Tutorial and Manual for Geostatistical Analyses with

the R package georob

Andreas Papritz
June 4, 2021

Contents

Summary

Introduction

2.1 Model
2.2 Estimation
2.3 Prediction
2.4 Functionality

Model-based Gaussian analysis of zinc, data set meuse

3.1 Exploratory analysiso

3.2 Fitting a spatial linear model by Gaussian (RE)ML

3.3 Computing Kriging predictions
3.3.1 Lognormal point Kriging
3.3.2 Lognormal block Kriging

Robust analysis of coalash data

4.1 Exploratory analysis

4.2 Fitting a spatial linear model robust REML

4.3 Computing robust Kriging predictions
4.3.1 Point Kriging oo
4.3.2 Block Krigingo

Details about parameter estimation
5.1 Implemented variogram models
5.2 Estimating parameters of power function variogram
5.3 Estimating parameters of geometrically anisotropic variograms
5.4 Estimating variance of micro-scale variation
5.5 Estimating variance parameters by Gaussian (RE)ML
5.6 Constraining estimates of variogram parameters
5.7 Computing robust initial estimates of parameters for robust REML
5.8 Estimating parameters of “nested” variogram models
5.9 Controlling georob() by the function control.georob()
5.9.1 Gaussian (RE)ML estimation
5.9.2 Robust REML estimation

13
20
20
22

27
27
33
44
44
46

5.9.3 Approximation of covariances of fixed and random effects and residuals 54

5.9.4 Transformations of variogram parameters for (RE)ML estimation . 55
5.9.5 Miscellaneous arguments of control.georob() 55
5.10 Parallelized computations oL 56
Details about Kriging 58
6.1 Functionality of predict.georob() o8
6.1.1 Prediction targetso 58
6.1.2 Further control oo 58
6.1.3 Block Krigingo 60
6.1.4 Parallelized computations 60
6.2 Lognormal Kriging 60

6.2.1 Back-transformation of point Kriging predictions of a log-
transformed response 61

6.2.2 Back-transformation of block Kriging predictions of a log-
transformed response 61

6.2.3 Back-transformation and averaging of point Kriging predictions of
a log-transformed responseo oL 62
Building models and assessing fitted models 64
7.1 Model building 64
7.2 Assessing fitted models oo 65
7.2.1 Model diagnostics Lo 65
7.2.2 Log-likelihood profiles 0oL 65
7.3 Cross-validation Lo 66
7.3.1 Computing cross-validation predictions 66
7.3.2 Criteria for assessing (cross-)validation prediction errors 67

1 Summary

georob is a package for model-based Gaussian and robust analyses of geostatistical data.
The software of the package performs two main tasks:

o [t fits a linear model with spatially correlated errors to geostatistical data that are
possibly contaminated by outliers. The coefficients of the linear model (so-called
external-drift) and the parameters of the variogram model are estimated by robust
or Gaussian (restricted) maximum likelihood ([RE]ML).

e It computes from a fitted model object customary and robust external drift point
and block Kriging predictions.

Kiinsch et al. (2011) and Kiinsch et al. (in prep.) explain the theoretical foundations of
the robust approach, and Diggle and Ribeiro (2007) is a good reference for model-based
Gaussian geostatistical analyses.

This document provides a practical introduction to model-based Gaussian and robust
analyses of geostatistical data. It contains a short summary of the modelling approach,
illustrates the use of the software with two examples and explains in some depth selected
aspects of (i) (robust) parameter estimation (ii) computing predictions by (robust) Kriging
and (iii) model building.

2 Introduction
This section presents briefly

e the modelling assumptions and model parametrization,

e sketches how model parameters are estimated robustly and how robust Kriging
predictions are computed, and

e summarizes the main functionality of the package.

Further information on selected aspects can be found in sections 5 and 6.

2.1 Model
We use the following model for the data y; = y(s;):

Y(S,) = Z(SZ) +é& = a:(sz) ﬁ + B(Sz) + &4, (1)

where s; denotes a data location, Z(s;) = x(s;)T 3+ B(s;) is the so-called signal, z(s;)T3
is the external drift, {B(s)} is an unobserved stationary or intrinsic Gaussian random
field with zero mean, and ¢; is an i.i.d error from a possibly long-tailed distribution with
scale parameter 7 (72 is usually called nugget effect). In vector form the model is written
as

Y = X3+ B +e¢, (2)

where X is the model matrix with the rows z(s;)".

The (generalized) covariance matrix of the vector of spatial Gaussian random effects B
is denoted by

EBB'=Ty=01+0Va=05Vae=05(1-T+EV,), (3)

2 is the variance of seemingly uncorrelated micro-scale variation in B(s) that

cannot be resolved with the chosen sampling design, o2 is the variance of the captured
auto-correlated variation in B(s), 02 = 02 + 0 is the signal variance, and £ = 0%/0%. To
estimate both o2 and 72 (and not only their sum), one needs replicated measurements for
some of the s;.

We define V', to be the matrix with elements

(V)i =70 = 7(1A (i = 55)]), (4)

where the constant -y, is chosen large enough so that V', is positive definite, (-) is a valid
stationary or intrinsic variogram, and A is a matrix that is used to model geometrically
anisotropic auto-correlation (see section 5.3).

where o

Two remarks are in order:

1. Clearly, the (generalized) covariance matrix of the observations Y is given by

Cov[Y, Y] = 721 + Ty. (5)

2. Depending on the context, the term “variogram parameters” denotes sometimes all
parameters of a geometrically anisotropic variogram model, but in places only the
parameters of an isotropic variogram model, i.e. o2 ...,q,... and fi,...,(are
denoted by the term “anisotropy parameters”. In the sequel 0 is used to denote all

variogram and anisotropy parameters except the nugget effect 72.

2.2 Estimation

The unobserved spatial random effects B at the data locations s; and the model pa-

rameters 3, 72 and 8 = (62,02, q, ..., f1, f2,w, ¢, () are unknown and are estimated in
georob either by Gaussian or robust restricted maximum likelihood (REML) or Gaussian
maximum likelihood (ML). Here ... denote further parameters of the variogram such as

the smoothness parameter of the Whittle-Matérn model.

In brief, the robust REML method is based on the insight that for given 8 and 72 the Krig-
ing predictions (= BLUP) of B and the generalized least squares (GLS = ML) estimates
of B can be obtained simultaneously by maximizing

-y (yz —x(s:)"8 — B(Sz‘)>2 _ B'T;'B

- T
%

with respect to B and 3, e.g. Harville (1977).
Hence, the BLUP of B, ML estimates of 3, @ and 72 are obtained by maximizing

“log(det(r*T + Tp)) — 3 (y" —2(s)'8 ~ Bls)) _B'T;'B (6)

p T

jointly with respect to B, 3, 8 and 72 or by solving the respective estimating equations.
The estimating equations can then by robustified by

4

e replacing the standardized errors, say ¢;/7, by a bounded or re-descending -
function, .(;/7), of them (e.g. Maronna et al., 2006, chap. 2) and by

e introducing suitable bias correction terms for Fisher consistency at the Gaussian
model,

see Kiinsch et al. (2011) for details. The robustified estimating equations are solved
numerically by a combination of iterated re-weighted least squares (IRWLS) to estimate
B and 3 for given 8 and 72 and non-linear root finding by the function nleqslv() of
the R package nlegslv to get @ and 72. The robustness of the procedure is controlled
by the tuning parameter ¢ of the 1).-function. For ¢ > 1000 the algorithm computes
Gaussian (RE)ML estimates and customary plug-in Kriging predictions. Instead of solving
the Gaussian (RE)ML estimating equations, our software then maximizes the Gaussian
(restricted) log-likelihood using nlminb() or optim().

georob uses variogram models implemented in the R package RandomFields (see
RMmodel()). For most variogram parameters, closed-form expressions of 0v/00;
are used in the computations. However, for the parameter v of the models
"RMbessel", "RMmatern" and "RMwhittle" 0v/0v is evaluated numerically by the func-
tion numericDeriv (), and this results in an increase in computing time when v is esti-
mated.

2.3 Prediction

Robust plug-in external drift point Kriging predictions can be computed for an unsampled
location sy from the covariates @(sg), the estimated parameters 3, 6 and the predicted
random effects B by

~

Y (s0) = Z(s0) = @(s0)"B + 7;5(80)1“;}1/3, (7)

where T'; is the estimated (generalized) covariance matrix of B and ~4(s) is the vector
with the estimated (generalized) covariances between B and B(sg). Kriging variances can
be computed as well, based on approximated covariances of B and B (see Kiinsch et al.,
2011, and appendices of Nussbaum et al., 2012, 2014, for details).

The package georob provides in addition software for computing robust external drift block
Kriging predictions. The required integrals of the (generalized) covariance function are
computed by functions of the R package constrainedKriging (Hofer and Papritz, 2011).

2.4 Functionality

For the time being, the functionality of georob is limited to robust geostatistical analyses
of single response variables. No software is currently available for robust multivariate
geostatistical analyses. georob offers functions for:

1. Robustly fitting a spatial linear model to data that are possibly contaminated
by independent errors from a long-tailed distribution by robust REML (see func-
tions georob() — which also fits such models efficiently by Gaussian (RE)ML —
profilelogLik() and control.georob()).

2. Extracting estimated model components (see residuals.georob(),
rstandard.georob(), ranef.georob()).

. Robustly estimating sample variograms and for fitting variogram model functions
to them (see sample.variogram() and fit.variogram.model()).

. Model building by forward and backward selection of covariates for the external
drift (see waldtest.georob(), step.georob(), addl.georob(), dropl.georob(),
extractAIC.georob(), logLik.georob(), deviance.georob()). For a robust fit,
the log-likelihood is not defined. The function then computes the (restricted)
log-likelihood of an equivalent Gaussian model with heteroscedastic nugget (see
deviance.georob() for details).

. Assessing the goodness-of-fit and predictive power of the model by K-fold cross-
validation (see cv.georob() and validate.predictions()).

. Computing robust external drift point and block Kriging predictions (see
predict.georob(), control.predict.georob()).

. Unbiased back-transformation of both point and block Kriging predictions of log-
transformed data to the original scale of the measurements (see 1gnpp()).

3 Model-based Gaussian analysis of zinc, data set
meuse

The package sp provides this data set. According to the help page, it “gives locations and
topsoil heavy metal concentrations, along with a number of soil and landscape variable at
the observation locations, collected in a flood plain of the river Meuse, near the village of

Stein (NL)”.

> data(meuse, package="sp")

> levels(meuse$ffreq) <- paste("ffreq", levels(meuse$ffreq), sep="")

> levels(meuse$soil) <- paste("soil", levels(meuse$soil), sep="")

> str(meuse)

'data.frame': 155 obs. of 14 variables:

$ x : num 181072 181025 181165 181298 181307 ...

$y : num 333611 333558 333537 333484 333330 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...

$ copper : num 85 81 68 81 48 61 31 29 37 24 ...

$ lead : num 299 277 199 116 117 137 132 150 133 80 ...

$ zinc : num 1022 1141 640 257 269 ...

$ elev :num 7.91 6.98 7.8 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...

$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...

$ ffreq : Factor w/ 3 levels "ffreql","ffreq2",..: 1 111111111 ...
$ soil : Factor w/ 3 levels "soill","soil2",..: 1112222112 ...

$ lime : Factor w/ 2 levels "O","1": 2221111111 ...

$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

Bivand et al. (2013) use the data to illustrate geostatistical analyses by the package gstat
(Pebesma, 2004). We analyse here the data on zinc in the topsoil (Figure 1).

3.1 Exploratory analysis

Zinc concentration [mg/kg]
113 - 500

500 - 1000

1000 - 1500

1500 - 1839

© @000

250 500 750 1000 m

Figure 1: Meuse data set: zinc concentration at 155 locations in floodplain of river Meuse near
Stein (NL) shown in Google Earth™.

