma ranging from 0 to 0.5. More relevant we see that the
fully unpenalized lasso model fits (gamma=0) shown in a black line with a black circle at the largest lambda,
achieves a minimal deviance at about log(lambda) = -3.27, and highlighted by the right most vertical line.
The minimizing deviance for the fully relaxed lasso model is nearly that of the relaxed lasso model tuning
for both lambda and gamma.
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A plot depicting model fits as a function of lambda is given in the next figure.

# Plot coefficients informed by a cross validation
plot(nested.cox.fit, type="coef")

## min CV average deviance (max log likelihood)
## at log(lambda.min) = -3.269, gamma.min = 0.25, df = 20
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In this plot of coefficients we use the same orientation for lambda as in the plot for deviances with larger
values of the lambda penalty to the right and corresponding to fewer non-zero coefficients. The displayed
coefficients are for the minimizing gamma=0.25 as noted in the title, and the minimizing lambda indicated
by the vertical line. Since the fully relaxed lasso model had a deviance almost that of the relaxed lasso
model we also plot the coefficients using the option gam=0.
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# Plot fully relaxed coefficients informed by a cross validation
plot(nested.cox.fit, type="coef", gam=0)

## Fully relaxed min CV average deviance (max log likelihood)
## at log(lambda.min) = -3.269, df = 20
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This plot shows how the coefficients change for the un-penalized (fully relaxed) model with gamma=0 as
lambda decreases. In particular we see the coefficients become slightly larger in magnitude as the lambda
penalty decreases and also as additional terms come into the model. This is not unexpected as omitted
terms from the Cox model tend to bias coefficients toward 0 more than increase the standard error. We also
see, as too indicated in the deviance plot, the number of model non-zero coefficients, 20, to be substantially
less than the 20 from the relaxed lasso fit and the 42 from the fully penalized lasso fit.

A summary of the actual lasso model fit can be gotten by using the cvfit=1 option in the summary() call.

# Summarize relaxed lasso model fit informed by cross validation
summary(nested.cox.fit, cvfit=1)

## The relaxed minimum is obtained for lambda = 0.03803792 and gamma = 0.25
## with df (number of non-zero terms) = 20, average deviance = 5.990078 and beta =
## X4 X5 X7 X10 X12
## 1.062428e+00 -1.301185e+00 6.180751e-02 -6.065663e-01 2.150892e-01
## X14 X15 X16 X17 X18
## 1.077432e+00 -3.692117e-16 -9.737049e-01 6.910495e-07 1.136458e+00
## X19 X20 X21 X22 X23
## 3.242268e-01 -1.359473e-01 3.755073e-01 -6.075709e-01 3.290318e-01
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## X24 X25 X38 X43 X60
## 2.893126e-01 1.797959e+00 1.099952e-01 5.828904e-02 -5.064047e-02
## X88 X97
## 4.837592e-02 -3.240492e-02
##
## The fully relaxed (gamma=0) minimum is obtained at lambda = 0.03803792
## with df (number of non-zero terms) = 20, average deviance = 6.005437 and beta =
## X4 X5 X7 X10 X12 X14
## 1.13641535 -1.39885327 0.13367973 -0.71086068 0.28432797 1.32787050
## X16 X18 X19 X20 X21 X22
## -1.23342009 1.20856642 0.36062709 -0.15870146 0.41060234 -0.65415048
## X23 X24 X25 X38 X43 X60
## 0.35935105 0.32055505 1.90516232 0.13629323 0.07577501 -0.06497194
## X88 X97
## 0.06139717 -0.03978756
##
## The UNrelaxed (gamma=1) minimum is obtained at lambda = 0.02176669
## with df (number of non-zero terms) = 42, average deviance = 6.019153
##
## Order coefficients entered into the lasso model (1st to last):
## [1] "X25" "X18" "X5" "X22" "X4" "X21" "X23" "X19" "X24" "X10"
## [11] "X7" "X20" "X14" "X38" "X97" "X16" "X60" "X88" "X12" "X43"
## [21] "X71" "X100" "X34" "X32" "X50" "X58" "X41" "X49" "X64" "X84"
## [31] "X91" "X98" "X39" "X40" "X66" "X73" "X74" "X11" "X61" "X69"
## [41] "X70" "X96"

