Package ‘ggplot2’

February 23, 2024

Version 3.5.0
Title Create Elegant Data Visualisations Using the Grammar of Graphics

Description A system for 'declaratively' creating graphics, based on " The
Grammar of Graphics". You provide the data, tell 'ggplot2' how to map
variables to aesthetics, what graphical primitives to use, and it
takes care of the details.

License MIT + file LICENSE

URL https://ggplot2.tidyverse.org,
https://github.com/tidyverse/ggplot2

BugReports https://github.com/tidyverse/ggplot2/issues
Depends R (>=3.5)
Imports cli, glue, grDevices, grid, gtable (>=0.1.1), isoband,

lifecycle (> 1.0.1), MASS, mgcv, rlang (>= 1.1.0), scales (>=
1.3.0), stats, tibble, vctrs (>= 0.5.0), withr (>= 2.5.0)

Suggests covr, dplyr, ggplot2movies, hexbin, Hmisc, knitr, mapproj,
maps, multcomp, munsell, nlme, profvis, quantreg, ragg (>=
1.2.6), RColorBrewer, rmarkdown, rpart, sf (>= 0.7-3), svglite
(>=2.1.2), testthat (>= 3.1.2), vdiffr (>= 1.0.6), xml2

Enhances sp

VignetteBuilder knitr

Config/Needs/website ggtext, tidyr, forcats, tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.0

Collate 'ggproto.R' 'ggplot-global.R' 'aaa-.R’
'aes-colour-fill-alpha.R' 'aes-evaluation.R'
‘aes-group-order.R' 'aes-linetype-size-shape.R'
'aes-position.R' 'compat-plyr.R' 'utilities.R' 'aes.R’
'utilities-checks.R' 'legend-draw.R' 'geom-.R'

https://ggplot2.tidyverse.org
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2/issues

‘annotation-custom.R' 'annotation-logticks.R' 'geom-polygon.R'
'geom-map.R' 'annotation-map.R' 'geom-raster.R’
'annotation-raster.R' 'annotation.R' 'autolayer.R' 'autoplot.R’
'axis-secondary.R' 'backports.R' 'bench.R' 'bin.R' 'coord-.R'
'coord-cartesian-.R' 'coord-fixed.R' 'coord-flip.R'
'coord-map.R' 'coord-munch.R' 'coord-polar.R’
'coord-quickmap.R' 'coord-radial.R' 'coord-sf.R'
‘coord-transform.R' 'data.R' 'facet-.R' 'facet-grid-.R’
'facet-null.R' 'facet-wrap.R' 'fortify-Im.R' 'fortify-map.R’
'fortify-multcomp.R' fortify-spatial.R' 'fortify.R' 'stat-.R’
'geom-abline.R' 'geom-rect.R' 'geom-bar.R' 'geom-bin2d.R’
'geom-blank.R' 'geom-boxplot.R' 'geom-col.R' 'geom-path.R’
'geom-contour.R' 'geom-count.R' 'geom-crossbar.R'
'geom-segment.R' 'geom-curve.R' 'geom-defaults.R’
'geom-ribbon.R' 'geom-density.R' 'geom-density2d.R’
'geom-dotplot.R' 'geom-errorbar.R' 'geom-errorbarh.R’
'geom-freqpoly.R' 'geom-function.R' 'geom-hex.R'
'geom-histogram.R' 'geom-hline.R' 'geom-jitter.R’
'geom-label.R' 'geom-linerange.R' 'geom-point.R’
'geom-pointrange.R' 'geom-quantile.R' 'geom-rug.R' 'geom-sf.R’
'geom-smooth.R' 'geom-spoke.R' 'geom-text.R' '‘geom-tile.R'
'geom-violin.R' 'geom-vline.R' 'ggplot2-package.R’'
'grob-absolute.R' 'grob-dotstack.R' 'grob-null.R' 'grouping.R’
'theme-elements.R' 'guide-.R' 'guide-axis.R'
'guide-axis-logticks.R' 'guide-axis-stack.R'
'guide-axis-theta.R' 'guide-legend.R' 'guide-bins.R’
'guide-colorbar.R' 'guide-colorsteps.R' 'guide-custom.R'
'layer.R' 'guide-none.R' 'guide-old.R' 'guides-.R’
'guides-grid.R' 'hexbin.R' 'import-standalone-obj-type.R’
'import-standalone-types-check.R' 'labeller.R' '1abels.R’
'layer-sf.R' 'layout.R' 'limits.R' 'margins.R' 'performance.R’
'plot-build.R' "plot-construction.R' 'plot-last.R' 'plot.R’
'position-.R' 'position-collide.R' 'position-dodge.R'
"position-dodge2.R' 'position-identity.R' 'position-jitter.R’
"position-jitterdodge.R' ‘position-nudge.R' 'position-stack.R’
'quick-plot.R' 'reshape-add-margins.R' 'save.R' 'scale-.R’
'scale-alpha.R' 'scale-binned.R' 'scale-brewer.R'
'scale-colour.R' 'scale-continuous.R' 'scale-date.R'
'scale-discrete-.R' 'scale-expansion.R' 'scale-gradient.R'
'scale-grey.R' 'scale-hue.R' 'scale-identity.R'
'scale-linetype.R' 'scale-linewidth.R' 'scale-manual .R'
'scale-shape.R' 'scale-size.R' 'scale-steps.R' 'scale-type.R'
'scale-view.R' 'scale-viridis.R' 'scales-.R' 'stat-align.R’
'stat-bin.R' 'stat-bin2d.R' 'stat-bindot.R' 'stat-binhex.R'
'stat-boxplot.R' 'stat-contour.R' 'stat-count.R'
'stat-density-2d.R' 'stat-density.R' 'stat-ecdf.R’
'stat-ellipse.R' 'stat-function.R' 'stat-identity.R'
'stat-qq-line.R' 'stat-qq.R' 'stat-quantilemethods.R’

R topics documented:

'stat-sf-coordinates.R' 'stat-sf.R' 'stat-smooth-methods.R'
'stat-smooth.R' 'stat-sum.R' 'stat-summary-2d.R’
'stat-summary-bin.R' 'stat-summary-hex.R' 'stat-summary.R'
'stat-unique.R' 'stat-ydensity.R' 'summarise-plot.R’
'summary.R' 'theme.R' 'theme-defaults.R' 'theme-current.R'
'utilities-break.R' 'utilities-grid.R' 'utilities-help.R'
'utilities-matrix.R' 'utilities-patterns.R'
‘utilities-resolution.R' 'utilities-tidy-eval.R' 'zxx.R'

'zzz.R’

NeedsCompilation no

Author Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Winston Chang [aut] (<https://orcid.org/0000-0002-1576-2126>),
Lionel Henry [aut],

Thomas Lin Pedersen [aut, cre]
(<https://orcid.org/0000-0002-5147-4711>),

Kohske Takahashi [aut],

Claus Wilke [aut] (<https://orcid.org/0000-0002-7470-9261>),

Kara Woo [aut] (<https://orcid.org/0000-0002-5125-4188>),

Hiroaki Yutani [aut] (<https://orcid.org/0000-0002-3385-7233>),

Dewey Dunnington [aut] (<https://orcid.org/0000-0002-9415-4582>),

Teun van den Brand [aut] (<https://orcid.org/0000-0002-9335-7468>),

Posit, PBC [cph, fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>
Repository CRAN
Date/Publication 2024-02-23 09:30:02 UTC

R topics documented:

ABS . . o e e e
aes_colour_fill_alpha
aes_eval e e e e
AeS_group_order e e e e e
aes_linetype_size_shape
ABS_POSILION L v i e e e e e e e e
ANNOLALE e e e e e e e e e e e e
annotation_CuStOM v v i e e e e e e e e e e e e e e e e e e
annotation_logticks L
ANNOtatioN_MAP« ¢« v v vt v e e e e e e e e e e e e e
annotation_TaSter e e e e e e e e e e e e
autolayer L. e
autoplot e e e
borders e e
CoordSt e e e e e
coord_cartesian e e e e e e e e e e e e e e e e e e
coord_fixed e

https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-1576-2126
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-7470-9261
https://orcid.org/0000-0002-5125-4188
https://orcid.org/0000-0002-3385-7233
https://orcid.org/0000-0002-9415-4582
https://orcid.org/0000-0002-9335-7468

R topics documented:

coord_flip e e 39
COOTA_IMAD .+« v v v e o e e e e e e e e e e e e e e e e e e 40
coord_polar e e 43
COOrd_trans o e e e e e e e 45
cut_interval L e e e e e 47
diamonds e e e e e e 49
draw_Key e 49
ECOMOMICS + & v v v v v v e 51
element L e e e e 52
expand_limits L 54
EXPANSION . « . . v vt e e e e e e e e e e e e 55
facet_grid e 56
facet_wrap 58
faithfuld e 61
fortify e e 62
geom_abline e 62
geom_bar 65
geom_bin_2d e e e 69
geom_blank L e 72
geom_boxploto 73
GEOM_CONEOUL « . . v v v v e et e e e e e e e e e e e e e e e e e 78
GEOM_COUNL . . o . v v vt v et e e e e e e e e e e e e e e e e e 82
GEOM_CIoSSbar o e e e e e e e 85
geom_density e 89
geom_density_2d e e e e 92
geom_dotploto e e e e e 97
geom_errorbarho 101
geom_freqpoly 103
geom_function e 108
geom_heX e 111
GEOM_JILIEr o e e e e e e 114
geom_label 116
GEOM_INAD « + + « v v e 121
geom_path. 124
GEOM_POINt v v et e e e e e e e e e 128
geOmM_polygon e e e e e 131
geom_qq_line e 134
geom_quantile 137
GEOM_TASIET . .« v v v v v e 140
geom_ribbon Lo 143
GEOMLTUZ « . v v v v e it e et e et e e e e e e e e e e e e e 147
GEOM_SEZMENL . . . v v v vt i e e e e e e e e e e e e e 150
geom_smooth e e 153
gEOM_SPOKE e e e 158
geom_violin e 160
get_alt_text e e e e e e e 164
ggplot . ..o 165

SEPIOLO . o e e e 167

R topics documented: 5

GESAVE . v v v e e e e e e e e e e e e e e e e e e 169
ggtheme e 171
guideso e 174
guide_axis 175
guide_axis_logticks L 177
guide_axis_stack 179
guide_axis_theta 180
guide_bins e e e e 182
guide_colourbar oL 184
guide_coloursteps e e 187
guide_Custom e e 189
guide_legend L e 191
guide_None 193
hmisc e 194
Iabeller e e e e 195
labellers e 197
label_bquote L 199
Iabs . . . e e e e e 200
MS . . . e e e e e e e 201
Iuv_colours e e 203
MEAN_SE .+ v v v v e v e e e e e 204
MIAWESE o e e e e e e e e e e e e e e e 204
INPE © o v o e e e e e e e e e e e e e e e 206
msleep oL 206
position_dodge e e 207
position_identity L e 209
POSIION_JILLEr o o e e e e 210
position_jitterdodge 211
position_nudge e e e e 212
position_stack oL e 213
presidential 215
print.ggploto e e e e 216
Print.ggproto e e e e e e 217
gPIot . . . e 218
resolution L e 220
scale_alpha e 220
scale_binned e 221
scale_colour_brewer e 224
scale_colour_continuous e e e e e e e 228
scale_colour_discrete e 230
scale_colour_gradient 231
scale_colour_greyo e 236
scale_colour_hue e 239
scale_colour_Steps e e e e e 242
scale_colour_viridis_d 246
scale_ContinuoUS v i i e e e e e e e e e e 250
scale_date e 254

scale_identity 258

6 +.28
scale_linetype e e e e 260
scale_linewidth L 262
scale_ manual e 264
scale_shape e 268
scale_SIZE e e 270
scale_ X_diSCrete e e 273
seals L 276
SEC_AXIS '+ v v o e e e e e e e e e e s, 277
stat_ecdf e e e 279
stat_ellipse 281
stat_identity L L e 283
stat_sf coordinates e 284
stat_summary_2d L L e e e e e e e e e 287
stat_summary_bin L. e 289
StAt_UNIQUE oot e e e e e 294
theme e 295
theme_get L e 304
txhousing e e 306
VALS & v v e e e e e e e e e e e e e e e e e 307

Index 309

+.gg Add components to a plot

Description

+ is the key to constructing sophisticated ggplot2 graphics. It allows you to start simple, then get
more and more complex, checking your work at each step.

Usage

#it
el

el

S3 method for class 'gg'
+ e2

%t% e2

Arguments

el

e2

An object of class ggplot () or a theme().

A plot component, as described below.

aes 7

What can you add?

You can add any of the following types of objects:

* An aes() object replaces the default aesthetics.

* A layer created by a geom_ or stat_ function adds a new layer.
* A scale overrides the existing scale.

¢ A theme () modifies the current theme.

* A coord overrides the current coordinate system.

* A facet specification overrides the current faceting.

To replace the current default data frame, you must use %+%, due to S3 method precedence issues.

You can also supply a list, in which case each element of the list will be added in turn.

See Also

theme ()

Examples

base <-

ggplot(mpg, aes(displ, hwy)) +
geom_point()

base + geom_smooth()

To override the data, you must use %+%
base %+% subset(mpg, fl == "p")

Alternatively, you can add multiple components with a list.
This can be useful to return from a function.

base + list(subset(mpg, fl == "p"), geom_smooth())
aes Construct aesthetic mappings
Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthetics)
of geoms. Aesthetic mappings can be set in ggplot() and in individual layers.

Usage

aes(x, y, ...)