Figure 1 suggests that zinc concentration depends on distance to the river. We check
graphically whether the two factors ffreq (frequency of flooding) and soil (type) also
influence zinc:

library(lattice)

palette(trellis.par.get ("superpose.symbol")$col)

plot(zinc”dist, meuse, pch=as.integer(ffreq), col=soil)

legend("topright", col=c(rep(l, nlevels(meuse$ffreq)), l:nlevels(meuse$soil)),
pch=c(1:nlevels(meuse$ffreq), rep(l, nlevels(meuse$soil))), bty="n",
legend=c(levels (meuse$ffreq), levels(meuse$soil)))

+ + V V Vv VvV

© o ffreql
5 o A ffreq2
Sl @ © + ffreq3
o -
— r O soill
O soil2
® %% O s0il3
&) E; é o
[o
N 4| &
%d% SO le) O
o 00 © o}
o 8 iQQS+© 8 1)
oA A ya\ o
g o G4t
" A%D §«§OAD Y X%f
Y % % § §+A A AA A A
0.0 0.2 0.6 0.8

dist

Figure 2: Dependence of zinc concentration on distance to river, frequency of flooding (ffreq)
and soil type.

zinc depends non-linearly on dist and seems in addition to depend on ffreq (larger
concentration at more often flooded sites). Furthermore, the scatter of zinc for given dis-
tance increases with decreasing distance (= increasing zinc concentration, heteroscedastic
variation). We use log(zinc) to stabilize the variance:

> xyplot(log(zinc) “dist | ffreq, meuse, groups=soil, panel=function(x, y, ...){
+ panel.xyplot(x, y, ...)
+ panel.loess(x, y, ...)

+ }, auto.key=TRUE)

soill o
soil2 o
soil3 ©

0.0 0.2 04 06 0.8

| | | | | | | |
ffreg2

7.0 1 8¢

6.0

log(zinc)

5.0

I
0.0 0.2 04 06 038 00 0.2 04 06 038

dist

Figure 3: Dependence of zinc on distance to river, frequency of flooding (ffreq) and soil
type.

The relation log(zinc) “dist is still non-linear, hence we transform dist by Vv

> xyplot(log(zinc) “sqrt(dist) | ffreq, meuse, groups=soil, panel=function(x, y, ...){
+ panel.xyplot(x, y, ...)

+ panel.loess(x, y, ...)

+ panel.lmline(x, y, lty="dashed", ...)

+ }, auto.key=TRUE)

soill o
soil2 ©
soil3 o
0.0 0.2 0.4 06 0.8
| | | | | | | | | | | | | | |
ffreg2 ffreg3
7.5 1 o
G 6.5 L
£
N
S 6.0 L
9
5.5 o
5.0 o
I I I I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 0.0 02 0.4 0.6 0.8

sqrt(dist)

Figure 4 : Dependence of zinc concentration on distance to river, frequency of flooding (ffreq)
and soil type.

which approximately linearizes the relation.

The slopes of the regression lines log(zinc) “sqrt(dist) are about the same for all levels
of ffreq. But the intercept of ffreql differs from the intercepts of the other levels. Hence,
as an initial drift model we use

> r.1m <- 1m(log(zinc) “sqrt(dist)+ffreq, meuse)
> summary (r.1lm)

Call:
Im(formula = log(zinc) ~ sqrt(dist) + ffreq, data = meuse)

Residuals:
Min 1Q Median 3Q Max
-0.8559 -0.3084 -0.0304 0.2957 1.3465

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 7.0299 0.0714 98.44 < 2e-16 **x
sqrt(dist) -2.2660 0.1559 -14.54 < 2e-16 *x*
ffreqffreq2 -0.3605 0.0786 -4.58 9.5e-06 **x
ffreqffreq3 -0.3167 0.0982 -3.23 0.0015 *x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.'" 0.1 ' ' 1

Residual standard error: 0.407 on 151 degrees of freedom
Multiple R-squared: 0.689, Adjusted R-squared: 0.683
F-statistic: 111 on 3 and 151 DF, p-value: <2e-16

The residual diagnostic plots

> op <- par(mfrow=c(2, 2)); plot(r.1lm); par(op)

Residuals vs Fitted Normal Q-Q
<
i o 760
g ™ e
57
v 2 o L
= g
= ks
i 3
o>)
e}
c
8
) n
[T T T T T ‘Iv T T T T
45 50 55 6.0 65 7.0 -2 -1 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
% o76 “
[
8 4
o o
I g
2]
5 <)
g £
8 ko)
2 o] Z
o T T T T T T
45 50 55 6.0 65 7.0
Fitted values Leverage

10

Figure 5: Residual diagnostic plots for linear drift model log(zinc) “sqrt(dist)+ffregq.

do not show violations of modelling assumptions.

Next, we compute the sample variogram of the residuals for the 4 directions N-S, NE-SW|
E-W, SE-NW by the methods-of-moments estimator:

> library(georob)

> plot(sample.variogram(residuals(r.1lm), locations=meuse[, c("x","y")],

+ lag.dist.def=100, max.lag=2000, xy.angle.def=c(0, 22.5, 67.5, 112.5, 157.5, 180),
+ estimator="matheron"), type="1",

+ main="sample variogram of residuals log(zinc) “sqrt(dist)+ffreq")

sample variogram of residuals log(zinc)~sqgrt(dist)+ffreq

m_
© | o xy.angle: (-22.5,22.5]
o xy.angle: (22.5,67.5]
<] o xy.angle: (67.5,112]
Clo xy.angle: (112,158]
@
Q ™
8 °]
E
= ~
5 S
(%]
i
-
o
o-_ T T T T T
0 500 1000 1500 2000
lag distance
Figure 6: Direction-dependent sample variogram of regression residuals of

log(zinc) “sqrt(dist)+ffreq.

The residuals appear to be spatially dependent. For the short lags there is no clear
dependence on direction, hence, we assume that auto-correlation is isotropic.

To complete the exploratory modelling exercise, we compute the direction-indepdendent
sample variogram and fit a spherical variogram model by weighted non-linear least squares
(using Cressie’s weights)

> library(georob)
> plot(r.sv <- sample.variogram(residuals(r.lm), locations=meusel[, c("x","y")],
+ lag.dist.def=100, max.lag=2000,
estimator="matheron"), type="1",
main="sample variogram of residuals log(zinc) “sqrt(dist)+ffreq")
lines(r.sv.spher <- fit.variogram.model(r.sv, variogram.mode="RMspheric",
param=c(variance=0.1, nugget=0.05, scale=1000)))

+ vV o+ +

11

sample variogram of residuals log(zinc)~sqgrt(dist)+ffreq

o
[Q\
o
Lo
—
8 o
C
©
T o
=
£ o
(]
(%)
[Te]
C)__
o
o
Q_
o T T T T T
0 500 1000 1500 2000
lag distance

Figure 7: Sample variogram of regression residuals of log(zinc) “sqrt (dist)+ffreq along with
fitted spherical variogram function.

and output the fitted variogram parameters
> summary(r.sv.spher)
Call:fit.variogram.model(sv = r.sv, variogram.model = "RMspheric",
param = c(variance = 0.1, nugget = 0.05, scale = 1000))
Convergence in 18 function and 42 Jacobian/gradient evaluations
Residual Sum of Squares: 78.945
Residuals (epsilon):
Min 1Q Median 3Q Max

-0.03342 -0.01342 -0.00374 0.00768 0.02932

Variogram: RMspheric

Estimate
variance 0.11
snugget 0.00
nugget 0.06
scale 844 .23

12

3.2 Fitting a spatial linear model by Gaussian (RE)ML
We fit the model that we developed in the exploratory analysis now by Gaussian REML:

> r.georob.mO.spher.reml <- georob(log(zinc) “sqrt(dist)+ffreq, meuse, locations="x+y,
+ variogram.model="RMspheric", param=c(variance=0.1, nugget=0.05, scale=1000),
+ tuning.psi=1000)

\2

summary (r.georob.m0.spher.reml)

Call:georob(formula = log(zinc) ~ sqrt(dist) + ffreq, data = meuse,
locations = "x + y, variogram.model = "RMspheric", param = c(variance = 0.1,
nugget = 0.05, scale = 1000), tuning.psi = 1000)
Tuning constant: 1000
Convergence in 12 function and 9 Jacobian/gradient evaluations

Estimating equations (gradient)

eta scale
Gradient : -6.5980e-03 -1.1617e-01

Maximized restricted log-likelihood: -54.584
Predicted latent variable (B):

Min 1Q Median 3Q Max
-0.6422 -0.3020 -0.0158 0.1799 0.6099
Residuals (epsilon):

Min 1Q Median 3Q Max
-0.62747 -0.11035 -0.00102 0.10224 0.59397
Standardized residuals:

Min 1Q Median 3Q Max
-3.60760 -0.60304 -0.00571 0.58372 3.49971

Gaussian REML estimates

Variogram: RMspheric

Estimate Lower Upper
variance 0.1349 0.0677 0.27
snugget (fixed) 0.0000 NA NA
nugget 0.0551 0.0327 0.09
scale 876.5812 746.9212 1028.75

Fixed effects coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 7.0889 0.1391 50.96 < 2e-16 **¥x*
sqrt(dist) -2.1319 0.25690 -8.23 8.1le-14 **x
ffreqffreq2 -0.5268 0.0689 -7.64 2.3e-12 *x*x*
ffreqffreq3 -0.5383 0.1040 -5.17 7.2e-07 *x*x
Signif. codes: O '#*x*x' 0.001 'kx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

13

Residual standard error (sqrt(nugget)): 0.235

Robustness weights:
A1l 155 weights are "= 1.

The diagnostics at the begin of the summary output suggest that maximization of the
restricted log-likelihood by nlminb() was successful. Nevertheless, before we interprete
the output, we compute the profile log-likelihood for the range to see whether the maxi-
mization has found the global maximum:

Vv

r.prfl.m0.spher.reml.scale <- profilelogLik(r.georob.mO.spher.reml,
values=data.frame(scale=seq(500, 5000, by=50)))

+

\

plot(loglik™scale, r.prfl.mO.spher.reml.scale, type="1")
abline(v=coef (r.georob.m0.spher.reml, "variogram")["scale"], lty="dashed")
abline(h=r.georob.m0.spher.reml$loglik - 0.5%qchisq(0.95, 1), lty="dotted")

vV Vv

loglik
-56 -55

_|57

_58

1000 2000 3000 4000 5000
scale

Figure 8: Restricted profile log-likelihood for range parameter (scale) of spherical variogram
(vertical line: estimate of scale returned by georob(); intersection of horizontal line with profile
defines a 95% confidence region for scale based on likelihood ratio test).

Although the restricted log-likelihood is multimodal — which is often observed for vari-
ogram models with compact support — we were lucky to find the global maximum because
the initial values of the variogram parameters were close to the REML estimates. Esti-
mates of scale (range of variogram) and variance (partial sill) are correlated, nugget
and scale less so:

> op <- par(mfrow=c(1,2), cex=0.66)

> plot(variance~scale, r.prfl.m0.spher.reml.scale, ylim=c(0, max(variance)), type="1")
> plot(nugget~scale, r.prfl.mO.spher.reml.scale, ylim=c(0, max(nugget)), type="1")

> par(op)

14

[(=]
o4
© | =)
o
[Te}
0 21
ST (=}
3
o 51 - S
< Y
8 o g 3
S S c o
N
N o4
=N o
- 3
o IS)
o 8
e T T T T T S T T T T T
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
scale scale

Figure 9: Estimates of variance (partial sill) and nugget as a function of the estimate of the
range (scale) of the variogram.

We now study the summary output in detail: The estimated variogram parameters are
reported along with 95% confidence intervals that are computed based on the asymptotic
normal distribution of (RE)ML estimates from the observed Fisher information.