In the summary output we first see the relaxed lasso model fit based upon the (lambda, gamma) pair which
minimizes the cross validated average deviance. Next is the model fit based upon the lambda that minimizes
the cross validated average deviance along the path where gamma=0, that is among the fully relaxed lasso
models. After that is information on the fully penalized lasso fit, but without the actual coefficient estimates.
These estimates can be printed using the option printg1=TRUE, but are suppressed by default for space.
Finally, the order that coefficients enter the lasso model as the penalty is decreased is provided, which
gives some indication of relative model importance of the coefficients. Because, though, the differences in
successive lambda values used in the numerical algorithms may allow multiple new terms to enter into the
model between successive numerical steps, the ordering in this list may not be strict. If the user would want
they could read lambda from output$lambda, set up a new lambda with finer steps and rerun the model.
Our experience though is that this does not generally lead to a meaningfully different model and so is not
done by default or as option.

One can use the predict() function to get the coefficients for the lasso model, which is done by not specifying
a predictor matrix. If one specifies a new design predictor matrix xs_new, then the predicteds xs_new*beta
are generated. When used to extract the model coefficients, the predict() function provides an output object
in vector form (actually a list with two vectors) and so can easily be used for further calculations. By default
the predict() function will use the (lambda, gamma) pair that minimizes the average CV deviances. One
can also specify lam=NULL and gam=1 to use the fully penalized lasso best fit, i.e. select the lambda that
minimizes the CV deviance while holding gamma=1, or gam=0 to use the fully relaxed lasso best fit, that
is minimizes while holding gamma=0. One can also numerically specify both lam for lambda and gam for
gamma. Within the package lambda and gamma usually denote vectors for the search algorithm and so
other names are used in this function.

# Get coefficients
beta = predict(nested.cox.fit)

## (lambda, gamma) pair minimizing CV average deviance is used
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# Print out the non-zero coefficients
beta$beta

## X4 X5 X7 X10 X12
## 1.062428e+00 -1.301185e+00 6.180751e-02 -6.065663e-01 2.150892e-01
## X14 X15 X16 X17 X18
## 1.077432e+00 -3.692117e-16 -9.737049e-01 6.910495e-07 1.136458e+00
## X19 X20 X21 X22 X23
## 3.242268e-01 -1.359473e-01 3.755073e-01 -6.075709e-01 3.290318e-01
## X24 X25 X38 X43 X60
## 2.893126e-01 1.797959e+00 1.099952e-01 5.828904e-02 -5.064047e-02
## X88 X97
## 4.837592e-02 -3.240492e-02

# Print out all coefficients
beta$beta_

## X1 X2 X3 X4 X5
## 0.000000e+00 0.000000e+00 0.000000e+00 1.062428e+00 -1.301185e+00
## X6 X7 X8 X9 X10
## 0.000000e+00 6.180751e-02 0.000000e+00 0.000000e+00 -6.065663e-01
## X11 X12 X13 X14 X15
## 0.000000e+00 2.150892e-01 0.000000e+00 1.077432e+00 -3.692117e-16
## X16 X17 X18 X19 X20
## -9.737049e-01 6.910495e-07 1.136458e+00 3.242268e-01 -1.359473e-01
## X21 X22 X23 X24 X25
## 3.755073e-01 -6.075709e-01 3.290318e-01 2.893126e-01 1.797959e+00
## X26 X27 X28 X29 X30
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X31 X32 X33 X34 X35
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X36 X37 X38 X39 X40
## 0.000000e+00 0.000000e+00 1.099952e-01 0.000000e+00 0.000000e+00
## X41 X42 X43 X44 X45
## 0.000000e+00 0.000000e+00 5.828904e-02 0.000000e+00 0.000000e+00
## X46 X47 X48 X49 X50
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X51 X52 X53 X54 X55
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X56 X57 X58 X59 X60
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 -5.064047e-02
## X61 X62 X63 X64 X65
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X66 X67 X68 X69 X70
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X71 X72 X73 X74 X75
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X76 X77 X78 X79 X80
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X81 X82 X83 X84 X85
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X86 X87 X88 X89 X90
## 0.000000e+00 0.000000e+00 4.837592e-02 0.000000e+00 0.000000e+00