8 aes

Arguments

X, Y, .. <data-masking> List of name-value pairs in the form aesthetic = variable
describing which variables in the layer data should be mapped to which aes-
thetics used by the paired geom/stat. The expression variable is evaluated
within the layer data, so there is no need to refer to the original dataset (i.e., use
ggplot (df, aes(variable)) instead of ggplot(df, aes(df$variable))). The
names for x and y aesthetics are typically omitted because they are so common;
all other aesthetics must be named.

Details

This function also standardises aesthetic names by converting color to colour (also in substrings,
e.g., point_color to point_colour) and translating old style R names to ggplot names (e.g., pch
to shape and cex to size).

Value

A list with class uneval. Components of the list are either quosures or constants.

Quasiquotation

aes() is a quoting function. This means that its inputs are quoted to be evaluated in the context of
the data. This makes it easy to work with variables from the data frame because you can name those
directly. The flip side is that you have to use quasiquotation to program with aes(). See a tidy
evaluation tutorial such as the dplyr programming vignette to learn more about these techniques.

See Also

vars() for another quoting function designed for faceting specifications.
Run vignette("ggplot2-specs”) to see an overview of other aesthetics that can be modified.
Delayed evaluation for working with computed variables.

Other aesthetics documentation: aes_colour_fill_alpha, aes_group_order, aes_linetype_size_shape,
aes_position

Examples

aes(x = mpg, y = wt)
aes(mpg, wt)

You can also map aesthetics to functions of variables
aes(x =mpg * 2, y = wt / cyl)

Or to constants
aes(x = 1, colour = "smooth")

Aesthetic names are automatically standardised
aes(col = x)

aes(fg = x)

aes(color = x)

https://dplyr.tidyverse.org/articles/programming.html

aes_colour_fill_alpha 9

aes(colour = x)

aes() is passed to either ggplot() or specific layer. Aesthetics supplied
to ggplot() are used as defaults for every layer.

ggplot(mpg, aes(displ, hwy)) + geom_point()

ggplot(mpg) + geom_point(aes(displ, hwy))

Tidy evaluation ----------——---——---——-- oo
aes() automatically quotes all its arguments, so you need to use tidy
evaluation to create wrappers around ggplot2 pipelines. The
simplest case occurs when your wrapper takes dots:
scatter_by <- function(data, ...) {
ggplot(data) + geom_point(aes(...))
3
scatter_by(mtcars, disp, drat)

If your wrapper has a more specific interface with named arguments,
you need the "embrace operator”:
scatter_by <- function(data, x, y) {

ggplot(data) + geom_point(aes({{ x }}, {{ y 330

3
scatter_by(mtcars, disp, drat)

Note that users of your wrapper can use their own functions in the
quoted expressions and all will resolve as it should!

cut3 <- function(x) cut_number(x, 3)

scatter_by(mtcars, cut3(disp), drat)

aes_colour_fill_alpha Colour related aesthetics: colour, fill, and alpha

Description

These aesthetics parameters change the colour (colour and fill) and the opacity (alpha) of geom
elements on a plot. Almost every geom has either colour or fill (or both), as well as can have their
alpha modified. Modifying colour on a plot is a useful way to enhance the presentation of data,
often especially when a plot graphs more than two variables.

Colour and fill

The colour aesthetic is used to draw lines and strokes, such as in geom_point () and geom_line(),
but also the line contours of geom_rect() and geom_polygon(). The fill aesthetic is used to
colour the inside areas of geoms, such as geom_rect() and geom_polygon(), but also the insides
of shapes 21-25 of geom_point().

Colours and fills can be specified in the following ways:

* Aname,e.g., "red”. R has 657 built-in named colours, which can be listed with grDevices: :colors().

* An rgb specification, with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB
consists of two hexadecimal digits giving a value in the range 00 to FF. You can optionally
make the colour transparent by using the form "#RRGGBBAA".

10

Alpha

aes_colour_fill_alpha

* An NA, for a completely transparent colour.

Alpha refers to the opacity of a geom. Values of alpha range from O to 1, with lower values
corresponding to more transparent colors.

Alpha can additionally be modified through the colour or fill aesthetic if either aesthetic provides
color values using an rgb specification ("#RRGGBBAA"), where AA refers to transparency values.

See Also

* Other options for modifying colour: scale_colour_brewer(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_viridis_d()

* Other options for modifying fill: scale_fill_brewer(), scale_fill_gradient(), scale_fill_grey(),
scale_fill_hue(), scale_fill_identity(), scale_fill_manual(), scale_fill_viridis_d()

* Other options for modifying alpha: scale_alpha(), scale_alpha_manual(), scale_alpha_identity()

e Run vignette("ggplot2-specs”) to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes_group_order, aes_linetype_size_shape, aes_position,

aes()
Examples
Bar chart example
p <- ggplot(mtcars, aes(factor(cyl)))
Default plotting
p + geom_bar()
To change the interior colouring use fill aesthetic
p + geom_bar(fill = "red")
Compare with the colour aesthetic which changes just the bar outline
p + geom_bar(colour = "red")
Combining both, you can see the changes more clearly
p + geom_bar(fill = "white”, colour = "red")
Both colour and fill can take an rgb specification.
p + geom_bar(fill = "#00abff")
Use NA for a completely transparent colour.
p + geom_bar(fill = NA, colour = "#@0@abff")
Colouring scales differ depending on whether a discrete or
continuous variable is being mapped. For example, when mapping
fill to a factor variable, a discrete colour scale is used.

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

#
#

When mapping fill to continuous variable a continuous colour
scale is used.

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density))

aes_eval 11

Some geoms only use the colour aesthetic but not the fill
aesthetic (e.g. geom_point() or geom_line()).

p <- ggplot(economics, aes(x = date, y = unemploy))

p + geom_line()

p + geom_line(colour = "green")

p + geom_point()

p + geom_point(colour = "red")

For large datasets with overplotting the alpha
aesthetic will make the points more transparent.
set.seed(1)

df <- data.frame(x = rnorm(5000), y = rnorm(5000))
<- ggplot(df, aes(x,y))

+ geom_point ()

+ geom_point(alpha = 0.5)

+ geom_point(alpha = 1/10)

T T T T

Alpha can also be used to add shading.
p <- ggplot(economics, aes(x = date, y = unemploy)) + geom_line()

p
yrng <- range(economics$unemploy)
p<-p+
geom_rect(
aes(NULL, NULL, xmin = start, xmax = end, fill = party),
ymin = yrng[1], ymax = yrng[2], data = presidential
)
p

p + scale_fill_manual(values = alpha(c("blue”, "red"), .3))

aes_eval Control aesthetic evaluation

Description

Most aesthetics are mapped from variables found in the data. Sometimes, however, you want to
delay the mapping until later in the rendering process. ggplot2 has three stages of the data that
you can map aesthetics from, and three functions to control at which stage aesthetics should be
evaluated.

after_stat() replaces the old approaches of using either stat(), e.g. stat(density), or sur-
rounding the variable names with . ., e.g. . .density. ..

Usage

These functions can be used inside the ‘aes()‘ function
used as the ‘mapping‘ argument in layers, for example:
geom_density(mapping = aes(y = after_stat(scaled)))

12 aes_eval

after_stat(x)
after_scale(x)

stage(start = NULL, after_stat = NULL, after_scale = NULL)

Arguments
X <data-masking> An aesthetic expression using variables calculated by the stat
(after_stat()) or layer aesthetics (after_scale()).
start <data-masking> An aesthetic expression using variables from the layer data.
after_stat <data-masking> An aesthetic expression using variables calculated by the stat.
after_scale <data-masking> An aesthetic expression using layer aesthetics.
Staging

Below follows an overview of the three stages of evaluation and how aesthetic evaluation can be
controlled.

Stage 1: direct input:

The default is to map at the beginning, using the layer data provided by the user. If you want to
map directly from the layer data you should not do anything special. This is the only stage where
the original layer data can be accessed.

'x' and 'y' are mapped directly
ggplot(mtcars) + geom_point(aes(x = mpg, y = disp))

Stage 2: after stat transformation:

The second stage is after the data has been transformed by the layer stat. The most common exam-
ple of mapping from stat transformed data is the height of bars in geom_histogram(): the height
does not come from a variable in the underlying data, but is instead mapped to the count computed
by stat_bin(). In order to map from stat transformed data you should use the after_stat()
function to flag that evaluation of the aesthetic mapping should be postponed until after stat trans-
formation. Evaluation after stat transformation will have access to the variables calculated by the
stat, not the original mapped values. The ’computed variables’ section in each stat lists which
variables are available to access.

The 'y' values for the histogram are computed by the stat
ggplot(faithful, aes(x = waiting)) +
geom_histogram()

Choosing a different computed variable to display, matching up the
histogram with the density plot
ggplot(faithful, aes(x = waiting)) +

geom_histogram(aes(y = after_stat(density))) +

geom_density()

Stage 3: after scale transformation:

aes_eval 13

The third and last stage is after the data has been transformed and mapped by the plot scales. An
example of mapping from scaled data could be to use a desaturated version of the stroke colour
for fill. You should use after_scale() to flag evaluation of mapping for after data has been
scaled. Evaluation after scaling will only have access to the final aesthetics of the layer (including
non-mapped, default aesthetics).

The exact colour is known after scale transformation
ggplot(mpg, aes(cty, colour = factor(cyl))) +
geom_density()

We re-use colour properties for the fill without a separate fill scale
ggplot(mpg, aes(cty, colour = factor(cyl))) +
geom_density(aes(fill = after_scale(alpha(colour, 0.3))))

Complex staging:
If you want to map the same aesthetic multiple times, e.g. map x to a data column for the stat, but
remap it for the geom, you can use the stage () function to collect multiple mappings.

Use stage to modify the scaled fill
ggplot(mpg, aes(class, hwy)) +
geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))

Using data for computing summary, but placing label elsewhere.
Also, we're making our own computed variable to use for the label.
ggplot(mpg, aes(class, displ)) +
geom_violin() +
stat_summary(
aes(
y = stage(displ, after_stat = 8),
label = after_stat(paste(mean, "+", sd))
),
geom = "text",
fun.data = ~ round(data.frame(mean = mean(.x), sd = sd(.x)), 2)

)

Examples

Default histogram display
ggplot(mpg, aes(displ)) +
geom_histogram(aes(y = after_stat(count)))

Scale tallest bin to 1

ggplot(mpg, aes(displ)) +
geom_histogram(aes(y = after_stat(count / max(count))))

Use a transparent version of colour for fill
ggplot(mpg, aes(class, hwy)) +
geom_boxplot(aes(colour = class, fill = after_scale(alpha(colour, 0.4))))

Use stage to modify the scaled fill
ggplot(mpg, aes(class, hwy)) +

14

geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))

Making a proportional stacked density plot
ggplot(mpg, aes(cty)) +
geom_density(
aes(
colour = factor(cyl),
fill = after_scale(alpha(colour, 0.3)),
y = after_stat(count / sum(n[!duplicated(group)]))
),
position = "stack”, bw =1
) +
geom_density(bw = 1)

Imitating a ridgeline plot
ggplot(mpg, aes(cty, colour = factor(cyl))) +
geom_ribbon(
stat = "density”, outline.type = "upper”,
aes(
fill = after_scale(alpha(colour, 0.3)),
ymin = after_stat(group),
ymax = after_stat(group + ndensity)
)
)

Labelling a bar plot
ggplot(mpg, aes(class)) +
geom_bar() +
geom_text(
aes(
y = after_stat(count + 2),
label = after_stat(count)
),
stat = "count”

)

Labelling the upper hinge of a boxplot,
inspired by June Choe
ggplot(mpg, aes(displ, class)) +
geom_boxplot(outlier.shape = NA) +
geom_text(
aes(
label = after_stat(xmax),
x = stage(displ, after_stat = xmax)
),
stat = "boxplot”, hjust = -0.5
)

aes_group_order

aes_group_order Aesthetics: grouping

aes_group_order 15

Description

The group aesthetic is by default set to the interaction of all discrete variables in the plot. This
choice often partitions the data correctly, but when it does not, or when no discrete variable is used
in the plot, you will need to explicitly define the grouping structure by mapping group to a variable
that has a different value for each group.

Details

For most applications the grouping is set implicitly by mapping one or more discrete variables to
X, Y, colour, fill, alpha, shape, size, and/or linetype. This is demonstrated in the examples
below.

There are three common cases where the default does not display the data correctly.

1. geom_line() where there are multiple individuals and the plot tries to connect every observa-
tion, even across individuals, with a line.

2. geom_line() where a discrete x-position implies groups, whereas observations span the dis-
crete X-positions.

3. When the grouping needs to be different over different layers, for example when computing a
statistic on all observations when another layer shows individuals.

The examples below use a longitudinal dataset, Oxboys, from the nlme package to demonstrate
these cases. Oxboys records the heights (height) and centered ages (age) of 26 boys (Subject),
measured on nine occasions (Occasion).

See Also

* Geoms commonly used with groups: geom_bar (), geom_histogram(), geom_line()

* Run vignette("ggplot2-specs”) to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes_colour_fill_alpha, aes_linetype_size_shape, aes_position,
aes()

Examples

<- ggplot(mtcars, aes(wt, mpg))

A basic scatter plot

+ geom_point(size = 4)

Using the colour aesthetic

+ geom_point(aes(colour = factor(cyl)), size = 4)
Using the shape aesthetic

+ geom_point(aes(shape = factor(cyl)), size = 4)

T T T ¥ T

Using fill
<- ggplot(mtcars, aes(factor(cyl)))
+ geom_bar()

+ geom_bar(aes(fill
+ geom_bar(aes(fill

factor(cyl)))
factor(vs)))

T T T T #H

16 aes_linetype_size_shape

Using linetypes
ggplot(economics_long, aes(date, value@l)) +
geom_line(aes(linetype = variable))

Multiple groups with one aesthetic

<- ggplot(nlme: :0xboys, aes(age, height))

The default is not sufficient here. A single line tries to connect all
the observations.