The dependence of log(zinc) on sqrt(dist) is highly significant, as is the dependence
on ffreq:

> waldtest(r.georob.m0.spher.reml, .~.-ffreq)

Wald test

Model 1: log(zinc) ~ sqrt(dist) + ffreq
Model 2: log(zinc) ~ sqrt(dist)
Res.Df Df F Pr(>F)
1 151
163 -2 31.2 4.6e-12 **x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.'" 0.1 ' ' 1

We can test equality of all pairs of intercepts by functions of the package multcomp

> if (requireNamespace ("multcomp", quietly = TRUE)){

+ summary(multcomp: :glht(r.georob.m0.spher.reml,

+ linfct = multcomp::mcp(ffreq = c("ffreql - ffreq2 = 0", "ffreql - ffreq3 = 0",
+ "ffreq2 - ffreq3 = 0"))))

+ } else {

+ install.packages("multcomp")

+ requireNamespace("multcomp", quietly = TRUE)

+ summary(multcomp: :glht(r.georob.m0.spher.reml,

+ linfct = multcomp::mcp(ffreq = c("ffreql - ffreq2 = 0", "ffreql - ffreq3 = 0",
+ "ffreq2 - ffreq3 = 0"))))

+ }

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

15

Fit: georob(formula = log(zinc) ~ sqrt(dist) + ffreq, data = meuse,
locations = “x + y, variogram.model = "RMspheric", param = c(variance = 0.1,
nugget = 0.05, scale = 1000), tuning.psi = 1000)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|zl)

ffreql - ffreq2 == 0 0.5268 0.0689 7.64 <1e-06 ***
ffreql - ffreq3 == 0 0.5383 0.1040 5.17 <1e-06 **¥x*
ffreq2 - ffreq3 == 0 0.0115 0.0960 0.12 0.99

Signif. codes: O '#xkx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

library(multcomp)

summary(glht(r.georob.m0.spher.reml,

1linfct = mcp(ffreq = c("ffreql - ffreq2 = 0", "ffreql - ffreqd = 0",
"ffreq2 - ffreq3 = 0"))))

vV V V V

As suspected only the intercept of £freqi differs from the others. Adding the interaction
sqrt(dist) :ffreq does not improve the model:

> waldtest(r.georob.mO.spher.reml, .~ .+sqrt(dist):ffreq)

Wald test

Model 1: log(zinc) ~ sqrt(dist) + ffreq

Model 2: log(zinc) ~ sqrt(dist) + ffreq + sqrt(dist):ffreq
Res.Df Df F Pr(>F)

1 151

2 149 2 0.68 0.51

nor does adding soil:

> waldtest(r.georob.m0.spher.reml, .~ .+so0il)

Wald test

Model 1: log(zinc) ~ sqrt(dist) + ffreq

Model 2: log(zinc) ~ sqrt(dist) + ffreq + soil
Res.Df Df F Pr(>F)

1 151

2 149 2 2.27 0.11

Drift models may also be build by step-wise covariate selection based on AIC, either
keeping the variogram parameters fixed (default)
> step(r.georob.m0.spher.reml, scope=log(zinc) ffreq*sqrt(dist)+soil)

Start: AIC=106.91
log(zinc) ~ sqrt(dist) + ffreq

Df AIC Converged

<none> 107
+ soil 2 107 1

16

+ ffreq:sqrt(dist) 2 110 1
- ffreq 2 166
- sqrt(dist) 1178

= e

Tuning constant: 1000

Fixed effects coefficients:
(Intercept) sqrt(dist) ffreqffreq2 ffreqffreq3
7.094 -2.146 -0.526 -0.537

Variogram: RMspheric
variance(fixed) snugget (fixed) nugget (fixed) scale(fixed)
0.123 0.000 0.056 872.400

or re-estimating them afresh for each evaluated model
> step(r.georob.m0.spher.reml, scope=log(zinc) ffreg*sqrt(dist)+soil,

+ fixed.addl.drop1=FALSE)

Start: AIC=112.91
log(zinc) ~ sqrt(dist) + ffreq

Df AIC Converged

<none> 113 1
+ soil 2 113 1
+ ffreq:sqrt(dist) 2 116 1
- sqrt(dist) 1 144 1
- ffreq 2 158 1

Tuning constant: 1000

Fixed effects coefficients:
(Intercept) sqrt(dist) ffreqffreq2 ffreqffreq3
7.094 -2.146 -0.526 -0.537

Variogram: RMspheric
variance snugget (fixed) nugget scale
0.123 0.000 0.056 872.400

which selects the same model. Note that step-wise covariate selection by step.georob(),
addl.georob() and dropl.georob() requires the non-restricted log-likelihood. Before
evaluating candidate models, the initial model is therefore re-fitted by ML, which can be

done by

> r.georob.mO.spher.ml <- update(r.georob.mO.spher.reml,
+ control=control.georob(ml.method="ML"))

> extractAIC(r.georob.mO.spher.reml, REML=TRUE)

[1] 7.00 123.17

> extractAIC(r.georob.mO.spher.ml)

17

[1] 7.00 112.91

> r.georob.mO.spher.ml

Tuning constant: 1000

Fixed effects coefficients:
(Intercept) sqrt(dist) ffreqffreq2 ffreqffreq3
7.094 -2.146 -0.526 -0.537

Variogram: RMspheric
variance snugget (fixed) nugget scale
0.123 0.000 0.056 872.400

Models can be also compared by cross-validation

> r.cv.mO.spher.reml <- cv(r.georob.m0.spher.reml, seed=3245, 1gn=TRUE)
> r.georob.ml.spher.reml <- update(r.georob.mO.spher.reml, .~.-ffreq)
> r.cv.ml.spher.reml <- cv(r.georob.ml.spher.reml, seed=3245, lgn=TRUE)

> summary (r.cv.mO.spher.reml)

Statistics of cross-validation prediction errors
me mede rmse made gne msse medsse crps
-0.00951 -0.03508 0.37275 0.35795 0.36088 0.97237 0.37993 0.20829

Statistics of back-transformed cross-validation prediction errors
me mede rmse made gne msse medsse
-18.406 -33.774 196.940 144.016 143.746 1.064 0.307

> summary (r.cv.ml.spher.reml)

Statistics of cross-validation prediction errors
me mede rmse made qne msse medsse crps
0.0418 0.0342 0.4347 0.4049 0.4077 1.0363 0.4103 0.2398

Statistics of back-transformed cross-validation prediction errors
me mede rmse made gne msse medsse
14.310 -22.890 220.888 142.441 147.183 1.604 0.318

Note that the argument 1ng=TRUE has the effect that the cross-validation predictions of a
log-transformed response are transformed back to the original scale of the measurements.

op <- par(mfrow=c(3,2))
plot(r.cv.ml.spher.reml, "sc")
plot(r.cv.m0.spher.reml, "sc", add=TRUE, col=2)
abline(0, 1, lty="dotted")
legend("topleft", pch=1, col=1:2, bty="n",
legend=c("log(zinc) “sqrt(dist)", "log(zinc) “sqrt(dist)+ffreq"))
plot(r.cv.ml.spher.reml, "lgn.sc"); plot(r.cv.mO.spher.reml, "lgn.sc", add=TRUE, col=2)
abline(0, 1, lty="dotted")

V V + V V V Vv V

18

> plot(r.cv.ml.spher.reml, "hist.pit")

> plot(r.cv.mO.spher.reml, "hist.pit", col=2)

> plot(r.cv.ml.spher.reml, "ecdf.pit")

> plot(r.cv.mO.spher.reml, "ecdf.pit", add=TRUE, col=2)
> abline(0, 1, lty="dotted")

> plot(r.cv.ml.spher.reml, "bs")

> plot(r.cv.mO.spher.reml, add=TRUE, "bs", col=2)

> par(op)

data vs. predictions data vs. back—transformed predictions
[Te)
~71 o log(zinc)~sqrt(dist) o o5 ° ° © °
ecel : S
ol o log(zinc) sqrt(dlst)+ffreqOO Qo g
~ o o Sl 3
0 -
0 B °
<] o
g g 8
© 8' o
[Te}
6 =3
wn
o | ”
w| B8 °
@ Qv o .
45 50 55 60 65 70 500 1000 1500
predictions back-transformed predictions
histogram PIT-values histogram PIT-values
[Te)
<] N
Ny
o
2
o
- © |
=y 2°
5 g o
© © ©
[Te)
ST ps
N
pt
o o
o r T T T T 1 o r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PIT PIT
ecdf PIT-values Brier score vs. cutoff
- [Te}
—
<
o
> o -
= g ©°
5 @
S 8
S o
o4
=
o
o
o T T T T T

50 55 60 65 70 75
cutoff

Figure 10: Diagnostic plots of cross-validation predictions of REML fits of models
log(zinc) “sqrt(dist) (blue) and log(zinc) “sqrt(dist)+ffreq (magenta).

The simpler model gives less precise predictions (larger rmse, Brier score and therefore
also larger continuous ranked probability score crps), but it models prediction uncertainty
better (PIT closer to uniform distribution, see section 7.3 and Gneiting et al., 2007).

We finish modelling by plotting residual diagnostics of the model
r.georob.m0.spher.reml and comparing the estimated variogram with the ML

19

estimate and the model fitted previously to the sample variogram of ordinary least
squares (OLS) residuals:

> op <- par(mfrow=c(2,2), cex=0.66)

> plot(r.georob.mO.spher.reml, "ta"); abline(h=0, lty="dotted")

> plot(r.georob.mO.spher.reml, "qq.res"); abline(0, 1, lty="dotted")

> plot(r.georob.m0.spher.reml, "qq.ranef"); abline(0, 1, lty="dotted")
> plot(r.georob.m0.spher.reml, lag.dist.def=100, max.lag=2000)

> lines(r.georob.m0.spher.ml, col=2); lines(r.sv.spher, col=3)

> par(op)

Residuals vs. Fitted Normal Q-Q residuals
076 760690
o] 0157 ™ .
- o
(%)
9
E -
‘n
§]
3 ? o
z 8
o 5 \Tc_
©
5 o :
[.00
ol
o75
2 1 0 1 2
Fitted values Theoretial quantiles
Normal Q—-Q random effects
B ~0 ©O 9
%) (=)
3
5 8 °0
£ 3 — =
E -E 2-' oo °
S o g ° o
° 2
@ IS ‘9!-
3 g o
-g FI" [¥e)
= o
i) o| o
]
Yo . §'
-2 -1 0 1 2 0 500 1000 1500 2000

Theoretial quantiles lag distance

Figure 11: Residual diagnostic plots of model log(zinc) “sqrt(dist)+ffreq and spherical
variogram estimated by REML (blue), ML (magenta) and fit to sample variogram (darkgreen).

As expected REML estimates larger range and partial sill parameters. The diagnostics
plots do not reveal serious violations of modelling assumptions.