11



## X91 X92 X93 X94 X95
## 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## X96 X97 X98 X99 X100
## 0.000000e+00 -3.240492e-02 0.000000e+00 0.000000e+00 0.000000e+00

# Get the predicteds (linear predictors) for the original data set
predicteds = predict(nested.cox.fit, xs)

## (lambda, gamma) pair minimizing CV average deviance is used

# Print out the first few predicteds
predicteds[1:20]

## [1] -0.4873654 -3.5150826 4.3306972 1.3514019 -0.1708228 1.3846977
## [7] -3.7546758 0.2763785 6.1528504 1.5709809 1.1229718 -1.7437164
## [13] 1.1030615 2.9132111 -0.5753317 0.5351656 0.8883031 3.3120755
## [19] -2.4726725 1.9326008

Nested cross validation (NCV) for multiple models

Here we evaluate multiple machine learning models, in particular the lasso, ridge, XGB, random forest and
neural network models. For this example we perform an analysis for the generalizations of linear regression in
contrast to the Cox model in the last example. The glmnetr.simdata() function used above actually creates
an output object list containing xs for the predictor matrix, yt for time to event or censoring and an event
indicator, as well as y_ for “gaussian” and yb for “binomial” data.

# Nested cross validation evaluating a machine learning model suite with guassian errors
# Use the same simulated data output object from above, that is from the call
# simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
#
# recall linear regression model data generated above with line
# y_ = simdata$y_ # outcome vector with Gaussian (normal) errors
# Get the ML model fits
nested.gau.fit = nested.glmnetr(xs,NULL,y_,NULL,family="gaussian",

dolasso=1, doxgb=list(nrounds=250), dorf=1, doorf=1, doann=list(bestof=10),
folds_n=10, seed=219301029, track=1)

# Summarize the results
summary(nested.gau.fit, width=84)

## Sample information including number of records, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n xs.columns xs.df null.dev/n
## gaussian 1000 100 94 8.09
##
## For LASSO, gradient boosting machine using XGBoost (XGB), Random Forest (RF),
## Oblique Random Forest (ORF), Artificial Neural Networks (ANN), average (Ave) model
## performance measures from the 10-fold (NESTED) Cross Validation are given together
## with naive summaries calculated using all data without cross validation
##
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## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## LASSO min 0.8613 -0.0068 1.0211 0.8640 54.7
## LASSO minR 0.8605 -0.0039 1.0150 0.8630 36.5
## LASSO minR.G0 0.8570 0.0171 0.9903 0.8594 24.0
## Ridge 0.8485 -0.0724 1.1046 0.8581 99.0
## Naive DevRat Naive R-square Non Zero
## LASSO min 0.8794 0.9380 65
## LASSO minR 0.8753 0.9357 26
## LASSO minR.G0 0.8695 0.9325 14
## Ridge 0.8806 0.9400 99
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## XGB (not tuned) 0.6782 -0.1294 1.1281 0.6891 100
## XGB Tuned 0.8190 -0.0547 1.0723 0.8262 100
## Naive DevRat Naive R-square Non Zero
## XGB (not tuned) 0.9992 0.9993 100
## XGB Tuned 0.9317 0.9349 100
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## RF Simple 0.7075 -0.2147 1.214 0.7338 58
## Naive DevRat Naive R-square Non Zero
## RF Simple 0.9267 0.9513 50
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## ORF Simple 0.6718 -0.7409 1.6839 0.8109 34
## Naive DevRat Naive R-square Non Zero
## ORF Simple 0.8534 0.956 40
##
## Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## ANN Uninformed 0.671 0.0626 0.956 0.6716 100
## Naive DevRat Naive R-square Non Zero
## ANN Uninformed 0.9803 0.9803 100