+ geom_line()

To fix this, use the group aesthetic to map a different line for each
subject.

+ geom_line(aes(group = Subject))

T # # T # # T #

Different groups on different layers

p <- p + geom_line(aes(group = Subject))

Using the group aesthetic with both geom_line() and geom_smooth()

groups the data the same way for both layers

p + geom_smooth(aes(group = Subject), method = "Im", se = FALSE)

Changing the group aesthetic for the smoother layer

fits a single line of best fit across all boys

p + geom_smooth(aes(group = 1), size = 2, method = "1m", se = FALSE)

Overriding the default grouping

Sometimes the plot has a discrete scale but you want to draw lines

that connect across groups. This is the strategy used in interaction

plots, profile plots, and parallel coordinate plots, among others.

For example, we draw boxplots of height at each measurement occasion.

p <- ggplot(nlme: :0xboys, aes(Occasion, height)) + geom_boxplot()

p

There is no need to specify the group aesthetic here; the default grouping
works because occasion is a discrete variable. To overlay individual

trajectories, we again need to override the default grouping for that layer
with aes(group = Subject)

p + geom_line(aes(group = Subject), colour = "blue")

aes_linetype_size_shape
Differentiation related aesthetics: linetype, size, shape

Description
The linetype, linewidth, size, and shape aesthetics modify the appearance of lines and/or
points. They also apply to the outlines of polygons (1inetype and 1linewidth) or to text (size).
Linetype

The linetype aesthetic can be specified with either an integer (0-6), a name (0 = blank, 1 = solid, 2
= dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash), a mapping to a discrete variable, or a

aes_linetype_size_shape 17

string of an even number (up to eight) of hexadecimal digits which give the lengths in consecutive
positions in the string. See examples for a hex string demonstration.

Linewidth and stroke

The linewidth aesthetic sets the widths of lines, and can be specified with a numeric value (for
historical reasons, these units are about 0.75 millimetres). Alternatively, they can also be set via
mapping to a continuous variable. The stroke aesthetic serves the same role for points, but is
distinct for discriminating points from lines in geoms such as geom_pointrange().

Size

The size aesthetic control the size of points and text, and can be specified with a numerical value
(in millimetres) or via a mapping to a continuous variable.

Shape

The shape aesthetic controls the symbols of points, and can be specified with an integer (between
0 and 25), a single character (which uses that character as the plotting symbol), a . to draw the
smallest rectangle that is visible (i.e., about one pixel), an NA to draw nothing, or a mapping to a
discrete variable. Symbols and filled shapes are described in the examples below.

See Also

» geom_line() and geom_point() for geoms commonly used with these aesthetics.
* aes_group_order() for using linetype, size, or shape for grouping.

 Scales that can be used to modify these aesthetics: scale_linetype(), scale_linewidth(),
scale_size(), and scale_shape().

e Run vignette("ggplot2-specs”) to see an overview of other aesthetics that can be modi-
fied.

Other aesthetics documentation: aes_colour_fill_alpha, aes_group_order, aes_position,
aes()

Examples

df <- data.frame(x = 1:10 , y = 1:10)
p <- ggplot(df, aes(x, y))

p + geom_line(linetype = 2)

p + geom_line(linetype = "dotdash")

An example with hex strings; the string "33" specifies three units on followed
by three off and "3313" specifies three units on followed by three off followed
by one on and finally three off.
p + geom_line(linetype = "3313")

Mapping line type from a grouping variable
ggplot(economics_long, aes(date, value@dl)) +
geom_line(aes(linetype = variable))

18 aes_position

Linewidth examples
ggplot(economics, aes(date, unemploy)) +

geom_line(linewidth = 2, lineend = "round”)
ggplot(economics, aes(date, unemploy)) +
geom_line(aes(linewidth = uempmed), lineend = "round")
Size examples
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point(size = 4)
p + geom_point(aes(size = gsec))
p + geom_point(size = 2.5) +

geom_hline(yintercept = 25, size = 3.5)

Shape examples

geom_point()

geom_point(shape = 5)
geom_point(shape = "k", size = 3)
geom_point(shape = ".")
geom_point(shape = NA)
geom_point(aes(shape = factor(cyl)))

T T T T T T #
+ o+ o+ o+ o+ o+
non

A look at all 25 symbols
df2 <- data.frame(x = 1:5 , y = 1:25, z = 1:25)
p <- ggplot(df2, aes(x, y))
p + geom_point(aes(shape = z), size = 4) +
scale_shape_identity()
While all symbols have a foreground colour, symbols 19-25 also take a
background colour (fill)

p + geom_point(aes(shape = z), size = 4, colour = "Red") +
scale_shape_identity()
p + geom_point(aes(shape = z), size = 4, colour = "Red”, fill = "Black”) +

scale_shape_identity()

aes_position Position related aesthetics: x, y, xmin, xmax, ymin, ymax, xend, yend

Description

The following aesthetics can be used to specify the position of elements: x, y, xmin, xmax, ymin,
ymax, xend, yend.

Details

x and y define the locations of points or of positions along a line or path.
X, y and xend, yend define the starting and ending points of segment and curve geometries.

xmin, xmax, ymin and ymax can be used to specify the position of annotations and to represent
rectangular areas.

In addition, there are position aesthetics that are contextual to the geometry that they’re used
in. These are xintercept, yintercept, xmin_final, ymin_final, xmax_final, ymax_final,

aes_position 19

xlower, lower, xmiddle, middle, xupper, upper, x@ and y@. Many of these are used and automat-
ically computed in geom_boxplot().

See Also

* Geoms that commonly use these aesthetics: geom_crossbar (), geom_curve(), geom_errorbar(),
geom_line(), geom_linerange(), geom_path(), geom_point(), geom_pointrange(), geom_rect(),
geom_segment ()

* Scales that can be used to modify positions: scale_continuous(), scale_discrete(),
scale_binned(), scale_date().

* See also annotate() for placing annotations.

Other aesthetics documentation: aes_colour_fill_alpha, aes_group_order, aes_linetype_size_shape,
aes()

Examples

Generate data: means and standard errors of means for prices
for each type of cut
dmod <- lm(price ~ cut, data = diamonds)
cut <- unique(diamonds$cut)
cuts_df <- data.frame(
cut,
predict(dmod, data.frame(cut), se = TRUE)[c("fit", "se.fit")]
)
ggplot(cuts_df) +
aes(
X = cut,
y = fit,
ymin = fit - se.fit,
ymax = fit + se.fit,
colour = cut
) +

geom_pointrange()

Using annotate
<- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

T T T H

+ annotate(
"rect”, xmin = 2, xmax = 3.5, ymin = 2, ymax = 25,
fill = "dark grey”, alpha = .5

Geom_segment examples
p + geom_segment(

aes(x = 2, y = 15, xend = 2, yend = 25),
arrow = arrow(length = unit(@.5, "cm"))

p + geom_segment(
aes(x 2, y =15, xend = 3, yend = 15),
arrow = arrow(length = unit(@.5, "cm"))

20

annotate

)

p + geom_segment(
aes(x =5, y = 30, xend = 3.5, yend = 25),
arrow = arrow(length = unit(@.5, "cm"))

)

You can also use geom_segment() to recreate plot(type = "h")
from base R:

set.seed(1)

counts <- as.data.frame(table(x = rpois(100, 5)))

counts$x <- as.numeric(as.character(counts$x))

with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x = x

, ¥y = Freq)) +
geom_segment (aes(yend = 0,

xend = x), size = 10)

annotate Create an annotation layer

Description

This function adds geoms to a plot, but unlike a typical geom function, the properties of the geoms
are not mapped from variables of a data frame, but are instead passed in as vectors. This is useful
for adding small annotations (such as text labels) or if you have your data in vectors, and for some
reason don’t want to put them in a data frame.

Usage
annotate(
geom,
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,
na.rm = FALSE
)
Arguments
geom name of geom to use for annotation

X, Y, xmin, ymin, xmax, ymax, xend, yend
positioning aesthetics - you must specify at least one of these.

annotation_custom 21

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.
Details

Note that all position aesthetics are scaled (i.e. they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

Unsupported geoms

Due to their special nature, reference line geoms geom_abline(), geom_hline(), and geom_vline()
can’t be used with annotate(). You can use these geoms directly for annotations.

Examples

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

p + annotate("text”, x = 4, y = 25, label = "Some text")

p + annotate("text”, x = 2:5, y = 25, label = "Some text")

p + annotate("rect”, xmin = 3, xmax = 4.2, ymin = 12, ymax = 21,
alpha = .2)

p + annotate("segment”, x = 2.5, xend = 4, y = 15, yend = 25,
colour = "blue")

p + annotate("pointrange”, x = 3.5, y = 20, ymin = 12, ymax = 28,
colour = "red"”, size = 2.5, linewidth = 1.5)

p + annotate("text”, x = 2:3, y = 20:21, label = c("my label”, "label 2"))
p + annotate("text”, x = 4, y = 25, label = "italic(R) * 2 == 0.75",

parse = TRUE)
p + annotate("text”, x = 4, y = 25,

label = "paste(italic(R) * 2, \" = .75\")", parse = TRUE)
annotation_custom Annotation: Custom grob
Description

This is a special geom intended for use as static annotations that are the same in every panel. These
annotations will not affect scales (i.e. the x and y axes will not grow to cover the range of the grob,
and the grob will not be modified by any ggplot settings or mappings).

Usage

annotation_custom(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)

22 annotation_logticks

Arguments
grob grob to display
xmin, xmax x location (in data coordinates) giving horizontal location of raster
ymin, ymax y location (in data coordinates) giving vertical location of raster
Details

Most useful for adding tables, inset plots, and other grid-based decorations.

Note

annotation_custom() expects the grob to fill the entire viewport defined by xmin, xmax, ymin,
ymax. Grobs with a different (absolute) size will be center-justified in that region. Inf values can be
used to fill the full plot panel (see examples).

Examples

Dummy plot
df <- data.frame(x = 1:10, y = 1:10)
base <- ggplot(df, aes(x, y)) +
geom_blank() +
theme_bw()

Full panel annotation
base + annotation_custom(
grob = grid::roundrectGrob(),
xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf

)

Inset plot
df2 <- data.frame(x =1, y = 1)
g <- ggplotGrob(ggplot(df2, aes(x, y)) +
geom_point() +
theme(plot.background = element_rect(colour = "black")))
base +
annotation_custom(grob = g, xmin = 1, xmax = 10, ymin = 8, ymax = 10)

annotation_logticks Annotation: log tick marks

Description

[Superseded]
This function is superseded by using guide_axis_logticks().

This annotation adds log tick marks with diminishing spacing. These tick marks probably make
sense only for base 10.

annotation_logticks 23

Usage
annotation_logticks(
base = 10,
sides = "bl",

outside = FALSE,

scaled = TRUE,

short = unit(@.1, "cm"),
mid = unit(0.2, "cm"),
long = unit(@.3, "cm"),
colour = "black”,
linewidth = 0.5,
linetype = 1,

alpha = 1,

color = NULL,

L

size = deprecated()

)
Arguments
base the base of the log (default 10)
sides a string that controls which sides of the plot the log ticks appear on. It can be set
to a string containing any of "trbl", for top, right, bottom, and left.
outside logical that controls whether to move the log ticks outside of the plot area.

Default is off (FALSE). You will also need to use coord_cartesian(clip =
"off"). See examples.

scaled is the data already log-scaled? This should be TRUE (default) when the data is
already transformed with 1log1@() or when using scale_y_logl1@(). It should
be FALSE when using coord_trans(y = "log10").

short agrid::unit() object specifying the length of the short tick marks

mid agrid::unit() object specifying the length of the middle tick marks. In base
10, these are the "5" ticks.

long agrid::unit() object specifying the length of the long tick marks. In base 10,
these are the "1" (or "10") ticks.

colour Colour of the tick marks.

linewidth Thickness of tick marks, in mm.

linetype Linetype of tick marks (solid, dashed, etc.)

alpha The transparency of the tick marks.

color An alias for colour.

Other parameters passed on to the layer
size [Deprecated]

See Also

scale_y_continuous(), scale_y_log1@() for log scale transformations.

coord_trans() for log coordinate transformations.

24 annotation_map

Examples

Make a log-log plot (without log ticks)
a <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point(na.rm = TRUE) +
scale_x_log10(
breaks = scales::trans_breaks("log10"”, function(x) 10*x),
labels = scales::trans_format(”log10”, scales::math_format(10*.x))
) +
scale_y_loglo(
breaks = scales::trans_breaks("logl10"”, function(x) 10%x),
labels = scales::trans_format("log10"”, scales::math_format(10*.x))

)+

theme_bw()

a + annotation_logticks() # Default: log ticks on bottom and left
a + annotation_logticks(sides = "1r") # Log ticks for y, on left and right
a + annotation_logticks(sides = "trbl"”) # ALl four sides
a + annotation_logticks(sides = "1r", outside = TRUE) +

coord_cartesian(clip = "off") # Ticks outside plot

Hide the minor grid lines because they don't align with the ticks
a + annotation_logticks(sides = "trbl"”) + theme(panel.grid.minor = element_blank())
Another way to get the same results as 'a' above: log-transform the data before
plotting it. Also hide the minor grid lines.
b <- ggplot(msleep, aes(logl@(bodywt), logl@(brainwt))) +
geom_point(na.rm = TRUE) +
scale_x_continuous(name "body"”, labels = scales::label_math(10*.x)) +
scale_y_continuous(name = "brain”, labels = scales::label_math(10*.x)) +
theme_bw() + theme(panel.grid.minor = element_blank())

b + annotation_logticks()

Using a coordinate transform requires scaled = FALSE
t <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point() +
coord_trans(x = "logl@", y = "loglQ") +
theme_bw()
t + annotation_logticks(scaled = FALSE)

Change the length of the ticks
a + annotation_logticks(

short = unit(.5,"mm"),

mid = unit(3,"mm"),

long = unit(4,"mm"

annotation_map Annotation: a map

annotation_map 25

Description

Display a fixed map on a plot. This function predates the geom_sf () framework and does not work
with sf geometry columns as input. However, it can be used in conjunction with geom_sf () layers
and/or coord_sf () (see examples).