3.3 Computing Kriging predictions
3.3.1 Lognormal point Kriging
The data set meuse.grid (provided also by package sp) contains the covariates

data(meuse.grid)

levels(meuse.grid$ffreq) <- paste("ffreq", levels(meuse.grid$ffreq), sep="")
levels(meuse.grid$soil) <- paste("soil", levels(meuse.grid$soil), sep="")
coordinates(meuse.grid) <- “xt+y

gridded(meuse.grid) <- TRUE

V V V VvV VvV

for computing Kriging predictions of log(zinc) and transforming them back to the orig-
inal scale of the measurements by

20

\4

r.pk <- predict(r.georob.mO.spher.reml, newdata=meuse.grid,
control=control.predict.georob(extended.output=TRUE))
r.pk <- lgnpp(r.pk)

Vv +

\2

str(r.pk)

Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots
..Q data :'data.frame': 3103 obs. of 12 variables:
pred : num [1:3103] 7.05 7.06 6.8 6.57 7.07 ...
se : num [1:3103] 0.277 0.248 0.252 0.259 0.212 ...
lower : num [1:3103] 6.51 6.57 6.3 6.06 6.65 ...
upper : num [1:3103] 7.59 7.54 7.29 7.07 7.48 ...
trend : num [1:3103] 7.09 7.09 6.85 6.64 7.09 ...
var.pred : num [1:3103] 0.0779 0.0899 0.0822 0.0757 0.1027 ...
cov.pred.target: num [1:3103] 0.0681 0.0818 0.0768 0.0717 0.0963 ...
var.target : num [1:3103] 0.135 0.135 0.135 0.135 0.135 ...
lgn.pred : num [1:3103] 1189 1188 921 732 1191 ...
lgn.se : num [1:3103] 373 335 269 224 288 ...
lgn.lower : num [1:3103] 672 715 547 427 773 ...
lgn.upper : num [1:3103] 1987 1887 1469 1182 1777 ...
attr(*, "variogram.object")=List of 1
..$:List of 9
..$ variogram.model: chr "RMspheric"
..$ param : Named num [1:4] 0.1349 0 0.0551 876.5812
.. ..— attr(*, "names")= chr [1:4] "variance" "snugget" "nugget" ""..
..$ fit.param : Named logi [1:4] TRUE FALSE TRUE TRUE
.. ..— attr(x, "names")= chr [1:4] "variance" "snugget" "nugget" ""..
..$ isotropic : logi TRUE
..$ aniso : Named num [1:5] 1 1 90 90 0
.. ..— attr(*, "names")= chr [1:5] "fi" "f2" "omega" "phi"
..$ fit.aniso : Named logi [1:5] FALSE FALSE FALSE FALSE FALSE
..— attr(*, "names")= chr [1:5] "f1" "f2" "omega" "phi"
..$ sincos :List of 6
..$ co: num 6.12e-17
so: num 1
cp: num 6.12e-17
Sp: num
cz: num

“
O O NN O O

| €A A H & P P BH H P P &BH

€hH H P fH H
O -

. SZ: num
..$ rotmat :num [1:2, 1:2] 1.00 -6.12e-17 6.12e-17 1.00
..$ sclmat : Named num [1:2] 1 1
e ..— attr(*, "names")= chr [1:2] "" "fi"
..— attr(*, "type")= chr "signal"
..0@ coords.nrs : num(0)
..Q grid :Formal class 'GridTopology' [package "sp"] with 3 slots
..0@ cellcentre.offset: Named num [1:2] 178460 329620
..— attr(*, "names")= chr [1:2] "x" "y"

..Q@ cellsize : Named num [1:2] 40 40
..— attr(*, "names")= chr [1:2] "x" "y"
..0@ cells.dim : Named int [1:2] 78 104

A ..— attr(*, "names")= chr [1:2] "x" "y"
..Q grid.index : int [1:3103] 69 146 147 148 223 224 225 226 300 301
..Q coords : num [1:3103, 1:2] 181180 181140 181180 181220 181100 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:3103] "im n"2m n3n w4
.. ..$: chr [1:2] "x" "y"
..Q@ bbox : num [1:2, 1:2] 178440 329600 181560 333760

21

..— attr(*, "dimnames")=List of 2
..$: chr [1:2] "x" "y"
.. ..$: chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slot
..0 projargs: chr NA

Note that
e meuse.grid was converted to a SpatialPixelsDataFrame object prior to Kriging.

e The argument control=control.predict.georob(extended.output=TRUE) of
predict.georob() has the effect that all items required for the back-transformation
are computed.

e The variables 1gn.zzz in r.pk contain the back-transformed prediction items.

Finally, the function spplot() (package sp) allows to easily plot prediction results:

brks <- c(25, 50, 75, 100, 150, 200, seq(500, 3500,by=500))

pred <- spplot(r.pk, zcol="lgn.pred", at=brks, main="prediction")

lwr <- spplot(r.pk, zcol="lgn.lower", at=brks, main="lower bound 95% PI")
upr <- spplot(r.pk, zcol="lgn.upper", at=brks, main="upper bound 957, PI")
plot(pred, position=c(0, 0, 1/3, 1), more=TRUE)

plot(lwr, position=c(1/3, 0, 2/3, 1), more=TRUE)

plot(upr, position=c(2/3, 0, 1, 1), more=FALSE)

V V V V V V VvV

prediction lower bound 95% PI upper bound 95% PI

—T 3500 —T 3500 —T1 3500
‘i [ﬂ [‘N [

v,
K

- 2500

- 2000

- 2500 r - 2500
- 2000 - 2000
1500 1500

1000

1500

1000 1000

500 500 500

4
¢

Figure 12: Lognormal point Kriging prediction of zinc (left: prediction; middle and right: lower

and upper bounds of point-wise 95% prediction intervals).

3.3.2 Lognormal block Kriging

If newdata is a SpatialPolygonsDataFrame then predict.georob() computes block
Kriging predictions. = We illustrate this here with the SpatialPolygonsDataFrame
meuse.blocks that is provided by the package constrainedKriging:

> data(meuse.blocks, package="constrainedKriging")
> str(meuse.blocks, max=2)

22

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
..0 data :'data.frame': 259 obs. of 2 variables:
..Q@ polygons :List of 259
..@ plotOrder : int [1:259] 177 179 180 178 188 182 181 92 51 201 ...
..Q@ bbox : num [1:2, 1:2] 178438 329598 181562 333762
.. ..— attr(x, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

meuse.blocks contains dist as only covariate for the blocks, therefore, we use the model
log(zinc) “sqrt(dist) for computing the block Kriging predictions of log(zinc):

> r.bk <- predict(r.georob.ml.spher.reml, newdata=meuse.blocks,
+ control=control.predict.georob(extended.output=TRUE, pwidth=25, pheight=25, mmax=25))

and transform the predictions back by the approximately unbiased back-transformation
proposed by Cressie (2006) (see section 16):

> r.bk <- lgnpp(r.bk, newdata=meuse.grid)
Note the following points:

e pwidth and pheight are the dimensions of the pixels used for efficiently comput-
ing “block-block-" and “point-block- averages” of the covariance function, see sec-
tion 6.1.3).

e mmax controls parallelization when computing Kriging predictions, see section 6.1.4.

e newdata is used to pass point support covariates to 1gnpp (), from which the spatial
covariances of the covariates, needed for the back-transformation, are computed,
(see equation 16 and Cressie, 2006, appendix C).

We display the prediction results again by spplot ():

brks <- c(25, 50, 75, 100, 150, 200, seq(500, 3500,by=500))

pred <- spplot(r.bk, zcol="lgn.pred", at=brks, main="prediction")

lwr <- spplot(r.bk, zcol="lgn.lower", at=brks, main="lower bound 95% PI")
upr <- spplot(r.bk, zcol="lgn.upper", at=brks, main="upper bound 957, PI")
plot(pred, position=c(0, 0, 1/3, 1), more=TRUE)

plot(lwr, position=c(1/3, 0, 2/3, 1), more=TRUE)

plot(upr, position=c(2/3, 0, 1, 1), more=FALSE)

V V V V V V VvV

prediction lower bound 95% PI upper bound 95% PI
— 3500 — 3500 — 3500

- 3000 - 3000 - 3000

- 2500 - 2500 - 2500

- 2000 - 2000 - 2000

1500 1500 1500

1000 1000 1000

500 500 500

23

Figure 13: Lognormal block Kriging prediction of zinc computed under the assumption of

permanence of log-normality (left: prediction; middle and right: lower and upper bounds of

point-wise 95% prediction intervals).

The assumption that both point values and block means follow log-normal laws — which
strictly cannot hold — does not much impair the efficiency of the back-transformation
as long as the blocks are small (Cressie, 2006; Hofer et al., 2013). However, for larger
blocks, one should use the optimal predictor obtained by averaging back-transformed point
predictions. 1gnpp () allows to compute this as well. We illustrate this here by predicting
the spatial mean over two larger square blocks:

VVVVVVVVYV + 4+ V VYV

define blocks
tmp <- data.frame(x=c(179100, 179900), y=c(330200, 331000))
blks <- SpatialPolygons(sapply(1l:nrow(tmp), function(i, x){

Polygons(list(Polygon(t(x[,i] + 400*t(cbind(c(-1, 1, 1, -1, -1), c(-1, -1, 1, 1, -1)))),
hole=FALSE)), ID=paste("block", i, sep=""))}, x=t(tmp)))

compute spatial mean of sqrt(dist) for blocks

ind <- over(as(meuse.grid, "SpatialPoints"), blks)

tmp <- tapply(sqrt(meuse.grid$dist), ind, mean)

names (tmp) <- paste("block", 1:length(tmp), sep="")

create SpatialPolygonsDataFrame

blks <- SpatialPolygonsDataFrame(blks, data=data.frame(dist=tmp~2))
and plot

plot(as(meuse.grid, "SpatialPoints"), axes=TRUE)
plot(geometry(blks), add=TRUE, col=2)

! 333000

332000

331000

330000

178500 179500 ~ 180500 ~ 181500

Figure 14: Point prediction grid and position of 2 target blocks for computing optimal log-

normal block predictor.

We first compute block-Kriging predictions of log(zinc) and back-transform them as
before under the permanence of log-normality assumption:

> r.blks <- predict(r.georob.ml.spher.reml, newdata=blks,

+

control=control.predict.georob(extended.output=TRUE, pwidth=800, pheight=800))

> r.blks <- lgnpp(r.blks, newdata=meuse.grid)

24

Note that we set pwidth and pheight equal to the dimension of the blocks. This is best
for rectangular blocks because the blocks are then represented by a single pixel, which
reduces computations.

Next we use 1gnpp() for computing the optimal log-normal block predictions. As we
need the full covariance matrix of the point prediction errors for this we must re-
compute the points predictions of log(zinc) with the additional control argument
full.covmat=TRUE:

> t.pk <- predict(r.georob.mO.spher.reml, newdata=as.data.frame(meuse.grid),
+ control=control.predict.georob(extended.output=TRUE, full.covmat=TRUE))
> str(t.pk)

List of 5

$ pred :'data.frame': 3103 obs. of 10 variables:
.8 x : num [1:3103] 181180 181140 181180 181220 181100 ...
8y : num [1:3103] 333740 333700 333700 333700 333660 ...
..$ pred : num [1:3103] 7.05 7.06 6.8 6.57 7.07 ...
..$ se : num [1:3103] 0.277 0.248 0.252 0.259 0.212 ...
..$ lower : num [1:3103] 6.51 6.57 6.3 6.06 6.65 ...
..$ upper : num [1:3103] 7.59 7.54 7.29 7.07 7.48 ...
..$ trend : num [1:3103] 7.09 7.09 6.85 6.64 7.09 ...
..$ var.pred : num [1:3103] 0.0779 0.0899 0.0822 0.0757 0.1027 ...
..$ cov.pred.target: num [1:3103] 0.0681 0.0818 0.0768 0.0717 0.0963 ...
..$ var.target : num [1:3103] 0.135 0.135 0.135 0.135 0.135 ...

attr(*, "variogram.model")= chr "RMspheric"

attr(*, "param")= Named num [1:4] 0.1349 0 0.0551 876.5812

..— attr(*, "names")= chr [1:4] "variance" "snugget" "nugget" "scale"
..— attr(*, "psi.func")= chr "logistic"

..— attr(*, "tuning.psi")= num 1000

..— attr(x, "type")= chr "signal"

$ mse.pred : num [1:3103, 1:3103] 0.0766 0.0565 0.0606 0.0583 0.0373 ...
$ var.pred : num [1:3103, 1:3103] 0.0779 0.0833 0.0794 0.0748 0.0878 ...
$ cov.pred.target: num [1:3103, 1:3103] 0.0681 0.0736 0.0714 0.0684 0.0781

$ var.target : num [1:3103, 1:3103] 0.135 0.122 0.126 0.122 0.109 ...