Here we see a set of machine learning models evaluated together. All evaluations are based upon the same
folds for the outer loop of the cross validation. Those models informed by cross validation in identification
of hyperparameters, i.e. lasso, XGB, neural network and stepwise, use the same folds in the inner cross
validation making the comparisons of model performance between models more stable. For the models
based upon other random splittings, i.e. random forest (and sometimes the XGB), the same seed is set using
set.seed() before each model call facilitating replicability of results. The “Non Zero” column is the number
of non zero regression coefficients for the lasso and ridge models, and the number of predictors given to
the XGB model. For the random forest model “Non Zero” is the number of predictors randomly selected
for possible splitting at each node, a tuned hyperparameter. For the ANN models “non Zero” again is the
number of terms given to the ANN for training.

One can save the tabled information from a summary to a data frame using the table option as in

## put the data into a data frame
dframe = summary( nested.gau.fit , table = 0)
## use the roundperf() function from 'glmnetr' to round so long as it doesn't too
## obscure the original values
## print just the first 4 columns to get a more succinct table
roundperf(dframe, digits = 3)[,c(1:4)]

## Ave DevRat Ave Int Ave Slope Ave R-square
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## LASSO min 0.861 -0.007 1.021 0.864
## LASSO minR 0.860 -0.004 1.015 0.863
## LASSO minR.G0 0.857 0.017 0.990 0.859
## Ridge 0.849 -0.072 1.105 0.858
## XGB (not tuned) 0.678 -0.129 1.128 0.689
## XGB Tuned 0.819 -0.055 1.072 0.826
## RF Simple 0.707 -0.215 1.214 0.734
## ORF Simple 0.672 -0.741 1.684 0.811
## ANN Uninformed 0.671 0.063 0.956 0.672

This may be helpful when wanting to further process the findings or incorporate into reports.

Model performance measures from the nested cross validation can be plotted individually as shown here for
deviance ratio

# Summarize relaxed lasso model performance informed by cross validation
plot(nested.gau.fit, type="devrat", ylim=c(0.6,1))
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For “gaussian” data, i.e generalization of the linear regression model, the deviance ratio is the reduction
Mean Square Error (MSE) achieved by the machine learning model relative to the MSE of the model based
upon only the overall average.

While of less importance than deviance ratio one can (by using the options type=“agree” and pow=2) also
describe model performances in terms of R-square for “gaussian” data. Note, from Jensens’ inequality we
expect the R-squares for the different folds to be more biased than the R ’s (correlation), and thus calculate
the CV estimate for R-square as the (average R from the CV folds)-squared instead of average (R-squared
from the CVs folds).

14



To understand how the models might be over or underestimating the strength of the association between
the predictors and outcome one can regress the outcome on the model X*beta predicteds, i.e. to a linear
calibration. Slope terms from this linear calibration can be plotted as in

# Summarize relaxed lasso model performance informed by cross validation
plot(nested.gau.fit, type="lincal")
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Model and Cross Validation storage, and reuse

The individual model fits are all captured in the nested.glmnetr() output object with names like
cv_glmnet_fit, xgb.simple.fit, xgb.tuned.fit, rf.tuned.fit and cv.stepreg.fit. cv_glmnet_fit has a similar
yet different format to that of cv.glmnet() by including further fit information. The XGB outputs are
essentially direct outputs from ‘xgboost’ xgb.train(), but with added information regarding the seed or fold
used in the fit as well as the parameters used in the search for the hyperparamaters using the ‘mlrMBO’
package. The rf.tuned.fit object contains the output from rfsrc() in the object rf.tuned$rf_tuned along with
information used for tuning. The ann_fit_X objects are derived using the R ‘torch’ package and take on
their own format for logistical reasons. See the ‘Using ann_tab_cv’ vignette. Cross validation information
from the individual outer folds are contained in data sets like xx.devian.rep, xx.lincal.rep, xx.agree.rep for
further processing by the summary() function or by the user. For example