Usage
annotation_map(map, ...)
Arguments
map Data frame representing a map. See geom_map () for details.
Other arguments used to modify visual parameters, such as colour or fill.
Examples
Not run:

if (requireNamespace("maps”, quietly = TRUE)) {
location of cities in North Carolina
df <- data.frame(
name = c("Charlotte”, "Raleigh", "Greensboro"),
lat = c(35.227, 35.772, 36.073),
long = c(-80.843, -78.639, -79.792)
)

p <- ggplot(df, aes(x = long, y = lat)) +
annotation_map(
map_data(“state”),

fill = "antiquewhite”, colour = "darkgrey”
) +
geom_point(color = "blue") +
geom_text(

aes(label = name),
hjust = 1.105, vjust = 1.05, color = "blue”
)

use without coord_sf() is possible but not recommended
p + x1lim(-84, -76) + ylim(34, 37.2)

if (requireNamespace("sf"”, quietly = TRUE)) {
use with coord_sf() for appropriate projection
p+
coord_sf(
crs = sf::st_crs(3347),
default_crs = sf::st_crs(4326), # data is provided as long-lat
xlim = c(-84, -76),
ylim = c(34, 37.2)
)

you can mix annotation_map() and geom_sf ()
nc <- sf::st_read(system.file("shape/nc.shp”, package = "sf"), quiet = TRUE)

26

p+
geom_sTf(
data = nc,

annotation_raster

inherit.aes = FALSE,

fill = NA, color = "black”, linewidth = 0.1

) +
coord_sf(crs

i3

End(Not run)

sf::st_crs(3347), default_crs = sf::st_crs(4326))

annotation_raster

Annotation: high-performance rectangular tiling

Description

This is a special version of geom_raster() optimised for static annotations that are the same in
every panel. These annotations will not affect scales (i.e. the x and y axes will not grow to cover
the range of the raster, and the raster must already have its own colours). This is useful for adding

bitmap images.

Usage

annotation_raster(raster, xmin, xmax, ymin, ymax, interpolate = FALSE)

Arguments

raster
Xmin, xmax
ymin, ymax
interpolate

Examples

Generate data

raster object to display, may be an array or a nativeRaster

x location (in data coordinates) giving horizontal location of raster
y location (in data coordinates) giving vertical location of raster

If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

rainbow <- matrix(hcl(seq(@, 360, length.out = 50 * 50), 80, 70), nrow = 50)
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +

annotation_raster(rainbow, 15, 20, 3, 4)

To fill up whole plot

ggplot(mtcars, aes(mpg, wt)) +
annotation_raster(rainbow, -Inf, Inf, -Inf, Inf) +

geom_point()

rainbow2 <- matrix(hcl(seq(@, 360, length.out = 10), 80, 70), nrow =

|
-
~

ggplot(mtcars, aes(mpg, wt)) +
annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf) +

geom_point()

rainbow2 <- matrix(hcl(seq(@, 360, length.out = 10), 80, 70), nrow = 1)
ggplot(mtcars, aes(mpg, wt)) +
annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf, interpolate = TRUE) +

geom_point()

autolayer 27

autolayer Create a ggplot layer appropriate to a particular data type

Description
autolayer () uses ggplot2 to draw a particular layer for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autolayer(object, ...)

Arguments

object an object, whose class will determine the behaviour of autolayer

other arguments passed to specific methods

Value

a ggplot layer

See Also
autoplot(), ggplot() and fortify()

autoplot Create a complete ggplot appropriate to a particular data type

Description

autoplot () uses ggplot2 to draw a particular plot for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage
autoplot(object, ...)
Arguments
object an object, whose class will determine the behaviour of autoplot
other arguments passed to specific methods
Value

a ggplot object

28 borders

See Also

autolayer(), ggplot() and fortify()

borders Create a layer of map borders

Description

This is a quick and dirty way to get map data (from the maps package) onto your plot. This is a
good place to start if you need some crude reference lines, but you’ll typically want something more
sophisticated for communication graphics.

Usage
borders(
database = "world"”,
regions = ".",
fill = NA,
colour = "grey50",
xlim = NULL,
ylim = NULL,
)
Arguments
database map data, see maps: :map() for details
regions map region
fill fill colour
colour border colour
xlim, ylim latitudinal and longitudinal ranges for extracting map polygons, see maps: :map ()

for details.
Arguments passed on to geom_polygon

rule Either "evenodd” or "winding”. If polygons with holes are being drawn
(using the subgroup aesthetic) this argument defines how the hole coordi-
nates are interpreted. See the examples in grid: :pathGrob() for an expla-
nation.

mapping Set of aesthetic mappings created by aes (). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level
of the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in
the call to ggplot().

borders 29

A data. frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify() for which variables
will be created.

A function will be called with a single argument, the plot data. The re-
turn value must be a data.frame, and will be used as the layer data. A
function can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a
ggproto Geom subclass or as a string naming the stat stripped of the stat_
prefix (e.g. "count” rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g.
"jitter"” to use position_jitter), or the result of a call to a position
adjustment function. Use the latter if you need to change the settings of the
adjustment.

show. legend logical. Should this layer be included in the legends? NA, the
default, includes if any aesthetics are mapped. FALSE never includes, and
TRUE always includes. It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining
with them. This is most useful for helper functions that define both data
and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
cation, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

Examples

if (require("maps”)) {

ia <- map_data("county”, "iowa")
mid_range <- function(x) mean(range(x))
seats <- do.call(rbind, lapply(split(ia, ia$subregion), function(d) {
data.frame(lat = mid_range(d$lat), long = mid_range(d$long), subregion = unique(d$subregion))
1))

ggplot(ia, aes(long, lat)) +
geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)

}

if (require("maps”)) {
data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +
borders(”"state") +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

if (require("maps”)) {

30 CoordSf

Same map, with some world context
ggplot(capitals, aes(long, lat)) +
borders(”"world”, xlim = c(-130, -60), ylim = c(20, 50)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

Coordsf Visualise sf objects

Description

This set of geom, stat, and coord are used to visualise simple feature (sf) objects. For simple plots,
you will only need geom_sf () as ituses stat_sf () and adds coord_sf () for you. geom_sf () is an
unusual geom because it will draw different geometric objects depending on what simple features
are present in the data: you can get points, lines, or polygons. For text and labels, you can use
geom_sf_text() and geom_sf_label().

Usage

coord_sf(
xlim = NULL,
ylim = NULL,
expand = TRUE,
crs = NULL,
default_crs = NULL,
datum = sf::st_crs(4326),
label_graticule = waiver(),
label_axes = waiver(),

lims_method = "cross”,
ndiscr = 100,
default = FALSE,
clip = "on"
)
geom_sf(
mapping = aes(),
data = NULL,
stat = "sf",
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

CoordSf

geom_sf_label(

)

mapping = aes(),

data = NULL,
stat = "sf_coordinates”,
position = "identity"”,

parse = FALSE,

nudge_x = 0,

nudge_y = 0,

label.padding = unit(@.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE,

fun.geometry = NULL

geom_sf_text(

)

mapping = aes(),

data = NULL,
stat = "sf_coordinates”,
position = "identity",

parse = FALSE,

nudge_x = 0,

nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL

stat_sf(

mapping = NULL,

data = NULL,

geom = "rect”,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

Arguments

xlim, ylim

31

Limits for the x and y axes. These limits are specified in the units of the de-

fault CRS. By default, this means projected coordinates (default_crs = NULL).

32

expand

crs

default_crs

datum
label_graticule

label_axes

lims_method

CoordSf

How limit specifications translate into the exact region shown on the plot can be
confusing when non-linear or rotated coordinate systems are used as the default
crs. First, different methods can be preferable under different conditions. See
parameter 1ims_method for details. Second, specifying limits along only one
direction can affect the automatically generated limits along the other direction.
Therefore, it is best to always specify limits for both x and y. Third, specifying
limits via position scales or x1im()/ylim() is strongly discouraged, as it can
result in data points being dropped from the plot even though they would be
visible in the final plot region.

If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

The coordinate reference system (CRS) into which all data should be projected
before plotting. If not specified, will use the CRS defined in the first sf layer of
the plot.

The default CRS to be used for non-sf layers (which don’t carry any CRS infor-
mation) and scale limits. The default value of NULL means that the setting for
crsis used. This implies that all non-sf layers and scale limits are assumed to be
specified in projected coordinates. A useful alternative setting is default_crs =
sf::st_crs(4326), which means x and y positions are interpreted as longitude
and latitude, respectively, in the World Geodetic System 1984 (WGS84).

CRS that provides datum to use when generating graticules.

Character vector indicating which graticule lines should be labeled where. Merid-
ians run north-south, and the letters "N" and "S" indicate that they should be
labeled on their north or south end points, respectively. Parallels run east-west,
and the letters "E” and "W" indicate that they should be labeled on their east
or west end points, respectively. Thus, label_graticule = "SW" would label
meridians at their south end and parallels at their west end, whereas label_graticule
= "EW" would label parallels at both ends and meridians not at all. Because
meridians and parallels can in general intersect with any side of the plot panel,
for any choice of label_graticule labels are not guaranteed to reside on only
one particular side of the plot panel. Also, label_graticule can cause label-
ing artifacts, in particular if a graticule line coincides with the edge of the plot
panel. In such circumstances, label_axes will generally yield better results and
should be used instead.

This parameter can be used alone or in combination with label_axes.

Character vector or named list of character values specifying which graticule
lines (meridians or parallels) should be labeled on which side of the plot. Merid-
ians are indicated by "E" (for East) and parallels by "N" (for North). Default is
"--EN", which specifies (clockwise from the top) no labels on the top, none on
the right, meridians on the bottom, and parallels on the left. Alternatively, this
setting could have been specified with 1ist(bottom="E", left = "N").

This parameter can be used alone or in combination with 1abel_graticule.

Method specifying how scale limits are converted into limits on the plot re-
gion. Has no effect when default_crs =NULL. For a very non-linear CRS

CoordSf

ndiscr

default

clip

mapping

data

stat

position

na.rm

33

(e.g., a perspective centered around the North pole), the available methods yield
widely differing results, and you may want to try various options. Methods cur-
rently implemented include "cross” (the default), "box"”, "orthogonal”, and
"geometry_bbox". For method "cross”, limits along one direction (e.g., lon-
gitude) are applied at the midpoint of the other direction (e.g., latitude). This
method avoids excessively large limits for rotated coordinate systems but means
that sometimes limits need to be expanded a little further if extreme data points
are to be included in the final plot region. By contrast, for method "box", a box
is generated out of the limits along both directions, and then limits in projected
coordinates are chosen such that the entire box is visible. This method can yield
plot regions that are too large. Finally, method "orthogonal” applies limits
separately along each axis, and method "geometry_bbox" ignores all limit in-
formation except the bounding boxes of any objects in the geometry aesthetic.

Number of segments to use for discretising graticule lines; try increasing this
number when graticules look incorrect.

Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f" means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count” rather than "stat_count")

Position adjustment, either as a string naming the adjustment (e.g. "jitter” to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

34

show. legend

inherit.aes

parse

CoordSf

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.
You can also set this to one of "polygon", "line", and "point" to override the
default legend.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().
Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y

label.padding
label.r
label.size
fun.geometry

check_overlap

geom

Geometry aesthetic

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

Amount of padding around label. Defaults to 0.25 lines.

Radius of rounded corners. Defaults to 0.15 lines.

Size of label border, in mm.

A function that takes a sfc object and returns a sfc_POINT with the same length
as the input. If NULL, function(x) sf::st_point_on_surface(sf::st_zm(x))
will be used. Note that the function may warn about the incorrectness of the re-
sult if the data is not projected, but you can ignore this except when you really
care about the exact locations.

If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text (). Note
that this argument is not supported by geom_label ().

The geometric object to use to display the data, either as a ggproto Geom sub-
class or as a string naming the geom stripped of the geom_ prefix (e.g. "point”
rather than "geom_point")

geom_sf () uses a unique aesthetic: geometry, giving an column of class sfc containing simple
features data. There are three ways to supply the geometry aesthetic:

* Do nothing: by default geom_sf () assumes it is stored in the geometry column.

» Explicitly pass an sf object to the data argument. This will use the primary geometry column,
no matter what it’s called.

* Supply your own using aes(geometry =my_column)

Unlike other aesthetics, geometry will never be inherited from the plot.

CRS

coord_sf () ensures that all layers use a common CRS. You can either specify it using the crs
param, or coord_sf () will take it from the first layer that defines a CRS.

CoordSf 35

Combining sf layers and regular geoms

Most regular geoms, such as geom_point(), geom_path(), geom_text(), geom_polygon() etc.
will work fine with coord_sf (). However when using these geoms, two problems arise. First, what
CRS should be used for the x and y coordinates used by these non-sf geoms? The CRS applied to
non-sf geoms is set by the default_crs parameter, and it defaults to NULL, which means positions
for non-sf geoms are interpreted as projected coordinates in the coordinate system set by the crs
parameter. This setting allows you complete control over where exactly items are placed on the
plot canvas, but it may require some understanding of how projections work and how to generate
data in projected coordinates. As an alternative, you can set default_crs =sf::st_crs(4326),
the World Geodetic System 1984 (WGS84). This means that x and y positions are interpreted as
longitude and latitude, respectively. You can also specify any other valid CRS as the default CRS
for non-sf geoms.