The predictions are now stored in the list component pred, and list components mse . pred,
var.pred, var.target and cov.pred.target store the covariance matrices of prediction
errors, predictions, prediction targets and the covariances between predictions and targets.
Then we back-transform the predictions and average them separately for the two blocks:

> ## index defining to which block the points predictions belong
> ind <- over(geometry(meuse.grid), geometry(blks))

> ind <- tapply(l:nrow(meuse.grid), factor(ind), function(x) x)
> ## select point predictions in block and predict block average
> tmp <- t(sapply(ind, function(i, x){

+ x$pred <- x$predl[i,]

+ x$mse.pred <- x$mse.pred[i,i]

+ x$var.pred <- x$var.pred[i,i]

+ x$cov.pred.target <- x$cov.pred.target[i,i]

+ x$var.target <- x$var.target[i,i]

+ res <- lgnpp(x, is.block=TRUE)

+ res

+ }, x=t.pk))

> colnames (tmp) <- c("opt.pred", "opt.se")

> r.blks <- cbind(r.blks, tmp)

25

> r.blks@datal, c("lgn.pred", "opt.pred", "lgn.se", "opt.se")]

lgn.pred opt.pred lgn.se opt.se
blockl 295.40 330.10 18.771 17.671
block2 191.67 190.69 12.082 12.480

Both the predictions and the prediction standard errors differ somewhat for block1. Based
on the Cressie’s simulation study, we prefer the optimal prediction results.

26

4 Robust analysis of coalash data

This data set reports measurements of ash content [% mass| in a coal seam in Pennsylvania
(Gomez and Hazen, 1970). A subset of the data was analysed by Cressie (1993, section 2.2)
to illustrate techniques for robust exploratory analysis of geostatistical data and for robust
estimation of the sample variogram.

4.1 Exploratory analysis

The subset of the data analyzed by Cressie is available from the R package gstat (Pebesma,
2004) as data frame coalash:

> if (requireNamespace("gstat", quietly = TRUE)){

+ data(coalash, package="gstat")
+ summary(coalash)
+ } else {
+ install.packages("gstat")
+ requireNamespace("gstat", quietly = TRUE)
+ data(coalash, package="gstat")
+ summary(coalash)
+
X y coalash

Min. : 1.00 Min. : 1.0 Min. : 7.00
1st Qu.: 5.00 1st Qu.: 8.0 1st Qu.: 8.96
Median : 7.00 Median :13.0 Median : 9.79
Mean : 7.53 Mean :12.9 Mean 1 9.78
3rd Qu.:10.00 3rd Qu.:18.0 3rd Qu.:10.57
Max. :16.00 Max. :23.0 Max. :17.61

> # data(coalash, package="gstat")
> # summary(coalash)

The coordinates are given as column and row numbers, the spacing between columns and
rows is 2500 ft. We display the spatial distribution of ash content by a “bubble plot” of
the centred data:

plot(y™x, coalash, cex=sqrt(abs(coalash - median(coalash))),
col=c("blue", NA, "red") [sign(coalash - median(coalash))+2], asp=1,
main="coalash - median(coalash)", ylab="northing", xlab="easting")
points(y~x, coalash, subset=c(15, 50, 63, 73, 88, 111), pch=4); grid()
legend("topleft", pch=1, col=c("blue", "red"), legend=c("< 0", "> 0"), bty="n")

vV V + + V

27

coalash — median(coalash)

Toll
Nlo <0
©>0 0o00O0 o
Oo0o00o0Q -
000000000
Q- - 000000000O0
ORQo o000 0o o o o
O°00 02000000
o o o0 0Qo0oQoO O o
O o o o OO0 0o o0
I‘(‘_|)—L=OC)O°O<>OOO
o O o o - O o o O
8 ®oooooOoOO
£ °c 0000000000
o O o o (O e O0o0 00O
c
S84 00000000
OO -0 0000
c 00 0®oOo OO
00O O0OO0o 00O oo
oO@O QRO o
Lo+ D000 O
O0o 00 o 0O
000®o
o 0000
o0 o0 o
o_
T T T
5 10 15
easting

Figure 15: “Bubble plot” of coalash data centred by median (area of symbols &« moduli of centred
data; x: observation identified by Cressie as outlier).

Ash content tends to decrease from west to east and is about constant along the north-
south direction:

28

> op <- par(mfrow=c(1,2))

> with(coalash, scatter.smooth(x, coalash, main="coalash ~ x"))
> with(coalash, scatter.smooth(y, coalash, main="coalash ~ y"))
> par (op)

coalash ~ x coalash ~y

o

coalash
1

10 12 1|4 16 18
coalash
10 12 14 16 18

8
8

Figure 16: Coalash data plotted vs easting and northing.

There is a distinct outlier at position (5,6), other observations do not clearly stand out
from the marginal distribution:

> qgnorm(coalash$coalash)

Normal Q-Q Plot

Sample Quantiles
?

3 =2 -1 0 1 2 3
Theoretical Quantiles

Figure 17: Normal QQ plot of coalash data.

Cressie identified the observations at locations (7,3), (8,6), (6,8), (3,13) and (5,19) as
local outliers (marked by x in Figure 15) and the observations of row 2 as “pocket of
non-stationarity”. One could add to this list the observation at location (12,23), which is
clearly larger than the values at adjacent locations.

To further explore the data we fit a linear function of the coordinates as drift to the data
by a robust MM-estimator:

> library(robustbase)
> r.lmrob <- lmrob(coalash™x+y, coalash)
> summary (r.lmrob)

29

Call:
lmrob(formula = coalash ~ x + y, data = coalash)
\--> method = "MM"
Residuals:
Min 1Q Median 3Q Max
-2.2644 -0.6438 0.0181 0.6498 7.4702

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 11.036445 0.190651 57.89 < 2e-16 *x*x*

X -0.178235 0.021721 -8.21 2.5e-14 *x*x*
y -0.000917 0.012692 -0.07 0.94
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.'" 0.1 ' ' 1

Robust residual standard error: 0.952
Multiple R-squared: 0.281, Adjusted R-squared: 0.274
Convergence in 9 IRWLS iteratiomns

Robustness weights:
observation 50 is an outlier with |weight| = 0 (< 0.00048);
18 weights are "= 1. The remaining 189 ones are summarized as
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.160 0.882 0.954 0.901 0.984 0.999
Algorithmic parameters:

tuning.chi bb tuning.psi refine.tol
1.55e+00 5.00e-01 4.69e+00 1.00e-07
rel.tol scale.tol solve.tol eps.outlier
1.00e-07 1.00e-10 1.00e-07 4.81e-04
eps.x warn.limit.reject warn.limit.meanrw
4.18e-11 5.00e-01 5.00e-01
nResample max.it best.r.s k.fast.s k.max
500 50 2 1 200
maxit.scale trace.lev mts compute.rd fast.s.large.n
200 0 1000 0 2000
psi subsampling cov
"bisquare" "nonsingular" ".vcov.avarl"

compute.outlier.stats
|ISMII
seed : int(0)

and check the fitted model by residual diagnostic plots:
> op <- par(mfrow=c(2,2))

> plot(r.lmrob, which=c(1:2, 4:5))
> par(op)

30

standardized residuals vs. Robust Distances Normal Q-Q vs. Residuals
©

50
S - 500 ©
8 . 7
©°
) K%
5 E w1
@ 2 -
ke
|5 2
%
@
>
Qo rd
o T T T T T - T T T T T
D: 05 10 15 20 25 -3 -2 -1 O 1 2 3
Robust Distances Theoretical Quantiles
Residuals vs. Fitted Values Sqrt of abs(Residuals) vs. Fitted Values
500 500
’(7)‘ 4
©- ©
>
©
1] K]
[3]
3 c
3 7
2 S
o
o)
o
Q
85 9.0 95 10.0 © 85 9.0 95 10.0
Fitted Values Fitted Values

Figure 18: Residual diagnostic plots for robust fit of the linear drift model for coalash data.

Observations (5,6), (8,6) and (6,8) (Indices: 50, 111, 73) are labelled as outliers. Their
robustness weights,
_ WelFi/se(T))

‘ ?Z/se(?l)
— 7; are the regression residuals and se(7;) denote their standard errors — are equal to
~ 0, 0.16 and 0.26, respectively.

Next, we compute the isotropic sample variogram of the lmrob residuals by various (ro-
bust) estimators (e.g. Lark, 2000):

> library(georob)

> plot(sample.variogram(residuals(r.lmrob), locations=coalash[, c("x","y")],

+ lag.dist.def=1, max.lag=10, estimator="matheron"), pch=1, col="black",
main="sample variogram of residuals coalash™x+y")

plot(sample.variogram(residuals(r.lmrob), locations=coalash[, c("x","y")],
lag.dist.def=1, estimator="qn"), pch=2, col="blue", add=TRUE)

plot(sample.variogram(residuals(r.lmrob), locations=coalash[, c("x","y")],
lag.dist.def=1, estimator="ch"), pch=3, col="cyan", add=TRUE)

plot(sample.variogram(residuals(r.lmrob), locations=coalash[, c("x","y")],
lag.dist.def=1, estimator="mad"), pch=4, col="orange", add=TRUE)

legend ("bottomright", pch=1:4, col=c("black", "blue", "cyan", "orange"),
legend=paste(c("method-of-moments", "Qn", "Cressie-Hawkins", "MAD"),
"estimator"), bty="n")

+ 4+ V +V +V +V +

31

sample variogram of residuals coalash~x+y

<
—
o (o]
(\!_ o o o o o (]
— o °
o | X A a A A
D A iy A A X A AN -
S
m - —
= O
<
= ©
€ o
&
<
© O method—of-moments estimator
o A Qn estimator
© Cressie—Hawkins estimator
o | MAD estimator
O T T T T T
0 2 4 6 8

lag distance

Figure 19: (Non-)robustly estimated isotropic sample variogram of robust regression residuals
of coalash data.

Spatial dependence of the residuals is very weak, the outliers clearly distort the method-
of-moment estimate, but the various robust estimates hardly differ.

To check whether drift removal accounted for directional effects we compute the sample
variogram separately for the N-S and W-E directions (only Qn-estimator):

r.sv <- sample.variogram(residuals(r.lmrob), locations=coalash[, c("x","y")],
lag.dist.def=1, max.lag=10, xy.angle.def=c(-0.1, 0.1, 89.9, 90.1),
estimator="qn")

plot(gamma~lag.dist, r.sv, subset=lag.x < l.e-6, xlim=c(0, 10), ylim=c(0, 1.4),
pch=1, col="blue",
main="directional sample variogram of residuals (Qn-estimator)")

points(gamma~lag.dist, r.sv, subset=lag.y < 1.e-6, pch=3, col="orange")

legend("bottomright", pch=c(1, 3), col=c("blue", "orange"),
legend=c("N-S direction", "W-E direction"), bty="n")

+ VV 4+ +V + +V

32

directional sample variogram of residuals (Qn-estimator)

<
-
N
- O
o) o)
o
-] 0 o © © o)
fo)
c |
g © o
£
@ O
O o
<
o
N
o o N-S direction
o | W-E direction
O T T T T T T
0 2 4 6 8 10
lag.dist

Figure 20: Direction-dependent sample variogram of robust regression residuals of coalash data
(Qn-estimate).

There is no indication that residual auto-correlation depends on direction.