# Manually calculate CV R_square for lasso models
corr.rep = nested.gau.fit$lasso.agree.rep
corr.rep

## 1se min 1seR minR 1seR.G0 minR.G0 ridge
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## [1,] 0.9275540 0.9333873 0.9300288 0.9312217 0.9310631 0.9310631 0.9320290
## [2,] 0.9168125 0.9221275 0.9179293 0.9215422 0.9188685 0.9216412 0.9147417
## [3,] 0.9229888 0.9277811 0.9229888 0.9287002 0.9209577 0.9259051 0.9312230
## [4,] 0.9335710 0.9324451 0.9335710 0.9316452 0.9340878 0.9314005 0.9283197
## [5,] 0.9266159 0.9331830 0.9257712 0.9306354 0.9273937 0.9313555 0.9324954
## [6,] 0.9294115 0.9292147 0.9289503 0.9300965 0.9220603 0.9220603 0.9220923
## [7,] 0.9341421 0.9382703 0.9316241 0.9392097 0.9334094 0.9393066 0.9357181
## [8,] 0.9350497 0.9337961 0.9350497 0.9332950 0.9286967 0.9322348 0.9285782
## [9,] 0.9354254 0.9348435 0.9329582 0.9330368 0.9316201 0.9311720 0.9320988
## [10,] 0.9131634 0.9103742 0.9131634 0.9103742 0.9110625 0.9043502 0.9059926

avecorr = colMeans(corr.rep)
R_square = round( avecorr ˆ2 , digits = 4)
R_square

## 1se min 1seR minR 1seR.G0 minR.G0 ridge
## 0.8602 0.8640 0.8597 0.8630 0.8573 0.8594 0.8581

These numbers are consistent with the output from the summary() call.

Further model assessment

A naive calibration

Further model assessment can be made based upon the predicteds from the predict() function. For example,
one can model the outcomes based upon a spline for the X*Beta hats from the predicteds. This may help
to understand potential nonlinearities in the model, but may also give inflated hazard ratios.

# Get predicteds from CV relaxed lasso model embedded in nested CV outputs & Plot
xb.hat = predict( object=nested.cox.fit , xs_new=xs, lam=NULL, gam=NULL, comment=FALSE)
# describe the distribution of xb.hat
round(1000*quantile(xb.hat,c(0.01,0.05,0.1,0.25,0.5,0.75,0.90,0.95,0.99)))/1000

## 1% 5% 10% 25% 50% 75% 90% 95% 99%
## -5.877 -4.091 -3.245 -1.788 -0.044 1.613 3.236 4.077 5.516

# Fit a spline to xb.hat uisng coxph, and plot
library(survival)
fit1 = coxph(Surv(yt, event) ~ pspline(xb.hat))
print(fit1)

## Call:
## coxph(formula = Surv(yt, event) ~ pspline(xb.hat))
##
## coef se(coef) se2 Chisq DF p
## pspline(xb.hat), linear 1.07e+00 3.32e-02 3.32e-02 1.03e+03 1.00 <2e-16
## pspline(xb.hat), nonlin 4.62e+00 3.04 0.21
##
## Iterations: 4 outer, 16 Newton-Raphson
## Theta= 0.741
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## Degrees of freedom for terms= 4
## Likelihood ratio test=1504 on 4.04 df, p=<2e-16
## n= 1000, number of events= 698

termplot(fit1,term=1,se=TRUE)
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From this spline fit we see the log hazard ratio is roughly linear in the relaxed lasso predicteds. Still, a
calibration based upon data not used in model derivation would be more meaningful.