The second problem that arises for non-sf geoms is how straight lines should be interpreted in
projected space when default_crs is not set to NULL. The approach coord_sf () takes is to break
straight lines into small pieces (i.e., segmentize them) and then transform the pieces into projected
coordinates. For the default setting where x and y are interpreted as longitude and latitude, this
approach means that horizontal lines follow the parallels and vertical lines follow the meridians. If
you need a different approach to handling straight lines, then you should manually segmentize and
project coordinates and generate the plot in projected coordinates.

See Also

stat_sf_coordinates()

Examples

if (requireNamespace("sf"”, quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp”, package = "sf"), quiet = TRUE)

ggplot(nc) +
geom_sf(aes(fill = AREA))

If not supplied, coord_sf() will take the CRS from the first layer
and automatically transform all other layers to use that CRS. This
ensures that all data will correctly line up
nc_3857 <- sf::st_transform(nc, 3857)
ggplot() +

geom_sf(data = nc) +

geom_sf(data = nc_3857, colour = "red”, fill = NA)

Unfortunately if you plot other types of feature you'll need to use
show.legend to tell ggplot2 what type of legend to use
nc_3857%$mid <- sf::st_centroid(nc_3857$geometry)
ggplot(nc_3857) +
geom_sf(colour = "white") +
geom_sf (aes(geometry = mid, size = AREA), show.legend = "point")

You can also use layers with x and y aesthetics. To have these interpreted
as longitude/latitude you need to set the default CRS in coord_sf()
ggplot(nc_3857) +

geom_sf() +

36 coord_cartesian

annotate("point”, x = -80, y = 35, colour = "red"”, size = 4) +
coord_sf(default_crs = sf::st_crs(4326))

To add labels, use geom_sf_label().
ggplot(nc_3857[1:3, 1) +
geom_sf(aes(fill = AREA)) +
geom_sf_label (aes(label = NAME))
3

Thanks to the power of sf, a geom_sf nicely handles varying projections
setting the aspect ratio correctly.

if (requireNamespace('maps', quietly = TRUE)) {

library(maps)

worldl <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))

ggplot() + geom_sf(data = world1l)

world2 <- sf::st_transform(

worldl,
"+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84 +no_defs"
)
ggplot() + geom_sf(data = world2)
}
coord_cartesian Cartesian coordinates
Description

The Cartesian coordinate system is the most familiar, and common, type of coordinate system. Set-
ting limits on the coordinate system will zoom the plot (like you’re looking at it with a magnifying
glass), and will not change the underlying data like setting limits on a scale will.

Usage
coord_cartesian(
xlim = NULL,
ylim = NULL,

expand = TRUE,
default = FALSE,

clip = "on"
)
Arguments
xlim, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that

data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

coord_cartesian

default

clip

Examples

T = H H hel

* H

o

37

Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f” means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

There are two ways of zooming the plot display: with scales or
with coordinate systems. They work in two rather different ways.

<- ggplot(mtcars, aes(disp, wt)) +

geom_point() +
geom_smooth()

Setting the limits on a scale converts all values outside the range to NA.
+ scale_x_continuous(limits = c(325, 500))

Setting the limits on the coordinate system performs a visual zoom.
The data is unchanged, and we just view a small portion of the original

plot. Note how

smooth continues past the points visible on this plot.

+ coord_cartesian(xlim = c(325, 500))

By default, the same expansion factor is applied as when setting scale
limits. You can set the limits precisely by setting expand = FALSE
+ coord_cartesian(xlim = c(325, 500), expand = FALSE)

Similarly, we can use expand = FALSE to turn off expansion with the
default limits
+ coord_cartesian(expand = FALSE)

You can see the same thing with this 2d histogram
<- ggplot(diamonds, aes(carat, price)) +
stat_bin_2d(bins = 25, colour = "white")

When zooming the scale, the we get 25 new bins that are the same
size on the plot, but represent smaller regions of the data space
+ scale_x_continuous(limits = c(@, 1))

When zooming the coordinate system, we see a subset of original 50 bins,
displayed bigger
+ coord_cartesian(xlim = c(@, 1))

38

coord_fixed

coord_fixed

Cartesian coordinates with fixed "aspect ratio"

Description

A fixed scale coordinate system forces a specified ratio between the physical representation of data
units on the axes. The ratio represents the number of units on the y-axis equivalent to one unit on
the x-axis. The default, ratio = 1, ensures that one unit on the x-axis is the same length as one unit
on the y-axis. Ratios higher than one make units on the y axis longer than units on the x-axis, and
vice versa. This is similar to MASS: :eqscplot (), but it works for all types of graphics.

Usage

coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

ratio
xlim, ylim

expand

clip

Examples

H+

T T T T T

aspect ratio, expressed as y / x
Limits for the x and y axes.

If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f” means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

ensures that the ranges of axes are equal to the specified ratio by
adjusting the plot aspect ratio

<-
+
+
+
+

ggplot(mtcars, aes(mpg, wt)) + geom_point()
coord_fixed(ratio = 1)

coord_fixed(ratio
coord_fixed(ratio = 1/5)
coord_fixed(xlim = c(15, 30))

5)

Resize the plot to see that the specified aspect ratio is maintained

coord_flip 39

coord_flip Cartesian coordinates with x and y flipped

Description

[Superseded]

This function is superseded because in many cases, coord_flip() can easily be replaced by swap-
ping the x and y aesthetics, or optionally setting the orientation argument in geom and stat layers.

coord_flip() is useful for geoms and statistics that do not support the orientation setting, and
converting the display of y conditional on x, to x conditional on y.

Usage

coord_flip(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments
x1lim, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.
clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f” means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.
Examples

The preferred method of creating horizontal instead of vertical boxplots
ggplot(diamonds, aes(price, cut)) +
geom_boxplot ()

Using ‘coord_flip()‘ to make the same plot
ggplot(diamonds, aes(cut, price)) +
geom_boxplot() +
coord_flip()

With swapped aesthetics, the y-scale controls the left axis
ggplot(diamonds, aes(y = carat)) +

geom_histogram() +

scale_y_reverse()

In “coord_flip()‘, the x-scale controls the left axis
ggplot(diamonds, aes(carat)) +

40 coord_map

geom_histogram() +
coord_flip() +
scale_x_reverse()

In line and area plots, swapped aesthetics require an explicit orientation
df <- data.frame(a = 1:5, b = (1:5) * 2)
ggplot(df, aes(b, a)) +

geom_area(orientation = "y")

The same plot with ‘coord_flip()*
ggplot(df, aes(a, b)) +

geom_area() +

coord_flip()

coord_map Map projections

Description

[Superseded]

coord_map() projects a portion of the earth, which is approximately spherical, onto a flat 2D plane
using any projection defined by the mapproj package. Map projections do not, in general, preserve
straight lines, so this requires considerable computation. coord_quickmap() is a quick approxima-
tion that does preserve straight lines. It works best for smaller areas closer to the equator.

Both coord_map() and coord_quickmap() are superseded by coord_sf (), and should no longer
be used in new code. All regular (non-sf) geoms can be used with coord_sf () by setting the default
coordinate system via the default_crs argument. See also the examples for annotation_map()
and geom_map().

Usage

coord_map(
projection = "mercator”,
parameters = NULL,
orientation = NULL,

xlim = NULL,

ylim = NULL,

clip = "on"
)

coord_quickmap(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

projection projection to use, see mapproj: :mapproject() for list

coord_map

., parameters

orientation

xlim, ylim

clip

expand

Details

41
Other arguments passed on to mapproj: :mapproject(). Use ... for named
parameters to the projection, and parameters for unnamed parameters. ... is

ignored if the parameters argument is present.

projection orientation, which defaults to c(9@, @, mean(range(x))). This is
not optimal for many projections, so you will have to supply your own. See
mapproj: :mapproject() for more information.

Manually specific x/y limits (in degrees of longitude/latitude)

Should drawing be clipped to the extent of the plot panel? A setting of "on”
(the default) means yes, and a setting of "of f" means no. For details, please see
coord_cartesian().

If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Map projections must account for the fact that the actual length (in km) of one degree of longitude
varies between the equator and the pole. Near the equator, the ratio between the lengths of one
degree of latitude and one degree of longitude is approximately 1. Near the pole, it tends towards
infinity because the length of one degree of longitude tends towards 0. For regions that span only a
few degrees and are not too close to the poles, setting the aspect ratio of the plot to the appropriate
lat/lon ratio approximates the usual mercator projection. This is what coord_quickmap() does, and
is much faster (particularly for complex plots like geom_tile()) at the expense of correctness.

Examples

if (require("maps”)) {

nz <- map_data(”"nz")

Prepare a map of NZ

nzmap <- ggplot(nz, aes(x = long, y = lat, group = group)) +
geom_polygon(fill = "white"”, colour = "black")

Plot it in cartesian coordinates

nzmap

}

if (require("maps”)) {
With correct mercator projection
nzmap + coord_map()

}

if (require("maps")) {
With the aspect ratio approximation
nzmap + coord_quickmap()

}

if (require("maps")) {
Other projections
nzmap + coord_map("azequalarea”, orientation = c(-36.92, 174.6, 0))

42

coord_map

if (require("maps”)) {

states <- map_data("”state")

usamap <- ggplot(states, aes(long, lat, group = group)) +
geom_polygon(fill = "white"”, colour = "black")

Use cartesian coordinates
usamap

}

if (require("maps”)) {
With mercator projection
usamap + coord_map()

}

if (require("maps")) {
See ?mapproject for coordinate systems and their parameters
usamap + coord_map("gilbert")

}

if (require("maps")) {

For most projections, you'll need to set the orientation yourself
as the automatic selection done by mapproject is not available to
ggplot

usamap + coord_map("orthographic”)

3

if (require("maps")) {
usamap + coord_map(”conic"”, lat@ = 30)

}

if (require("maps”)) {
usamap + coord_map("bonne”, lat@ = 50)

}

Not run:

if (require("maps”)) {

World map, using geom_path instead of geom_polygon

world <- map_data("world")

worldmap <- ggplot(world, aes(x = long, y = lat, group = group)) +
geom_path() +
scale_y_continuous(breaks
scale_x_continuous(breaks

(-2:2) * 30) +
(-4:4) x 45)

Orthographic projection with default orientation (looking down at North pole)
worldmap + coord_map("ortho”)

3

if (require("maps”)) {
Looking up up at South Pole
worldmap + coord_map("ortho”, orientation = c(-90, 0, 0))

}

coord_polar 43

if (require("maps")) {
Centered on New York (currently has issues with closing polygons)
worldmap + coord_map("ortho”, orientation = c(41, -74, 0))

}

End(Not run)

coord_polar Polar coordinates

Description

The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in
polar coordinates. coord_radial() has extended options.

Usage

coord_polar(theta = "x", start = @, direction = 1, clip = "on")

coord_radial(

theta = "x",
start = 0,
end = NULL,

expand = TRUE,
direction = 1,

clip = "off",
r_axis_inside = NULL,

rotate_angle = FALSE,
inner.radius = @
)
Arguments
theta variable to map angle to (x or y)
start Offset of starting point from 12 o’clock in radians. Offset is applied clockwise
or anticlockwise depending on value of direction.
direction 1, clockwise; -1, anticlockwise
clip Should drawing be clipped to the extent of the plot panel? A setting of "on”
(the default) means yes, and a setting of "of f” means no. For details, please see
coord_cartesian().
end Position from 12 o’clock in radians where plot ends, to allow for partial polar
coordinates. The default, NULL, is set to start + 2 * pi.
expand If TRUE, the default, adds a small expansion factor the the limits to prevent over-

lap between data and axes. If FALSE, limits are taken directly from the scale.

44 coord_polar

r_axis_inside If TRUE, places the radius axis inside the panel. If FALSE, places the radius axis
next to the panel. The default, NULL, places the radius axis outside if the start
and end arguments form a full circle.

rotate_angle If TRUE, transforms the angle aesthetic in data in accordance with the computed
theta position. If FALSE (default), no such transformation is performed. Can
be useful to rotate text geoms in alignment with the coordinates.

inner.radius A numeric between 0 and 1 setting the size of a inner.radius hole.

Note
In coord_radial(), position guides are can be defined by using guides(r= ..., theta=...,
r.sec=..., theta.sec=...). Note that these guides require r and theta as available aesthet-

ics. The classic guide_axis() can be used for the r positions and guide_axis_theta() can be
used for the theta positions. Using the theta. sec position is only sensible when inner.radius
> 0.

Examples

NOTE: Use these plots with caution - polar coordinates has

major perceptual problems. The main point of these examples is
to demonstrate how these common plots can be described in the

grammar. Use with EXTREME caution.

#' # A pie chart = stacked bar chart + polar coordinates

pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +
geom_bar(width = 1)

pie + coord_polar(theta = "y")

A coxcomb plot = bar chart + polar coordinates

cxc <- ggplot(mtcars, aes(x = factor(cyl))) +
geom_bar(width = 1, colour = "black")

cxc + coord_polar()

A new type of plot?

cxc + coord_polar(theta = "y")

The bullseye chart
pie + coord_polar()

Hadley's favourite pie chart
df <- data.frame(

variable = c("does not resemble”, "resembles”),
value = c(20, 80)

)

ggplot(df, aes(x = "", y = value, fill = variable)) +
geom_col(width = 1) +
scale_fill_manual(values = c("red”, "yellow")) +

coord_polar("y", start = pi / 3) +
labs(title = "Pac man")

coord_trans 45

Windrose + doughnut plot

if (require("ggplot2movies”)) {

movies$rrating <- cut_interval(movies$rating, length = 1)
movies$budgetq <- cut_number(movies$budget, 4)

doh <- ggplot(movies, aes(x = rrating, fill = budgetq))

Wind rose

doh + geom_bar(width = 1) + coord_polar()
Race track plot
doh + geom_bar(width
3

no,n

0.9, position = "fill") + coord_polar(theta = "y")

A partial polar plot
ggplot(mtcars, aes(disp, mpg)) +
geom_point() +

coord_radial(start = -0.4 x pi, end = 0.4 * pi, inner.radius = 0.3)
coord_trans Transformed Cartesian coordinate system
Description

coord_trans() is different to scale transformations in that it occurs after statistical transformation
and will affect the visual appearance of geoms - there is no guarantee that straight lines will continue
to be straight.