4.2 Fitting a spatial linear model robust REML

Based on the results of the exploratory analysis, we fit a model with a linear drift in
the coordinates and an isotropic exponential variogram to the data by robust REML. By
default, georob() uses a scaled and shifted “logistic” ¥.-function

Ye(x) = tanh(z/c)

with a tuning constant ¢ = 2 for robust REML, but the popular Huber function and a
redescending 1-function based on the ¢-distribution are also implemented (see section 5.9):

> r.georob.m0.exp.c2 <- georob(coalash™x+y, coalash, locations="x+y,
+ variogram.model="RMexp", param=c(variance=0.1, nugget=0.9, scale=1))

> summary (r.georob.m0.exp.c2)

Call:georob(formula = coalash ™ x + y, data = coalash, locations = "x +
y, variogram.model = "RMexp", param = c(variance = 0.1, nugget = 0.9,
scale = 1))

Tuning constant: 2
Convergence in 4 function and 1 Jacobian/gradient evaluations
Estimating equations (gradient)

variance nugget scale
Gradient : 7.7017e-06 9.7197e-07 1.3505e-05

33

Predicted latent variable (B):
Min 1Q Median 3Q Max
-0.7757 -0.1906 -0.0242 0.2585 0.8967

Residuals (epsilon):

Min 1Q Median 3Q Max
-2.241 -0.598 -0.056 0.463 6.851
Standardized residuals:

Min 1Q Median 3Q Max
-2.591 -0.690 -0.065 0.543 7.867

Robust REML estimates

Variogram: RMexp

Estimate
variance 0.34
snugget (fixed) 0.00
nugget 0.83
scale 4.75

Fixed effects coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 10.5118 0.5784 18.17 <2e-16 *xx

X -0.1615 0.0499 -3.24 0.0014 *x

y 0.0316 0.0345 0.92 0.3609

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.'" 0.1 ' ' 1

Residual standard error (sqrt(nugget)): 0.914

Robustness weights:
17 weights are "= 1. The remaining 191 ones are summarized as
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.266 0.913 0.964 0.933 0.991 0.999

The diagnostics at the begin of the summary output report that nleqslv() found the roots
of the estimating equations of the variogram parameters (reported numbers are function
values evaluated at the root). The criteria controlling convergence of the root-finding
algorithm can be controlled by the arguments of control.nleqslv(), see section 5.9.

The drift coefficients confirm that there is no clear change of ash content along the N-S
direction. A quadratic drift function does not fit the data any better:

> waldtest (update(r.georob.m0.exp.c2, .7.+I(x"2)+I(y~2)+I(x*y)), r.georob.m0.exp.c2)

Wald test

Model 1: coalash ~ x + y + I(x"2) + I(y"2) + I(x * y)
Model 2: coalash " x + y
Res.Df Df F Pr(>F)
1 202
205 -3 0.1 0.96

We simplify the drift model by dropping y:

34

> r.georob.ml.exp.c2 <- update(r.georob.m0.exp.c2, .~ .-y)

> r.georob.ml.exp.c2

Tuning constant:

Fixed effects coefficients:

2

(Intercept) X
10.949 -0.163
Variogram: RMexp
variance snugget (fixed) nugget
0.241 0.000 0.802

scale
1.706

and plot the robust REML estimate of the variogram along with a robust estimate of the
sample variogram of the robust REML regression residuals:

> plot(r.georob.ml.exp.c2, lag.dist.def=1, max.lag=10, estimator="qn", col="blue")

1.0

semivariance
0.6

0.4

4 6
lag distance

N 4

Figure 21: Robust REML estimate of exponential variogram).

As already seen before, residual auto-correlation is weak.

Next, we check the fit of the model by residual diagnostic plots:

V V V V V V

op <- par(mfrow=c(2,2))

plot(r.georob.ml.
plot(r.georob.ml.
plot(r.georob.ml.
plot(r.georob.ml.
par (op)

exp.
exp.
exp.
exp.

c2,
c2,
c2,
c2,

what="ta")
what="s1")
what="qq.res"); abline(0, 1, lty="dotted")

what="qq.ranef"); abline(0, 1, lty="dotted")

35

Residuals vs. Fitted Scale—Location

500 500

2.0

Residuals
Sqgrt of abs(Residuals)

o] 8
85 90 95 100 105 © 85 90 95 100 105
Fitted values Fitted values
Normal Q-Q residuals Normal Q—-Q random effects
00 500
2
(8]
© ©F 9]
S 5
° IS
g N ed.11 -§
g S E
T o g
3 S
< 15}
(%))
tTl_
Q.-
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Theoretial quantiles Theoretial quantiles

Figure 22: Residual diagnostic plots for robust REML fit of coalash data.

Note that the plot method for class georob displays for what = "ta" or what = "sl" the
regression residuals y; — x(s;)3, for what = "qq.res" the standardized errors &;/se(&;) =
(yi —x(s:)B8 — B(si))/se(€;) and for what = "qq.ranef" the standardized random effects

B(si)/se(B(si))-
The robustness weights of the outliers identified so far are equal to

> round(cbind(coalash[, c("x", "y")1I,
+ rweights=r.georob.ml.exp.c2[["rweights"]]) [c(156, 50, 63, 73, 88, 111, 192),],
+ 2)

X y rweights

15 3 13 0.74
50 5 6 0.26
63 5 19 0.66
73 6 8 0.66
88 7 3 0.60
111 8 6 0.58
192 12 23 0.61

In addition, the observations

36

> sel <- r.georob.ml.exp.c2[["rweights"]] <= 0.8 &

+ '1:nrow(coalash) %in’% c(15, 50, 63, 73, 88, 111, 192)
> round(cbind(coalash[, c("x", "y")],

+ rweights=r.georob.ml.exp.c2[["rweights"]]) [sel,],

+ 2)

X y rweights

20 3 8 0.70
157 10 14 0.73
171 11 10 0.72
173 11 12 0.80

have weights < 0.8. All these outliers are marked in Figure 23 by x:

plot(y™x, coalash, cex=sqrt(abs(residuals(r.georob.ml.exp.c2))),
col=c("blue", NA, "red") [sign(residuals(r.georob.ml.exp.c2))+2], asp=1,
main="estimated errors robust REML", xlab="northing", ylab="easting")
points(y~x, coalash, subset=r.georob.ml.exp.c2[["rweights"]]<=0.8, pch=4); grid()
legend("topleft", pch=1, col=c("blue", "red"), legend=c("< 0", "> 0"), bty="n")

vV V + + V

estimated errors robust REML

Lo |
Nlo <0
o >0 6. ® e O
O OO0 oo o OO
° o o O ¢ O O o o
8— c Oo0Oo0o - 00CO0OO
©o® = 0 0o o O0O0O0OO
O o0 o QO o O o o O o o
o 0 o o « o o O o O o O O
O 0 0 ¢ o O O O O o o
Lloo0O0O¢0000o0
© o O 0O o o o o
@ ® o0 0 o o O o0 0 o
5 00000 0O00OO0ORO
8 O 0O OO0 o O o o O o -
1 o000 :00°:00Q
o OO o0 o0 o 0O -
o®o o0o®-=>0 0 00
e 0 o o o OO o o
oo®0 RO o -
L0 0 c o (Ooo0 O
o 0 0 o0 o ¢« 0O
000®o
00 o0O0O0
o o o
O_
T T T
5 10 15
northing

Figure 23: “Bubble plot” of independent errors £ estimated by robust REML (area of symbols
o« moduli of residuals; x: observation with robustness weights w; < 0.8).

Comparison with Figure 15 reveals that the 5 additional mild outliers were visible in this
plot as well, but were not identified by Cressie’s exploratory analysis.

37

For comparison, we fit the same model by Gaussian REML by setting the tuning constant
of the 1 .-function ¢ > 1000:

> r.georob.ml.exp.c1000 <- update(r.georob.ml.exp.c2, tuning.psi=1000)

> summary (r.georob.ml.exp.c1000)

Call:georob(formula = coalash ~ x, data = coalash, locations = "x +
y, variogram.model = "RMexp", param = c(variance = 0.1, nugget = 0.9,
scale = 1), tuning.psi = 1000)

Tuning constant: 1000

Convergence in 5 function and 5 Jacobian/gradient evaluations

Estimating equations (gradient)

eta scale
Gradient : -1.2256e-02 2.3135e-02

Maximized restricted log-likelihood: -319.51

Predicted latent variable (B):
Min 1Q Median 3Q Max
-0.6332 -0.1703 -0.0198 0.1814 1.3713

Residuals (epsilon):
Min 1Q Median 3Q Max
-2.121 -0.612 -0.107 0.405 6.068

Standardized residuals:
Min 1Q Median 3Q Max
-2.284 -0.658 -0.115 0.434 6.500

Gaussian REML estimates

Variogram: RMexp
Estimate Lower Upper

variance 0.2675 0.0745 0.96
snugget (fixed) 0.0000 NA NA
nugget 1.0225 0.7151 1.46
scale 1.9067 0.3017 12.05

Fixed effects coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.9848 0.3218 34.1 < 2e-16 xx*x
X -0.1629 0.0371 -4.4 1.8e-05 *x*x*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error (sqrt(nugget)): 1.01

Robustness weights:
A1l 208 weights are "= 1.

38

and compare the Gaussian and robust REML estimates of the variogram:

plot(r.georob.ml.exp.c1000, lag.dist.def=1, max.lag=10, estimator="matheron")
plot(r.georob.ml.exp.c2, lag.dist.def=1, max.lag=10, estimator="qgn", add = TRUE,
col="blue")
plot(update(r.georob.ml.exp.c2, subset=-50), lag.dist.def=1, max.lag=10, estimator="qgn",
add = TRUE, col="orange")
legend("bottomright", 1t=1, col=c("black","blue", "orange"),
legend =c("Gaussian REML", "robust REML", "Gaussian REML without outlier (5,6)"), bty="n")

+ V + VvV + Vv VvV

<
e
i /ﬁ/fn ° o °
- [e]
o
Nl © 8 o S 0 8
e
8 37
3
2 ©
E o
[}
%] < |
o
o — Gaussian REML
© — robust REML
o | Gaussian REML without outlier (5,6)
o
0 2 4 6 8

lag distance

Figure 24: Gaussian and robust REML estimate of exponential variogram.

The outliers inflate mostly the nugget effect (by ~ 20 %) and less so the signal variance
and range parameter (by &~ 10 %). When we eliminate the severest outlier at (5,6) then
the Gaussian and robust REML estimates of the variogram hardly differ.

Gaussian REML masks the estimated independent errors (£;) somewhat at the cost of

~

inflated estimates of random effects (B(s;)):

> op <- par(mfrow=c(1,2), cex=5/6)
> plot(residuals(r.georob.ml.exp.c2), residuals(r.georob.ml.exp.c1000),

+ asp = 1, main=expression(paste("Gaussian vs robust ", widehat(epsilon))),

+ xlab=expression(paste("robust ", widehat(epsilon))),

+ ylab=expression(paste("Gaussian ", widehat(epsilon))))

> abline(0, 1, lty="dotted")

> plot(ranef (r.georob.ml.exp.c2), ranef(r.georob.ml.exp.c1000),

+ asp = 1, main=expression(paste("Gaussian vs robust ", italic(widehat(B)))),
+ xlab=expression(paste("robust ", italic(widehat(B)))),

+ ylab=expression(paste("Gaussian ", italic(widehat(B)))))

> abline(0, 1, lty="dotted")

39

. P
Gaussian vs robust € Gaussian vs robust B

o
©- o
o
2.
<t OQQ
w (
& ® & 31
& N I 2
3 =}
© ©
O] 0o
ek ol
- 0
o 7
-2 0 2 4 6 -1.0 -0.5 0.0 0.5 1.0
robust € robust B

Figure 25: Comparison of estimated errors &; and random effects B (si) for Gaussian and robust
REML fit of coalash data.

We compare the Gaussian and robust REML fit by 10-fold cross-validation:

> r.cv.georob.ml.exp.c2 <- cv(r.georob.ml.exp.c2, seed=1)
> r.cv.georob.ml.exp.c1000 <- cv(r.georob.ml.exp.c1000, seed=1)

Warning message:
In cv.georob(r.georob.ml.exp.c2, seed = 1,)
lack of covergence for 1 cross-validation sets

The robustfied estimating equations could not be solved for one cross-valiation subset.
This may happen if the initial guesses of the variogram parameters are too far away
from the root (see section 5.7). Sometimes it helps then to suppress the computation of
robust guesses of the variogram parameters and to use the robust parameter estimates
computed from the whole data set as initial values (see argument initial.param of
control.georob() and section 5.7):

> r.cv.georob.ml.exp.c2 <- cv(r.georob.ml.exp.c2, seed=1,

+ control=control.georob(initial.param=FALSE))
> r.cv.georob.ml.exp.c1l000 <- cv(r.georob.ml.exp.c1000, seed=1)

By default, cv.georob() partitions the data set into 10 geographically compact subsets
of adjacent locations (see argument method of cv.georob() and section 7.3):

> plot(y~x, r.cv.georob.ml.exp.c2$pred, asp=1, col=subset, pch=as.integer(subset))

40

distribution, the Brier score (BS) is smaller and the average predictive distribution Fis
closer to the empirical distribution of the data G (see section 7.3 and Gneiting et al.,
2007, for more details about the interpretation of these plots).