Hold out data calibrations

The calplot() function generates calibration plots using spline fits for each of the hold out data sets, either
form the outer loop of the nested cross validation or the out of bag sample partitions when using a bootstrap
approach, for example based upon cross validation
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calplot(nested.cox.fit,wbeta=5)

## Range of X*Beta for calibration:
## -9.10632 8.827991
## Range of calibrated confidence intervals:
## -12.05814 11.24302
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## Due to user specified xlim 1 tick marks are not displayed in rug
## min:max xb = -9.32657108298515 8.61924886334891

Here the “overall” calibration and confidence interval is based upon the average and +/- 2 standard error of
the spline fits. One can also include the individual calibration curves from the outer cross validation loop
with the option plotfold=1 as in
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calplot(nested.cox.fit, wbeta=5, plotfold=1 )

## Range of X*Beta for calibration:
## -9.10632 8.827991
## Range of calibrated confidence intervals:
## -12.05814 11.24302
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## Due to user specified xlim 1 tick marks are not displayed in rug
## min:max xb = -9.32657108298515 8.61924886334891

Calibration is discussed in more detail in the “Calibration of Machine Learning Models” vignette.

Model comparisons with simulated and observed data

The examples above compare models using simulated data. Simulated data can often be constructed to
show one or the other model to do perform the best. For the examples above the lasso models and those
informed by the relaxed lasso performed better. When comparing model using observed medical data we have
generally seen the lasso models to be consistently among the better performing models, but the differences
in performances not as large and consistent as in these examples. Notably, when using observed data, the
oblique random forest (ORF) often performed slightly (but not statistically significantly) better than the
other models. By its construction we would expect the ORF to fit better when there are stronger correlations
or interactions between predictors/features. In our test runs on observed data we often did have meaningful
correlations between the predictors/features. Because different models may perform better with different
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types of data it may be informative to compare model performances for multiple data sets of a particular
data type, when available, not only a single data set of immediate interest.

Model replicability and model comparisons

To facilitate reproducible results the nested.glmnetr() function stores the seeds used to generate the pseudo
random samples used for assigning observations to folds in the outer loop, as well as the fold ids themselves,
for all models. Additionally, the program stores the seeds when generating the folds in the inner loop for
lasso, XGB, neural network and stepwise regressions as well as the seeds used when generating the bootstrap
samples for the random forest models. Using the seeds from a prior call to nested.glmnetr(), one can
reproduce the results from this earlier call. Because the seeds are saved for sample partitioning in both the
outer cross validation or the bootstrap method along with the folds for inner loop model derivations, results
can be reproduced even when rerunning an analysis for a single model. If we did not save and manage the
seeds the user might have to run all models included in an earlier run to verify or inspect a single model fit.
If the seed option is unspecified in the call to nested.glmnetr(), one should be cautious when using set.seed()
in one’s own code as this too will effect the pseudo randomness used in the ML calculations, which could
unwittingly yield identical results when pseudo independent runs are intended.

Using the same folds, i.e. data splits, for the different models controls for some of the variability in the
model performance estimates due to the randomness in the choice of folds, which should reduce variability
in the differences in performance estimates between different models. nested.glmnetr() stores the model
performance measures from each iteration of the outer loop allowing calculation of means and standard
deviations (SD) for each model performance measure, as well as differences paired on each data split in the
outer loop. Because of dependencies between the different model fits from a CV loop, there are concerns
about the accuracy of the SDs (Bengio Y & Grandvalet Y, “No Unbiased Estimator of the Variance of K-Fold
Cross-Validation”, Journal of Machine Learning Research 5 (2004) 1089–1105). Still, people use these SDs
routinely as a rough approximation, being cautious of making strong inferences. We expect any dependencies
at least between the paired differences should be minimal and reasonable in approximation. This intuition
is supported by informal simulations. The reader is invited to perform similar studies using the type of data
they encounter.