Usage

coord_trans(
x = "identity",
y = "identity",
xlim = NULL,
ylim = NULL,
limx = deprecated(),
limy = deprecated(),

clip = "on",
expand = TRUE
)
Arguments
X,y Transformers for x and y axes or their names.
xlim, ylim Limits for the x and y axes.

limx, limy [Deprecated] use x1im and ylim instead.

46 coord_trans

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "of f" means no. In most cases, the default
of "on" should not be changed, as setting clip = "of f" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via x1im and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.
Details

Transformations only work with continuous values: see scales::new_transform() for list of
transformations, and instructions on how to create your own.

Examples

See ?geom_boxplot for other examples

Three ways of doing transformation in ggplot:
= by transforming the data
ggplot(diamonds, aes(logl@(carat), logl@(price))) +
geom_point()
= by transforming the scales
ggplot(diamonds, aes(carat, price)) +
geom_point() +
scale_x_loglo() +
scale_y_logl10()
* by transforming the coordinate system:
ggplot(diamonds, aes(carat, price)) +
geom_point() +
coord_trans(x = "logl1@", y = "logl0")

The difference between transforming the scales and
transforming the coordinate system is that scale
transformation occurs BEFORE statistics, and coordinate
transformation afterwards. Coordinate transformation also
changes the shape of geoms:

% o

d <- subset(diamonds, carat > 0.5)

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m") +
scale_x_loglo() +
scale_y_logl10()

ggplot(d, aes(carat, price)) +
geom_point() +

cut_interval 47

geom_smooth(method = "1m") +
coord_trans(x = "logl1@", y = "logl@")

Here I used a subset of diamonds so that the smoothed line didn't
drop below zero, which obviously causes problems on the log-transformed
scale

With a combination of scale and coordinate transformation, it's
possible to do back-transformations:
ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m") +
scale_x_loglo() +
scale_y_loglo() +
coord_trans(x = scales::transform_exp(10), y = scales::transform_exp(10))

cf.

ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m")

Also works with discrete scales

set.seed(1)

df <- data.frame(a = abs(rnorm(26)),letters)
plot <- ggplot(df,aes(a,letters)) + geom_point()

plot + coord_trans(x = "logl10")

plot + coord_trans(x = "sqrt")
cut_interval Discretise numeric data into categorical
Description

cut_interval () makes n groups with equal range, cut_number () makes n groups with (approxi-
mately) equal numbers of observations; cut_width() makes groups of width width.

Usage

cut_interval(x, n = NULL, length = NULL, ...)

cut_number(x, n = NULL, ...)

cut_width(x, width, center = NULL, boundary = NULL, closed = "right", ...)
Arguments

X numeric vector

48

length

width

cut_interval

number of intervals to create, OR
length of each interval
Arguments passed on to base: :cut.default

breaks either a numeric vector of two or more unique cut points or a single
number (greater than or equal to 2) giving the number of intervals into
which x is to be cut.

labels labels for the levels of the resulting category. By default, labels are
constructed using "(a,b]"” interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

right logical, indicating if the intervals should be closed on the right (and open
on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the
number of digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?

The bin width.

center, boundary

closed

Author(s)

Specify either the position of edge or the center of a bin. Since all bins are
aligned, specifying the position of a single bin (which doesn’t need to be in the
range of the data) affects the location of all bins. If not specified, uses the "tile
layers algorithm", and sets the boundary to half of the binwidth.

To center on integers, width = 1 and center = @. boundary = 0. 5.

One of "right” or "left” indicating whether right or left edges of bins are
included in the bin.

Randall Prium contributed most of the implementation of cut_width().

Examples

table(cut_interval(1:100, 10))
table(cut_interval(1:100, 11))

set.seed(1)

table(cut_number(runif(1000), 10))

table(cut_width(runif(1000), 0.1))

table(cut_width(runif(1000), @.1, boundary
table(cut_width(runif(1000), 0.1, center =
table(cut_width(runif(1000), 0.1, labels =

0))
FALSE))

diamonds 49

diamonds Prices of over 50,000 round cut diamonds

Description

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are
as follows:

Usage

diamonds

Format

A data frame with 53940 rows and 10 variables:

price price in US dollars ($326-$18,823)

carat weight of the diamond (0.2-5.01)

cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color diamond colour, from D (best) to J (worst)

clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVSI1,
IF (best))

x length in mm (0-10.74)

y width in mm (0-58.9)

z depth in mm (0-31.8)

depth total depth percentage =z / mean(x,y) =2 *z/ (x +y) (43-79)
table width of top of diamond relative to widest point (43-95)

draw_key Key glyphs for legends

Description

Each geom has an associated function that draws the key when the geom needs to be displayed in
a legend. These functions are called draw_key_x*(), where * stands for the name of the respective
key glyph. The key glyphs can be customized for individual geoms by providing a geom with the
key_glyph argument (see layer () or examples below.)

50 draw_key

Usage
draw_key_point(data, params, size)
draw_key_abline(data, params, size)
draw_key_rect(data, params, size)
draw_key_polygon(data, params, size)
draw_key_blank(data, params, size)
draw_key_boxplot(data, params, size)
draw_key_crossbar(data, params, size)
draw_key_path(data, params, size)
draw_key_vpath(data, params, size)
draw_key_dotplot(data, params, size)
draw_key_linerange(data, params, size)
draw_key_pointrange(data, params, size)
draw_key_smooth(data, params, size)
draw_key_text(data, params, size)
draw_key_label(data, params, size)
draw_key_vline(data, params, size)

draw_key_timeseries(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key
params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Value

A grid grob.

Examples

p <- ggplot(economics, aes(date, psavert, color = "savings rate"”))

economics 51

key glyphs can be specified by their name
p + geom_line(key_glyph = "timeseries")

key glyphs can be specified via their drawing function
p + geom_line(key_glyph = draw_key_rect)

economics US economic time series

Description

This dataset was produced from US economic time series data available from https://fred.
stlouisfed.org/. economics is in "wide" format, economics_long is in "long" format.

Usage

economics

economics_long

Format

A data frame with 574 rows and 6 variables:

date Month of data collection

pce personal consumption expenditures, in billions of dollars, https://fred.stlouisfed.org/
series/PCE

pop total population, in thousands, https://fred.stlouisfed.org/series/POP
psavert personal savings rate, https://fred.stlouisfed.org/series/PSAVERT/

uempmed median duration of unemployment, in weeks, https://fred.stlouisfed.org/series/
UEMPMED

unemploy number of unemployed in thousands, https://fred.stlouisfed.org/series/UNEMPLOY

An object of class tb1_df (inherits from tb1l, data. frame) with 2870 rows and 4 columns.

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/POP
https://fred.stlouisfed.org/series/PSAVERT/
https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UNEMPLOY

52 element

element Theme elements

Description

In conjunction with the theme system, the element_ functions specify the display of how non-data
components of the plot are drawn.

* element_blank(): draws nothing, and assigns no space.
* element_rect(): borders and backgrounds.
e element_line(): lines.

e element_text(): text.

rel() is used to specify sizes relative to the parent, margin() is used to specify the margins of
elements.

Usage
element_blank()

element_rect(
fill = NULL,
colour = NULL,
linewidth = NULL,
linetype = NULL,
color = NULL,
inherit.blank = FALSE,
size = deprecated()

)

element_line(
colour = NULL,
linewidth = NULL,
linetype = NULL,
lineend = NULL,
color = NULL,
arrow = NULL,
inherit.blank = FALSE,
size = deprecated()

)

element_text(
family = NULL,

face = NULL,
colour = NULL,
size = NULL,

hjust = NULL,

element

vjust =
angle =
lineheight
color = NULL,
margin =
debug = NULL,
inherit.blank
)
rel(x)

margin(t = @, r

Arguments

fill

colour, color

linewidth
linetype

inherit.blank

size
lineend
arrow
family
face

hjust
vjust
angle
lineheight

margin

debug

t,r,b,1

unit

53

NULL,

NULL,
= FALSE
=0, b=0,1=0, unit = "pt")

Fill colour.
Line/border colour. Color is an alias for colour.
Line/border size in mm.

Line type. An integer (0:8), a name (blank, solid, dashed, dotted, dotdash, long-
dash, twodash), or a string with an even number (up to eight) of hexadecimal
digits which give the lengths in consecutive positions in the string.

Should this element inherit the existence of an element_blank among its par-
ents? If TRUE the existence of a blank element among its parents will cause this
element to be blank as well. If FALSE any blank parent element will be ignored
when calculating final element state.

text size in pts.

Line end Line end style (round, butt, square)
Arrow specification, as created by grid: :arrow()
Font family

Font face ("plain", "italic", "bold", "bold.italic")
Horizontal justification (in [0, 1])

Vertical justification (in [0, 1])

Angle (in [0, 360])

Line height

Margins around the text. See margin() for more details. When creating a
theme, the margins should be placed on the side of the text facing towards the
center of the plot.

If TRUE, aids visual debugging by drawing a solid rectangle behind the complete
text area, and a point where each label is anchored.

A single number specifying size relative to parent element.
Dimensions of each margin. (To remember order, think trouble).

Default units of dimensions. Defaults to "pt" so it can be most easily scaled with
the text.

54 expand_limits

Value

An S3 object of class element, rel, or margin.

Examples

plot <- ggplot(mpg, aes(displ, hwy)) + geom_point()

plot + theme(
panel.background = element_blank(),
axis.text = element_blank()

)

plot + theme(
axis.text = element_text(colour = "red”, size = rel(1.5))

)

plot + theme(
axis.line = element_line(arrow = arrow())

)

plot + theme(
panel.background = element_rect(fill = "white"),
plot.margin = margin(2, 2, 2, 2, "cm"),
plot.background = element_rect(
fill = "grey90",

colour = "black”,
linewidth = 1
)
)
expand_limits Expand the plot limits, using data
Description

Sometimes you may want to ensure limits include a single value, for all panels or all plots. This
function is a thin wrapper around geom_blank() that makes it easy to add such values.

Usage

expand_limits(...)

Arguments

named list of aesthetics specifying the value (or values) that should be included
in each scale.

expansion 55

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + expand_limits(x = @)

p + expand_limits(y = c(1, 9))

p + expand_limits(x = @, y = 0)

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = cyl)) +
expand_limits(colour = seq(2, 10, by = 2))

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl))) +
expand_limits(colour = factor(seq(2, 10, by = 2)))

expansion Generate expansion vector for scales

Description

This is a convenience function for generating scale expansion vectors for the expand argument of
scale_(xly)_continuous and scale_(xly)_discrete. The expansion vectors are used to add some space
between the data and the axes.

Usage

expansion(mult = @, add = 0)

expand_scale(mult = @, add = 0)

Arguments
mult vector of multiplicative range expansion factors. If length 1, both the lower and
upper limits of the scale are expanded outwards by mult. If length 2, the lower
limit is expanded by mult[1] and the upper limit by mult[2].
add vector of additive range expansion constants. If length 1, both the lower and
upper limits of the scale are expanded outwards by add units. If length 2, the
lower limit is expanded by add[1] and the upper limit by add[2].
Examples

No space below the bars but 10% above them
ggplot(mtcars) +
geom_bar(aes(x = factor(cyl))) +
scale_y_continuous(expand = expansion(mult = c(@, .1)))

Add 2 units of space on the left and right of the data
ggplot(subset(diamonds, carat > 2), aes(cut, clarity)) +
geom_jitter() +
scale_x_discrete(expand = expansion(add = 2))

56 facet_grid

Reproduce the default range expansion used

when the 'expand' argument is not specified

ggplot(subset(diamonds, carat > 2), aes(cut, price)) +
geom_jitter() +

scale_x_discrete(expand = expansion(add = .6)) +
scale_y_continuous(expand = expansion(mult = .05))
facet_grid Lay out panels in a grid
Description

facet_grid() forms a matrix of panels defined by row and column faceting variables. It is most
useful when you have two discrete variables, and all combinations of the variables exist in the data.
If you have only one variable with many levels, try facet_wrap().

Usage

facet_grid(
rows = NULL,
cols = NULL,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,
switch = NULL,

drop = TRUE,
margins = FALSE,
axes = "margins”,
axis.labels = "all”,
facets = deprecated()
)
Arguments
rows, cols A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, rows can also be a formula with the
rows (of the tabular display) on the LHS and the columns (of the tabular display)
on the RHS; the dot in the formula is used to indicate there should be no faceting
on this dimension (either row or column).
scales Are scales shared across all facets (the default, "fixed"), or do they vary across

rows ("free_x"), columns ("free_y"), or both rows and columns ("free")?

facet_grid

space

shrink

labeller

as.table

switch

drop

margins

axes

axis.labels

facets

Examples

57

If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free” both height and width will
vary. This setting has no effect unless the appropriate scales also vary.

If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

Determines which axes will be drawn. When "margins” (default), axes will be
drawn at the exterior margins. "all_x" and "all_y" will draw the respective
axes at the interior panels too, whereas "all” will draw all axes at all panels.