4.3 Computing robust Kriging predictions
4.3.1 Point Kriging

For point Kriging we must first generate a fine-meshed grid of predictions points
(optionally with the covariates for the drift) that is passed as argument newdata
to predict.georob(). newdata can be an customary data.frame, an object of
class SpatialPointsDataFrame, SpatialPixelsDataFrame or SpatialGridDataFrame
or SpatialPoints, SpatialPixels or SpatialGrid, all provided by the package sp. If
newdata is a SpatialPoints, SpatialPixels or a SpatialGrid object then the drift
model may only use the coordinates as covariates (universal Kriging), as we do it here.

coalash.grid <- expand.grid(x=seq(-1, 17, by=0.2),

y=seq(-1, 24, by=0.2))
coordinates(coalash.grid) <- “x+y # convert to SpatialPoints
gridded(coalash.grid) <- TRUE # convert to SpatialPixels
fullgrid(coalash.grid) <- TRUE # convert to SpatialGrid
str(coalash.grid, max=2)

V V. V V + V

Formal class 'SpatialGrid' [package "sp"] with 3 slots
..0 grid :Formal class 'GridTopology' [package "sp"] with 3 slots
..Q@ bbox :num [1:2, 1:2] -1.1 -1.1 17.1 24.1
..— attr(x, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

Computing (robust) plug-in Kriging predictions is then straightforward:

> r.pk.ml.exp.c2 <- predict(r.georob.ml.exp.c2, newdata=coalash.grid)
> r.pk.ml.exp.c1000 <- predict(r.georob.ml.exp.c1000, newdata=coalash.grid)

and plotting the results by the function spplot () of the package sp as well:

pred.rob <- spplot(r.pk.ml.exp.c2, "pred", at=seq(8, 12, by=0.25),
main="robust Kriging prediction", scales=list(draw=TRUE))

pred.gauss <- spplot(r.pk.ml.exp.c1000, "pred", at=seq(8, 12, by=0.25),
main="Gaussian Kriging prediction", scales=list(draw=TRUE))

se.rob <- spplot(r.pk.ml.exp.c2, "se", at=seq(0.35, 0.65, by=0.025),
main="standard error robust Kriging", scales=list(draw=TRUE))

se.gauss <- spplot(r.pk.ml.exp.c1000, "se", at=seq(0.35, 0.65, by=0.025),
main="standard error Gaussian Kriging", scales=list(draw=TRUE))

plot(pred.rob, pos=c(0, 0.5, 0.5, 1), more=TRUE)

plot(pred.gauss, pos=c(0.5, 0.5, 1, 1), more=TRUE)

plot(se.rob, pos=c(0, 0, 0.5, 0.5), more=TRUE)

plot(se.gauss, pos=c(0.5, 0, 1, 0.5), more=FALSE)

VVVYV + YV +V 4+ YV + VvV

44

r.pk.ml.exp.c2$pred) / r.pk.ml.exp.c2$pred * 100
reldiff.pred <- spplot(r.pk.ml.exp.c2, "reldiff.pred", at=-1:7,
main="Gaussian - robust Kriging predictions", scales=list(draw=TRUE))
ratio Kriging variances
r.pk.ml.exp.c2$ratio.msep <- r.pk.ml.exp.c1000$se"2 /
r.pk.ml.exp.c2$se”2 * 100
ratio.msep <- spplot(r.pk.ml.exp.c2, "ratio.msep", at=105:115,
main="ratio of Gaussian to robust Kriging variances",scales=list(draw=TRUE))
plot(reldiff.pred, pos=c(0, 0, 0.5, 1), more=TRUE)
add bubble plot of centred data colored by "robustness" weights
rw <- cut(r.georob.ml.exp.c2$rweights, seq(0.2, 1, by = 0.2))
trellis.focus("panel", 1, 1)
panel.points(coalash$x, coalash$y, lwd=2,
cex=sqrt(abs(coalash$coalash - median((coalash$coalash)))),
col=colorRampPalette(c("yellow", "orange", grey(0.4))) (4) [as.numeric(rw)])
panel.text(rep(17, nlevels(rw)+1), O:nlevels(rw), pos=2, cex=0.8,
labels=c(rev(levels(rw)), "rob. weights"),
col=c(rev(colorRampPalette(c("yellow", "orange", grey(0.4)))(4)), "white"))
trellis.unfocus()
plot(ratio.msep, pos=c(0.5, 0, 1, 1), more=FALSE)

vVV+ +V ++VVVVYV +YV 4+ VYV + vV +

Gaussian - robust Kriging predictions ratio of Gaussian to robust Kriging variances

20

15

10

Figure 29: Relative differences of Gaussian and robust point Kriging predictions (%, left) and
ratio of Gaussian to robust point Kriging variances (%, right). The area of the “bubbles” in
the left panel is proportional to the moduli of centred ash content and their color codes the
“robustness” weights of robust REML.

The Kriging predictions differ by more than + 1 % around observations with robustness
weights < 0.6, and the efficiency of the Gaussian relative to robust Kriging varies between

106-114 %.
4.3.2 Block Kriging

First, we must define the blocks (and the covariates) for which predictions should be
computed. The package georob computes block Kriging predictions for newdata objects
of class SpatialPolygonsDataFrames provided by sp:

46

5 Details about parameter estimation

5.1 Implemented variogram models

Currently, estimation of the parameters of the following models is implemented (see ar-
gument variogram.model of georob()):

"RMaskey", "RMbessel", "RMcauchy", "RMcircular", "RMcubic", "RMdagum",
"RMdampedcos", "RMdewijsian", "RMexp" (default), "RMfbm", "RMgauss",
"RMgencauchy", "RMgenfbm", "RMgengneiting", "RMgneiting", "RM1gd", "RMmatern",
"RMpenta", "RMgexp", "RMspheric", "RMstable", "RMwave", "RMwhittle".

Some of these models have in addition to variance, snugget, nugget and scale further
parameters. Initial values of these parameters (param) and fitting flags (fit.param)
must be passed to georob() by the same names as used by the functions RM... () of
the package RandomFields (see RMmodel()). Use the function param.names() to list
additional parameters of a given variogram.model.

The arguments fit.param and fit.aniso are used to control what variogram and
anisotropy parameters are estimated and which are kept at the constant initial values.
The functions default.fit.param() and default.fit.aniso() set reasonable default
values for these arguments. Note, as an aside, that the function default.aniso() sets
(default) values of the anisotropy parameters for an isotropic variogram.

5.2 Estimating parameters of power function variogram

The intrinsic variogram model RMfbm is over-parametrized when both the variance
(plus possibly snugget) and the scale are estimated. Therefore, to estimate the
parameters of this model, scale must be kept fixed at an arbitrary value by using
fit.param = default.fit.param(scale = FALSE).

5.3 Estimating parameters of geometrically anisotropic vari-
ograms

Subsection 2.1 describes how covariances are modelled in general. Here we describe in
detail how geometrically anisotropic variogram are parametrized:

The matrix A = A(a, fi1, fo;w, d,() (see equation 4) maps an arbitrary point on an
ellipsoidal surface with constant (generalized) covariance in IR?, centred on the origin,
and having lengths of semi-principal axes, p,, p,, Ps, equal to |p,| = «, |py| = f1 o and
Ips| = far, 0 < fo < f1 <1, respectively, onto the surface of the unit ball centred on the
origin. The orientation of the ellipsoid is defined by the three angles w, ¢ and (:

w is the azimuth of p, (= angle between north and the projection of p, onto the z-y-plane,
measured from north to south positive clockwise in degrees),

¢ is 90 degrees minus the altitude of p; (= angle between the zenith and p,, measured
from zenith to nadir positive clockwise in degrees), and

is the angle between p, and the direction of the line, say 1/, defined by the intersection
2
between the z-y-plane and the plane orthogonal to p, running through the origin
(¢ is measured from g’ positive counter-clockwise in degrees).

50

The transformation matrix is given by

1/« 0 0
A=| 0 1/(fia) 0 (C1,C5, C3) (8)
0 0 1/(fr)
where
C] = (sinwsing, — coswcos(— sinw cos ¢sin ¢, cos wsin ¢ — sin w cos ¢ cos ()
C’g = (coswsin ¢, sinw cos (— cosw cos ¢ sin ¢, — sinw sin { — cos w cos ¢ cos ()
C; = (cos¢,sin¢sin(,singcos() 9)

To model geometrically anisotropic variograms in IR? one has to set ¢ = 90 and f, = 1, and
for fi = fo = 1 one obtains the model for isotropic auto-correlation with range parameter
a. Note that for isotropic auto-correlation the software processes data for which d may
exceed 3.

Some additional remarks might be helpful:

e The first semi-principal axis points into the direction with the farthest reaching
auto-correlation, which is described by the range parameter scale («).

e The ranges in the direction of the second and third semi-principal axes are given by
flOé and fQOé, with 0 < f2 < f1 <1.

e The default values for aniso (f; =1, fo = 1) define an isotropic variogram model.

e Valid ranges for the angles characterizing the orientation of the semi-variance ellip-
soid are (in degrees): w [0, 180], ¢ [0, 180], ¢ [-90, 90].

5.4 Estimating variance of micro-scale variation

Simultaneous estimation of the variance of the micro-scale variation (snugget, o), which
appears seemingly as spatially uncorrelated with a given sampling design, and of the vari-
ance (nugget, 72) of the independent errors requires that for some locations s; replicated
observations are available. Locations less or equal than zero.dist apart are thereby
considered as being coincident (see control.georob()).

5.5 Estimating variance parameters by Gaussian (RE)ML

Unlike robust REML, where robustified estimating equations are solved for the variance
parameters nugget (72), variance (0?), and possibly snugget (02), for Gaussian (RE)ML
the variances can be re-parametrized to

e the signal variance 0% = 02 + 02,
e the inverse relative nugget n = 0% /7% and

e the relative auto-correlated signal variance & = 0%/0%.

georob() maximizes then a (restricted) profile log-likelihood that depends only on 7, &,
a, ..., and 0% is estimated by an explicit expression that depends on these parameters
(e.g. Diggle and Ribeiro, 2007, p. 113). This is usually more efficient than maximizing
the (restricted) log-likelihood with respect to the original variance parameters 72, 02 and
o?. georob() chooses the parametrization automatically, but the user can control it by
the argument reparam of the function control.georob().

51

5.6 Constraining estimates of variogram parameters

Parameters of variogram models can vary only within certain bounds (see param.bounds ()
and RMmodel () for allowed ranges). georob() uses three mechanisms to constrain param-
eter estimates to permissible ranges:

1. Parameter transformations: By default, all variance (variance, snugget, nugget),
the range scale and the anisotropy parameters £1 and £2 are log-transformed before
solving the estimating equations or maximizing the restricted log-likelihood and
this warrants that the estimates are always positive (see control.georob() and
section 5.9.4 for detailed explanations how to control parameter transformations).

2. Checking permissible ranges: The additional parameters of the variogram models
such as the smoothness parameter v of the Whittle-Matérn model are forced to stay
in the permissible ranges by signalling an error to nleqslv(), nlminb() or optim()
if the current trial values are invalid. These functions then graciously update the
trial values of the parameters and carry their task on. However, it is clear that such
a procedure likely gets stuck at a point on the boundary of the parameter space and
is therefore just a workaround for avoiding runtime errors due to invalid parameter
values.