A simple comparison of model performances based upon deviance ratio can be done as in the example

# compare fractional reductions in Mean Square Error between different models
nested.compare(nested.gau.fit, type="devrat")

## Model performance comparison in terms of ** Deviance Ratio **
##
## Comparison estimate (95% CI) p
##
## lasso.minR - lasso.min -0.001 (-0.0028, 9e-04) 0.2647
## lasso.minR - lasso.minR0 0.0038 (-4e-04, 0.0079) 0.0693
## lasso.min - lasso.minR0 0.0047 (9e-04, 0.0086) 0.0215
##
## XGBoost (tuned) - XGBoost (simple) 0.1425 (0.1124, 0.1726) 0
##
## step (df) - step (p) 1e-04 (-0.0016, 0.0018) 0.8962
##
## lasso.minR - XGB (tuned) 0.0425 (0.0304, 0.0545) 0
## lasso.minR - Random Forest 0.1527 (0.138, 0.1674) 0
## lasso.minR - Oblique Random Forest 0.1842 (0.1562, 0.2122) 0
## lasso.minR - ANN 0.1954 (0.1471, 0.2436) 0
##
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## XGBoost (tuned) - RF 0.1102 (0.092, 0.1284) 0
## XGBoost (tuned) - ORF 0.1417 (0.1092, 0.1743) 0
## XGBoost (tuned) - ANN 0.1529 (0.1074, 0.1984) 0
##
## RF - ORF 0.0315 (0.0019, 0.0611) 0.0394
##
## RF - ANN 0.0427 (-0.0068, 0.0922) 0.0828
##
## ORF - ANN 0.0112 (-0.0541, 0.0764) 0.7075

As the outer CV loop performance calculations are saved in the nested.glmntr() output object (with
names like lasso.agree.rep, lasso.lincal.rep, xgb.agree.rep, xgb.lincal.rep, etc.) comparisons not provided by
nested.compare() can be calculated from these stored CV data.

Bootstrap assessment of model performance

If one is uncertain about using cross validation for assessing model performance, one can implement a
bootstrap assessment, where the properties may be better understood. Bootstrap resampling should better
mimic the randomness of model selection in the original model than the (outer loop of nested) cross-validation
resampling and provide more accurate performance estimates. While we have not systematically evaluated
this our impression is that for the numerical assessments of model performance the differences between the
bootstrap and cross-validation results were not especially large. However, the out-of-bag calibration plots
can noticeably, if only sightly, differ between the bootstrap and cross validation approaches. Depending on
the models being fit and the data analyzed the run times can be very long for the bootstrap approach. For
some analyses evaluating lasso, gradient boosting machines, artificial neural networks and stepwise models we
have had runs for 10-fold nested cross-validation taking days. A bootstrap study with 50 or 100 resamplings
could then take weeks. One approach might be to first evaluate performances using the cross-validation
and then re-evaluate any unclear model performances using the bootstrap. Another approach would be to
evaluate initially using the bootstrap with a small number of resamplings, e.g. 10 like sometimes used for
cross-validation, trading stability for accuracy. Again one could selectively re-evaluate models of interest
with a larger number of bootstrap resamplings. Bootstrap sampling can be implemented by specifying the
bootstrap option for the number of bootstrap samples to be used, e.g. as in

nested.bin.boot.fit = nested.glmnetr(xs,NULL,yb,NULL,family="binomial",
dolasso=1, dorf=1,
folds_n=10, seed=219301029, bootstrap=20, track=1)

where models are fit for each of 20 re-samples from the original data. For each re-sample models are evaluated
using the respective out-of-bag (OOB) data, i.e. the original data not included in the re-sample, and these
are used to derive overall model performances.

plot(nested.bin.boot.fit)
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Calibration curves can be generated like with the cross validation model evaluations, as in

calplot(nested.bin.boot.fit, wbeta=5, plotfold=1)

## Range of X*Beta for calibration:
## -8.437476 9.551432
## Range of calibrated confidence intervals:
## -18.03857 10.64065
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lassoR.min X*Beta (Bootstrap Out Of Bag)
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Here, similar to the cross-validation calibration plots, calibration curves are fit using splines for each
bootstrap sample based upon the upon the XBeta’s (predicteds) for the out-of-bag sample based upon the
re-sample fitted model. These curves are then averaged to get an overall calibration curve. 95% confidence
intervals are described based upon the overall curve and the standard deviation of the individual curves
at each value of XBeta. See the calibration vignette for more on calibration curves based upon bootstrap
samples.
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