Determines whether to draw labels for interior axes when the axes argument
is not "margins”. When "all"” (default), all interior axes get labels. When
"margins”, only the exterior axes get labels and the interior axes get none.
When "all_x" or "all_y", only draws the labels at the interior axes in the
x- or y-direction respectively.

[Deprecated] Please use rows and cols instead.

p <- ggplot(mpg, aes(displ, cty)) + geom_point()

Use vars() to supply variables from the dataset:
p + facet_grid(rows = vars(drv))

p + facet_grid(cols = vars(cyl))

p + facet_grid(vars(drv), vars(cyl))

58

To change plot order of facet grid,
change the order of variable levels with factor()

If you combine a facetted dataset with a dataset that lacks those
faceting variables, the data will be repeated across the missing
combinations:
df <- data.frame(displ = mean(mpg$displ), cty = mean(mpg$cty))
p+

facet_grid(cols = vars(cyl)) +

geom_point(data = df, colour = "red", size = 2)

When scales are constant, duplicated axes can be shown with
or without labels
ggplot(mpg, aes(cty, hwy)) +

geom_point() +

facet_grid(year ~ drv, axes = "all", axis.labels = "all_x")

Free scales —-—-——————————— -

You can also choose whether the scales should be constant

across all panels (the default), or whether they should be allowed

to vary

mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) +
geom_point()

mt + facet_grid(vars(cyl), scales = "free")

If scales and space are free, then the mapping between position
and values in the data will be the same across all panels. This
is particularly useful for categorical axes
ggplot(mpg, aes(drv, model)) +
geom_point() +
facet_grid(manufacturer ~ ., scales = "free"”, space = "free") +
theme(strip.text.y = element_text(angle = 0))

Margins ——-——-—--——-mm oo

Margins can be specified logically (all yes or all no) or for specific
variables as (character) variable names

mg <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()

mg + facet_grid(vs + am ~ gear, margins = TRUE)

mg + facet_grid(vs + am ~ gear, margins = "am")

when margins are made over "vs", since the facets for "am” vary

within the values of "vs”
a margin over "am".

mg + facet_grid(vs + am ~ gear, margins = "vs")

n

, the marginal facet for "vs” is also

facet_wrap

facet_wrap Wrap a 1d ribbon of panels into 2d

facet_wrap 59

Description

facet_wrap() wraps a 1d sequence of panels into 2d. This is generally a better use of screen space
than facet_grid() because most displays are roughly rectangular.

Usage

facet_wrap(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,
switch = deprecated(),

drop = TRUE,
dir = "h",
strip.position = "top”,
axes = "margins”,
axis.labels = "all”
)
Arguments
facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
n b n) .
nrow, ncol Number of rows and columns.
scales Should scales be fixed ("fixed"”, the default), free ("free”), or free in one
dimension ("free_x", "free_y")?
shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.
labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.
as.table If TRUE, the default, the facets are laid out like a table with highest values at the

bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

60 facet_wrap

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
=c("top”, "bottom”, "left”, "right”)

axes Determines which axes will be drawn in case of fixed scales. When "margins”
(default), axes will be drawn at the exterior margins. "all_x" and "all_y" will
draw the respective axes at the interior panels too, whereas "all"” will draw all
axes at all panels.

axis.labels Determines whether to draw labels for interior axes when the scale is fixed and
the axis argument is not "margins”. When "all” (default), all interior axes
get labels. When "margins”, only the exterior axes get labels, and the interior
axes get none. When "all_x" or "all_y", only draws the labels at the interior
axes in the x- or y-direction respectively.

Examples

p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

Use vars() to supply faceting variables:
p + facet_wrap(vars(class))

Control the number of rows and columns with nrow and ncol
p + facet_wrap(vars(class), nrow = 4)

You can facet by multiple variables
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(vars(cyl, drv))

Use the ‘labeller® option to control how labels are printed:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(vars(cyl, drv), labeller = "label_both")

To change the order in which the panels appear, change the levels
of the underlying factor.
mpg$class2 <- reorder(mpg$class, mpg$displ)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(vars(class2))

By default, the same scales are used for all panels. You can allow
scales to vary across the panels with the ‘scales‘ argument.

faithfuld

Free scales make it easier to see patterns within each panel, but
harder to compare across panels.
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(vars(class), scales = "free")

When scales are constant, duplicated axes can be shown with
or without labels
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(vars(class), axes = "all", axis.labels = "all_y")

To repeat the same data in every panel, simply construct a data frame
that does not contain the faceting variable.
ggplot(mpg, aes(displ, hwy)) +
geom_point(data = transform(mpg, class = NULL), colour = "grey85") +
geom_point() +
facet_wrap(vars(class))

Use ‘strip.position® to display the facet labels at the side of your
choice. Setting it to ‘bottom" makes it act as a subtitle for the axis.
This is typically used with free scales and a theme without boxes around
strip labels.

ggplot(economics_long, aes(date, value)) +

geom_line() +

facet_wrap(vars(variable), scales = "free_y", nrow = 2, strip.position =
theme(strip.background = element_blank(), strip.placement = "outside")

#
#
#
#

"top") +

61

faithfuld 2d density estimate of Old Faithful data

Description

A 2d density estimate of the waiting and eruptions variables data faithful.

Usage
faithfuld

Format
A data frame with 5,625 observations and 3 variables:

eruptions Eruption time in mins
waiting Waiting time to next eruption in mins

density 2d density estimate

62 geom_abline

fortify Fortify a model with data.

Description

Rather than using this function, I now recommend using the broom package, which implements a
much wider range of methods. fortify() may be deprecated in the future.

Usage
fortify(model, data, ...)
Arguments
model model or other R object to convert to data frame
data original dataset, if needed
other arguments passed to methods
See Also

fortify.1Im()

geom_abline Reference lines: horizontal, vertical, and diagonal

Description
These geoms add reference lines (sometimes called rules) to a plot, either horizontal, vertical, or
diagonal (specified by slope and intercept). These are useful for annotating plots.

Usage

geom_abline(
mapping = NULL,

data = NULL,
slope,
intercept,

na.rm = FALSE,
show.legend = NA
)

geom_hline(
mapping = NULL,
data = NULL,

geom_abline

L

yintercept,

63

na.rm = FALSE,
show.legend = NA

)

geom_vline(

mapping = NULL,

data = NULL,

L

xintercept,

na.rm = FALSE,
show.legend = NA

Arguments

mapping
data

na.rm

show. legend

Set of aesthetic mappings created by aes().

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red"” or size = 3. They may also
be parameters to the paired geom/stat.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

xintercept, yintercept, slope, intercept

Details

Parameters that control the position of the line. If these are set, data, mapping
and show. legend are overridden.

These geoms act slightly differently from other geoms. You can supply the parameters in two
ways: either as arguments to the layer function, or via aesthetics. If you use arguments, e.g.
geom_abline(intercept =@, slope = 1), then behind the scenes the geom makes a new data
frame containing just the data you’ve supplied. That means that the lines will be the same in all
facets; if you want them to vary across facets, construct the data frame yourself and use aesthetics.

64 geom_abline

Unlike most other geoms, these geoms do not inherit aesthetics from the plot default, because they
do not understand x and y aesthetics which are commonly set in the plot. They also do not affect
the x and y scales.

Aesthetics

These geoms are drawn using geom_line() so they support the same aesthetics: alpha, colour,
linetype and linewidth. They also each have aesthetics that control the position of the line:

e geom_vline(): xintercept
e geom_hline(): yintercept

e geom_abline(): slope and intercept

See Also

See geom_segment () for a more general approach to adding straight line segments to a plot.

Examples

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

Fixed values

+ geom_vline(xintercept = 5)

+ geom_vline(xintercept = 1:5)
+ geom_hline(yintercept = 20)

T T T #H

geom_abline() # Can't see it - outside the range of the data
geom_abline(intercept = 20)

T ©
+ o+

Calculate slope and intercept of line of best fit
coef(Im(mpg ~ wt, data = mtcars))

p + geom_abline(intercept = 37, slope = -5)

But this is easier to do with geom_smooth:

p + geom_smooth(method = "1m", se = FALSE)

To show different lines in different facets, use aesthetics
p <- ggplot(mtcars, aes(mpg, wt)) +

geom_point() +

facet_wrap(~ cyl)

mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
p + geom_hline(aes(yintercept = wt), mean_wt)

You can also control other aesthetics

ggplot(mtcars, aes(mpg, wt, colour = wt)) +
geom_point() +
geom_hline(aes(yintercept = wt, colour = wt), mean_wt) +
facet_wrap(~ cyl)

geom_bar

65

geom_bar

Bar charts

Description

There are two types of bar charts: geom_bar () and geom_col(). geom_bar () makes the height of
the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied,
the sum of the weights). If you want the heights of the bars to represent values in the data, use
geom_col () instead. geom_bar () uses stat_count() by default: it counts the number of cases at
each x position. geom_col () uses stat_identity(): it leaves the data as is.

Usage
geom_bar(

mapping = NULL,
data = NULL,
stat = "count”,
position = "stack”,
just = 0.5,
width = NULL,

)

na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

geom_col(

)

mapping = NULL,
data = NULL,
position = "stack",

just = 0.5,

width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_count(

mapping = NULL,

data = NULL,
geom = "bar”,
position = "stack”,
width = NULL,

na.rm FALSE,

66

orientation
show. legend
inherit.aes

Arguments

mapping

data

position

just

width

na.rm

orientation

show. legend

inherit.aes

geom, stat

geom_bar

NA,
NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

Adjustment for column placement. Set to 0.5 by default, meaning that columns
will be centered about axis breaks. Set to @ or 1 to place columns to the left/right
of axis breaks. Note that this argument may have unintended behaviour when
used with alternative positions, e.g. position_dodge().

Bar width. By default, set to 90% of the resolution() of the data.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be

given explicitly by setting orientation to either "x"” or "y". See the Orienta-
tion section for more detail.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Override the default connection between geom_bar () and stat_count().

geom_bar 67

Details

A bar chart uses height to represent a value, and so the base of the bar must always be shown
to produce a valid visual comparison. Proceed with caution when using transformed scales with
a bar chart. It’s important to always use a meaningful reference point for the base of the bar.
For example, for log transformations the reference point is 1. In fact, when using a log scale,
geom_bar () automatically places the base of the bar at 1. Furthermore, never use stacked bars with
a transformed scale, because scaling happens before stacking. As a consequence, the height of bars
will be wrong when stacking occurs with a transformed scale.

By default, multiple bars occupying the same x position will be stacked atop one another by
position_stack(). If you want them to be dodged side-to-side, use position_dodge() or position_dodge2().
Finally, position_fill() shows relative proportions at each x by stacking the bars and then stan-

dardising each bar to have the same height.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics
geom_bar () understands the following aesthetics (required aesthetics are in bold):
* X
*y
* alpha
* colour
e fill
e group
e linetype

e linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs”).
geom_col () understands the following aesthetics (required aesthetics are in bold):
* X
Yy
e alpha
e colour
e fill

e group

68 geom_bar

e linetype

e linewidth

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

stat_count() understands the following aesthetics (required aesthetics are in bold):

e Xxory
e group

* weight

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables
These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

e after_stat(count)
number of points in bin.

e after_stat(prop)
groupwise proportion

See Also

geom_histogram() for continuous data, position_dodge () and position_dodge2() for creating
side-by-side bar charts.

stat_bin(), which bins data in ranges and counts the cases in each range. It differs from stat_count(),
which counts the number of cases at each x position (without binning into ranges). stat_bin() re-
quires continuous x data, whereas stat_count() can be used for both discrete and continuous x
data.

Examples

geom_bar is designed to make it easy to create bar charts that show
counts (or sums of weights)

<- ggplot(mpg, aes(class))

Number of cars in each class:

+ geom_bar ()

Total engine displacement of each class

+ geom_bar(aes(weight = displ))

Map class to y instead to flip the orientation

ggplot(mpg) + geom_bar(aes(y = class))

09 00 ** 09 T o

Bar charts are automatically stacked when multiple bars are placed
at the same location. The order of the fill is designed to match
the legend

g + geom_bar(aes(fill = drv))

If you need to flip the order (because you've flipped the orientation)
call position_stack() explicitly:
ggplot(mpg, aes(y = class)) +

geom_bin_2d 69

geom_bar(aes(fill = drv), position = position_stack(reverse = TRUE)) +
theme(legend.position = "top”)

To show (e.g.) means, you need geom_col()
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(trt, outcome)) +

geom_col()
But geom_point() displays exactly the same information and doesn't
require the y-axis to touch zero.
ggplot(df, aes(trt, outcome)) +

geom_point()

You can also use geom_bar() with continuous data, in which case
it will show counts at unique locations

df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
ggplot(df, aes(x)) + geom_bar()

cf. a histogram of the same data

ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)

Use ‘just' to control how columns are aligned with axis breaks:

df <- data.frame(x = as.Date(c("2020-01-01", "2020-02-01")), y = 1:2)
Columns centered on the first day of the month

ggplot(df, aes(x, y)) + geom_col(just = 0.5)

Columns begin on the first day of the month

ggplot(df, aes(x, y)) + geom_col(just = 1)

geom_bin_2d Heatmap of 2d bin counts

Description

Divides the plane into rectangles, counts the number of cases in each rectangle, and then (by default)
maps the number of cases to the rectangle’s fill. This is a useful alternative to geom_point() in the
presence of overplotting.

Usage

geom_bin_2d(
mapping = NULL,

data = NULL,
stat = "bin2d",
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_bin_2d(

70 geom_bin_2d

mapping = NULL,

data = NULL,

geom = "tile”,
position = "identity"”,
bins = 30,

binwidth = NULL,

drop = TRUE,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red"” or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_bin_2d() and stat_bin_2d().
bins numeric vector giving number of bins in both vertical and horizontal directions.

Set to 30 by default.
binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-

rides bins if both set.

drop if TRUE removes all cells with O counts.

geom_bin_2d
Aesthetics
stat_bin_2d() understands the following aesthetics (required aesthetics are in bold):

° X
*y

e fill
e group

* weight

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

» after_stat(count)
number of points in bin.

e after_stat(density)
density of points in bin, scaled to integrate to 1.

e after_stat(ncount)
count, scaled to maximum of 1.

e after_stat(ndensity)
density, scaled to a maximum of 1.

See Also

stat_bin_hex() for hexagonal binning

Examples

d <- ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10)
d + geom_bin_2d()

You can control the size of the bins by specifying the number of
bins in each direction:

d + geom_bin_2d(bins = 10)

d + geom_bin_2d(bins = 30)

Or by specifying the width of the bins
d + geom_bin_2d(binwidth = c(0.1, 0.1))

71

72

geom_blank

geom_blank

Draw nothing

Description

The blank geom draws nothing, but can be a useful way of ensuring common scales between differ-
ent plots. See expand_limits() for more details.

Usage
geom_blank(

mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity"”,

L

show.legend =

inherit.aes

Arguments

mapping

data

stat

position

show. legend

NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count” rather than "stat_count")

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

geom_boxplot 73

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Examples

ggplot(mtcars, aes(wt, mpg))
Nothing to see here!

geom_boxplot A box and whiskers plot (in the style of Tukey)

Description

The boxplot compactly displays the distribution of a continuous variable. It visualises five summary
statistics (the median, two hinges and two whiskers), and all "outlying" points individually.

Usage

geom_boxplot (
mapping = NULL,
data = NULL,
stat = "boxplot”,
position = "dodge2”,
outliers = TRUE,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
staplewidth = 0,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_boxplot(
mapping = NULL,
data = NULL,
geom = "boxplot”,

74

geom_boxplot

position = "dodge2"”,

coef = 1.5,

na.rm = FALSE,
orientation = NA,

show. legend
inherit.aes

Arguments

mapping

data

position

outliers

outlier.colour,

notch

notchwidth

staplewidth

NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

Whether to display (TRUE) or discard (FALSE) outliers from the plot. Hiding or
discarding outliers can be useful when, for example, raw data points need to be
displayed on top of the boxplot. By discarding outliers, the axis limits will adapt
to the box and whiskers only, not the full data range. If outliers need to be hidden
and the axes needs to show the full data range, please use outlier.shape = NA
instead.

outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.
Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for
the box.

In the unlikely event you specify both US and UK spellings of colour, the US
spelling will take precedence.

If FALSE (default) make a standard box plot. If TRUE, make a notched box plot.
Notches are used to compare groups; if the notches of two boxes do not overlap,
this suggests that the medians are significantly different.

For a notched box plot, width of the notch relative to the body (defaults to
notchwidth =0.5).

The relative width of staples to the width of the box. Staples mark the ends of
the whiskers with a line.

stroke, outlier.alph

geom_boxplot 75

varwidth If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with
widths proportional to the square-roots of the number of observations in the
groups (possibly weighted, using the weight aesthetic).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be

given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_boxplot () and stat_boxplot().
coef Length of the whiskers as multiple of IQR. Defaults to 1.5.
Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y"”. The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Summary statistics

The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).
This differs slightly from the method used by the boxplot() function, and may be apparent with
small samples. See boxplot.stats() for more information on how hinge positions are calculated
for boxplot().

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the
hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data
beyond the end of the whiskers are called "outlying" points and are plotted individually.

In a notched box plot, the notches extend 1.58 x IQR / sqrt(n). This gives a roughly 95% confi-
dence interval for comparing medians. See McGill et al. (1978) for more details.

Aesthetics
geom_boxplot () understands the following aesthetics (required aesthetics are in bold):

e xXory

e lower or xlower

76

geom_boxplot

upper or xupper
middle or xmiddle
ymin or xmin
ymax or xmax
alpha

colour

fill

group

linetype
linewidth

shape

size

weight

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.
stat_boxplot() provides the following variables, some of which depend on the orientation:

after_stat(width)
width of boxplot.

after_stat(ymin) or after_stat(xmin)
lower whisker = smallest observation greater than or equal to lower hinger - 1.5 * IQR.

after_stat(lower) or after_stat(xlower)
lower hinge, 25% quantile.

after_stat(notchlower)
lower edge of notch = median - 1.58 * IQR / sqrt(n).

after_stat(middle) or after_stat(xmiddle)
median, 50% quantile.

after_stat(notchupper)
upper edge of notch = median + 1.58 * IQR / sqrt(n).

after_stat(upper) or after_stat(xupper)
upper hinge, 75% quantile.

after_stat(ymax) or after_stat(xmax)
upper whisker = largest observation less than or equal to upper hinger + 1.5 * IQR.

References

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12-16.

geom_boxplot 77

See Also

geom_quantile() for continuous x, geom_violin() for a richer display of the distribution, and
geom_jitter () for a useful technique for small data.

Examples

p <- ggplot(mpg, aes(class, hwy))

p + geom_boxplot()

Orientation follows the discrete axis
ggplot(mpg, aes(hwy, class)) + geom_boxplot()

+ geom_boxplot(notch = TRUE)

+ geom_boxplot(varwidth = TRUE)

+ geom_boxplot(fill = "white", colour = "#3366FF")

By default, outlier points match the colour of the box. Use
outlier.colour to override

+ geom_boxplot(outlier.colour = "red”, outlier.shape = 1)

Remove outliers when overlaying boxplot with original data points
+ geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)

T % T % % T T T

H+

Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot(aes(colour = drv))

You can also use boxplots with continuous x, as long as you supply
a grouping variable. cut_width is particularly useful
ggplot(diamonds, aes(carat, price)) +
geom_boxplot ()
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)))
Adjust the transparency of outliers using outlier.alpha
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)

It's possible to draw a boxplot with your own computations if you
use stat = "identity":

set.seed(1)

y <= rnorm(100)

df <- data.frame(

x =1,
yo = min(y),
y25 = quantile(y, 0.25),

y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)
)
ggplot(df, aes(x)) +
geom_boxplot(
aes(ymin = y@, lower = y25, middle = y50@, upper = y75, ymax = y100),
stat = "identity"
)

78 geom_contour

geom_contour 2D contours of a 3D surface

Description

ggplot2 can not draw true 3D surfaces, but you can use geom_contour (), geom_contour_filled(),
and geom_tile() to visualise 3D surfaces in 2D.

These functions require regular data, where the x and y coordinates form an equally spaced grid, and
each combination of x and y appears once. Missing values of z are allowed, but contouring will only
work for grid points where all four corners are non-missing. If you have irregular data, you’ll need
to first interpolate on to a grid before visualising, using interp: :interp(), akima: :bilinear(),
or similar.

Usage

geom_contour (
mapping = NULL,

data = NULL,

stat = "contour”,
position = "identity",
bins = NULL,

binwidth = NULL,
breaks = NULL,
lineend = "butt”,
linejoin = "round”,
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)

geom_contour_filled(
mapping = NULL,

data = NULL,

stat = "contour_filled",
position = "identity",
bins = NULL,

binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_contour

stat_contour(
mapping = NULL,

data = NULL,

geom = "contour",
position = "identity"”,
bins = NULL,

binwidth = NULL,

breaks = NULL,

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE
)

stat_contour_filled(
mapping = NULL,

data = NULL,

geom = "contour_filled”,
position = "identity",
bins = NULL,

binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

79

Arguments

mapping

data

stat

position

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count” rather than "stat_count”)

Position adjustment, either as a string naming the adjustment (e.g. "jitter” to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

80

bins
binwidth

breaks

lineend
linejoin
linemitre

na.rm

show. legend

inherit.aes

geom

Aesthetics

geom_contour

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

Number of contour bins. Overridden by breaks.
The width of the contour bins. Overridden by bins.
One of:

¢ Numeric vector to set the contour breaks

* A function that takes the range of the data and binwidth as input and re-
turns breaks as output. A function can be created from a formula (e.g. ~
fullseq(.x, .y)).

Overrides binwidth and bins. By default, this is a vector of length ten with
pretty() breaks.

Line end style (round, butt, square).
Line join style (round, mitre, bevel).
Line mitre limit (number greater than 1).

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

The geometric object to use to display the data, either as a ggproto Geom sub-
class or as a string naming the geom stripped of the geom_ prefix (e.g. "point”
rather than "geom_point")

geom_contour () understands the following aesthetics (required aesthetics are in bold):

* X
Yy

* alpha

* colour

* group

e linetype
e linewidth

* weight

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

geom_contour_filled() understands the following aesthetics (required aesthetics are in bold):

* X

geom_contour 81

y

alpha
colour
fill
group
linetype
linewidth

subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

stat_contour() understands the following aesthetics (required aesthetics are in bold):

X
y
z
group

order

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

stat_contour_filled() understands the following aesthetics (required aesthetics are in bold):

X
y

z
fill
group
order

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation. The
computed variables differ somewhat for contour lines (computed by stat_contour()) and con-
tour bands (filled contours, computed by stat_contour_filled()). The variables nlevel and
piece are available for both, whereas level_low, level_high, and level_mid are only available
for bands. The variable level is a numeric or a factor depending on whether lines or bands are
calculated.

after_stat(level)

Height of contour. For contour lines, this is a numeric vector that represents bin boundaries.
For contour bands, this is an ordered factor that represents bin ranges.

after_stat(level_low), after_stat(level_high), after_stat(level_mid)
(contour bands only) Lower and upper bin boundaries for each band, as well as the mid point

between boundaries.

82 geom_count

e after_stat(nlevel)
Height of contour, scaled to a maximum of 1.

e after_stat(piece)
Contour piece (an integer).

Dropped variables

z After contouring, the z values of individual data points are no longer available.

See Also

geom_density_2d(): 2d density contours

Examples

Basic plot
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour()

Or compute from raw data
ggplot(faithful, aes(waiting, eruptions)) +
geom_density_2d()

use geom_contour_filled() for filled contours
v + geom_contour_filled()

Setting bins creates evenly spaced contours in the range of the data
v + geom_contour(bins = 3)
v + geom_contour(bins = 5)

Setting binwidth does the same thing, parameterised by the distance
between contours

v + geom_contour (binwidth = 0.01)

v + geom_contour(binwidth = 0.001)

Other parameters

v + geom_contour(aes(colour = after_stat(level)))

v + geom_contour(colour = "red")

v + geom_raster(aes(fill = density)) +
geom_contour(colour = "white")

geom_count Count overlapping points

Description

This is a variant geom_point () that counts the number of observations at each location, then maps
the count to point area. It useful when you have discrete data and overplotting.

geom_count

Usage

geom_count (
mapping = NULL,

data = NULL,
stat = "sum”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_sum(
mapping = NULL,
data = NULL,
geom = "point”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,

83

inherit.aes

Arguments

mapping

data

position

na.rm

TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

84

show. legend

inherit.aes

geom, stat

Aesthetics

geom_count

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Use to override the default connection between geom_count () and stat_sum().

geom_point () understands the following aesthetics (required aesthetics are in bold):

* X
°y

* alpha
* colour
e fill

* group
¢ shape
* size

e stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs”).

Computed variables

These are calculated by the ’stat’ part of layers and can be accessed with delayed evaluation.

e after_stat(n)
Number of observations at position.

» after_stat(prop)
Percent of points in that panel at that position.

See Also

For continuous x and y, use geom_bin_2d().

Examples

ggplot(mpg, aes(cty, hwy)) +

geom_point()

ggplot(mpg, aes(cty, hwy)) +

geom_count ()

Best used in conjunction with scale_size_area which ensures that
counts of zero would be given size 0. Doesn't make much different
here because the smallest count is already close to 0.

geom_crossbar

ggplot(mpg, aes(cty, hwy)) +

Q H ¥ O O H oH oE

H+

geom_count() +
scale_size_area()

Display proportions instead of counts ------------------——-—————
By default, all categorical variables in the plot form the groups.
Specifying geom_count without a group identifier leads to a plot which is
not useful:

<- ggplot(diamonds, aes(x = cut, y = clarity))

+ geom_count(aes(size = after_stat(prop)))

To correct this problem and achieve a more desirable plot, we need

to specify which group the proportion is to be calculated over.

+ geom_count(aes(size = after_stat(prop), group = 1)) +
scale_size_area(max_size = 10)

Or group by x/y variables to have rows/columns sum to 1.

+ geom_count(aes(size = after_stat(prop), group = cut)) +
scale_size_area(max_size = 10)

+ geom_count(aes(size = after_stat(prop), group = clarity)) +
scale_size_area(max_size = 10)

85

geom_crossbar Vertical intervals: lines, crossbars & errorbars

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a
single graphical object.

Usage

geom_crossbar(

mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity"”,
fatten = 2.5,

na.rm = FALSE,
orientation = NA,

show.legend = NA,
inherit.aes = TRUE

geom_errorbar(

mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity"”,

86

na.rm FALSE
orientation
show. legend
inherit.aes

)

geom_linerange(

geom_crossbar

’

NA,
NA,
TRUE

mapping = NULL,

data = NULL,

stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_pointrange(
mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity",
fatten = 4,

na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

stat

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.

geom_crossbar 87

"count” rather than "stat_count”)

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red"” or size = 3. They may also
be parameters to the paired geom/stat.

fatten A multiplicative factor used to increase the size of the middle bar in geom_crossbar ()
and the middle point in geom_pointrange().

na.rm If FALSE, the default, missing values are removed wit