3. Exploiting the functionality of nlminb() and optim(): If a spatial model is fitted
non-robustly, then the arguments lower, upper (and method of optim()) can
be used to constrain the parameters (see control.optim() how to pass them to
optim()). For optim() one has to use the arguments method = "L-BFGS-B",
lower = I, upper = u, where | and u are numeric vectors with the lower
and upper bounds of the transformed parameters in the order as they appear in
c(variance, snugget, nugget, scale, ...)[fit.param], aniso[fit.aniso]),
where ... are additional parameters of isotropic variogram models (use
param.names (variogram.model) to display the names and the order of the
additional parameters for variogram.model).

5.7 Computing robust initial estimates of parameters for robust
REML

To solve the robustified estimating equations for B and 3 the following initial estimates
are used:

e B = 0, if this turns out to be infeasible, initial values can be passed to georob ()
by the argument bhat of control.georob().

° B is either estimated robustly by the function lmrob(), rq() or non-robustly by
1m() (see argument initial.fixef of control.georob()).

Finding the roots of the robustified estimating equations of the variogram and anisotropy
parameters is more sensitive to a good choice of initial values than maximizing the Gaus-
sian (restricted) log-likelihood with respect to the same parameters. If the initial values
for param and aniso are not sufficiently close to the roots of the system of nonlinear
equations, then nleqslv() may fail to find them. Setting initial.param = TRUE (see
control.georob()) allows one to find initial values that are often sufficiently close to the
roots so that nleqslv() converges. This is achieved by:

52

1. Initial values of the regression parameters are computed by lmrob() irrespective of
the choice for initial.fixef (see control.georob()).

2. Observations with “robustness weights” of the 1mrob fit, satisfying ¢.(€;/7)/(&;/T) <
min.rweight, are discarded (see control.georob()).

3. The model is fit to the pruned data set by Gaussian REML using optim() or
nlminb().

4. The resulting estimates of the variogram parameters (param, aniso) are used as
initial estimates for the subsequent robust fit of the model by nleqslv().

Note that for step 3 above, initial values of param (and possibly aniso) must be provided
to georob().

5.8 Estimating parameters of “nested” variogram models

As a further option, georob() allows to estimate parameters of so-called “nested” vari-
ogram models. For this one assumes that the signal process Z(s) is the sum of several
independent auto-correlated Gaussian processes By(s)

B(s) = ;; By (s), (10)

each characterized by a parametric variogram function with parameters (a%yk, 0y), see
equation 3. Initial values for nested variogram models are passed to georob() by the
argument variogram.object, which must be a list of length K. The kth component of
variogram.object is itself a list with the mandatory components variogram.model and
param and the optional components fit.param, aniso and fit.aniso. Note that sensible
defaults are used if the optional components are missing. Note further that nugget and
snugget may be specified for all £ model strctures but these variances are summed-up
and assigned to the first model structure (k = 1) and all nugget and snugget are set to
zero for k > 1.

5.9 Controlling georob() by the function control.georob()

All control and tuning parameters except the robustness tuning constant ¢ of the 1).-
function (argument tuning.psi of georob()) are set by the arguments of the function
control.georob(), which generates a list that is passed by the control argument to
georob (). This section describes in some detail how to control georob() by the various
arguments of control.georob().

5.9.1 Gaussian (RE)ML estimation

Gaussian (RE)ML estimates are computed provided tuning.psi > 1000. Use the ar-
gument ml.method to select either "ML" or "REML" (default) and the argument reparam
to control whether the re-parametrized (default TRUE) or the original variogram param-
eters are estimated (see section 5.5). The function used to maximize the (restricted)
log-likelihood is chosen by the argument maximizer (default "nlminb"). Use the argu-
ment nlminb along with the function control.nlminb() (or the argument optim along

93

with control.optim() to pass arguments to nlminb() (or optim()), in particular the
argument rel.tol, which controls convergence. The argument hessian controls whether
confidence intervals of variogram parameters are computed from the observed Fisher infor-
mation based on the asymptotic normal distribution of (RE)ML estimates (default TRUE,
see summary.georob()).

5.9.2 Robust REML estimation

The argument psi.func selects the 1.-function for robust REML. Apart from a shifted
and scaled logistic CDF

te(x) = tanh(z/c)

("logistic", default), the Huber ("huber") or a re-descending .-function based on the
t-distribution ("t.dist")

CZZL'

Velw) = ? + x?

can be used.

The argument initial.fixef chooses the function for computing (robust) initial es-
timates of 3. Possible choices are "lmrob" (default) "rq" and "lm". Use the argu-
ment lmrob along with the function lmrob.control() (or the argument rq along with
the function control.rq() to pass arguments to lmrob() (or rq()). The argument
initial.param controls whether robust initial estimates of the variogram parameters are
computed (default TRUE, see section 5.7).

For given variogram parameters, the estimating equations for 3 and B are solved by
iterated re-weighted least squares (IRWLS). The argument irwls.maxiter sets the max-
imum number of iterations (default 50), and the argument irwls.ftol controls conver-
gence: Convergence is assumed if the largest absolute function value at the current root
is less than irwls.ftol (default 107°). The current estimates B and B are then plugged
into the estimating equations for @ and 72 that are solved in turn by nleqslv(). Use
the argument nleqslv along with the function control.nleqslv() to pass arguments to
nleqgslv(), in particular ftol, which controls convergence for root finding.

5.9.3 Approximation of covariances of fixed and random effects and residuals

The robustified estimating equations of robust REML depend on the covariances of
B. These covariances (and the covariances of B — B ,3 g, €+ B) are approxi-
mated by expressions that in turn depend on the variances of ¢, 1.(¢/7) and the ex-
pectation of ¢.(¢/7) (= 0/0et.(e/7)). The arguments error.family.estimation,
error.family.cov.effects and error.family.cov.residuals of control.georob()
control what parametric distribution for ¢ is used to compute the variances of €, 1.(¢/7)
and the expectation of ¢/.(¢/7) when

e solving the estimating equations (error.family.estimation),
e computing the covariances of B3, Band B-B (error.family.cov.effects) and

e computing the covariances of & = Y — X3 — Band e+ B =Y — X8
(error.family.cov.residuals).

o4

Possible options are: "gaussian" or "long.tailed". In the latter case, the PDF of € is
assumed to be proportional to 1/7 exp(—p.(¢/7)), where 1 () = pL(x).

The logical arguments cov.zzz and full.cov.zzz of control.georob() control what
(co-)variances should be computed by georob(). full.cov.zzz controls whether the full
covariance matrix (TRUE) or only the variances (FALSE) are computed.

TTT (co-)variances of default cov.zzz default full.cov.zzz
bhat B TRUE FALSE

betahat B TRUE -

delta.bhat B-B TRUE TRUE
delta.bhat.betahat B — B and 3 TRUE -

chat G TRUE FALSE

chat.p.bhat e+B FALSE FALSE

5.9.4 Transformations of variogram parameters for (RE)ML estimation

The arguments param.tf, fwd.tf, deriv.fwd.tf, bwd.tf of control.georob() de-
fine the transformations of the variogram parameters for RE(ML) estimation. Im-
plemented are currently "log", "logitl", "logit2", "logit3" (various variants of
logit-transformation, see code of function fwd.transf) and "identity" (= no) trans-
formations. These are the possible values that the many arguments of the function
param.transf () accept (as quoted character strings) and these are the names of the list
components returned by fwd.transf (), dfwd.transf() and bwd.transf (). Additional
transformations can be implemented by:

1. Extending the function definitions by arguments like

fwd.tf = fwd.transf(my.fun = function(x) your transformation),
deriv.fwd.tf = dfwd.transf(my.fun = function(x) your derivative),
bwd.tf = bwd.transf(my.fun = function(x) your back-transformation),

2. Assigning to a given argument of param.transf the name of the new function, e.g.
variance = "my.fun".

Note that the values given for the arguments of param.transf () must match a name of
the functions returned by fwd.transf (), dfwd.transf () and bwd.transf ().

5.9.5 Miscellaneous arguments of control.georob()

control.georob() has the following additional arguments:

bhat initial values for the spatial random effects E, with B = 0 if bhat is equal
to NULL (default).

force.gradient
logical controlling whether the estimating equations or the gradient of
the Gaussian restricted log-likelihood are evaluated even if all variogram
parameters are fixed (default FALSE).

min.condnum positive numeric. Minimum acceptable ratio of smallest to largest singular
value of the model matrix X (default 1.e-12).

95

zero.dist positive numeric equal to the maximum distance, separating two sampling
locations that are still considered as being coincident.

Note that georob() can fit models with rank-deficient model matrices. It uses then the
Moore-Penrose inverse of the matrix X V;}gX to compute the projection matrices A,
and P, (see Kiinsch et al., in prep.).

5.10 Parallelized computations

Parallelized computations shorten computing time for large data sets (n > 1000).
georob() and other functions of the package therefore use on non-windows OS the func-
tion mclapply () (forking, package parallel) and on windows OS the functions parLapply
(socket cluster, package parallel) as well as sfLapply () (socket cluster, package snowfall)
for parallelized computations. The following tasks may be executed in parallel:

1. Simultaneously fitting multiple models by functions cv.georob(),
profilelogLik() (section 7.2), addl.georob(), dropl.georob() and
step.georob() (section 7.1);

2. computing Kriging predictions by predict.georob() (section 6.1);
3. matrix multiplication by function pmm();

4. computing the (generalized) covariance matrix I'y of the data by the (non-exported)
function f.aux.gcr().

For tasks 1 and 2 the functions have an argument ncores to control how many cores should
be used for parallel computations. For tasks 3 and 4 one can use the argument pcmp
of control.georob() along with the function pcmp.control() to control parallelized
computations. The function pcmp.control() has the following arguments:

pmm.ncores number (integer, default 1) of cores used for parallelized matrix multipli-
cation.

gcr.ncores number (integer, default 1) of cores used for parallelized computation of
(generalized) covariance matrix.

max.ncores allowed maximum number of cores (integer, default all cores of a machine)
used for parallelized computations.

f number (integer, default 2) of tasks assigned to each core in parallelized
computations.
sfstop logical controlling whether the SNOW socket cluster is stopped after each

parallelized computations on windows OS (default FALSE).

allow.recursive

logical controlling whether nested parallelized computation should be al-
lowed (default TRUE).

56

http://www.openblas.net/

6 Details about Kriging

6.1 Functionality of predict.georob()

The predict method of class georob computes customary or robust external drift point
or block plug-in Kriging predictions (see equation 7). Data about the prediction targets
are passed as argument newdata to predict.georob(), where newdata can be either an
ordinary data frame, a SpatialPoints-, SpatialPixels-, SpatialGrid or a SpatialPolygons-
DataFrame, a SpatialPoints, SpatialPixels or a SpatialGrid object, all the latter provided
by the package sp. If newdata is a SpatialPoints, SpatialPixels or a SpatialGrid ob-
ject then the drift model may only use the coordinates as covariates (universal Kriging). If
newdata is a SpatialPolygonsDataFrame then block Kriging predictions are computed,
otherwise point Kriging predictions.

6.1.1 Prediction targets

The argument type controls what quantities predict.georob() computes (given here for
a target point s, but the same quantities are also computed for a block):

e "signal": the “signal” Z(s) = x(s)T3 + B(s) of the process (default),
e "response": the observations Y (s) = Z(s) + &(s),
e "trend": the external drift x(s)g3,

e "terms": the model terms. The argument terms can then be used to select the
terms (default all terms) and se.fit controls whether standard errors of the terms
are computed (default TRUE).

6.1.2 Further control

Use the argument control along with the function control.predict.georob() to fur-
ther control what predict.georob() actually does:

Covariance matrices The argument full.covmat of control.predict.georob()
controls whether the full covariance matrices of prediction errors, fitted trend, etc. are
computed (TRUE) or only the vector with their variances (FALSE, default).

Computing auxiliary items for log-normal Kriging Use the argument
extended.output = TRUE of control.predict.georob() to compute all quantities re-
quired for the (approximately) unbiased back-transformation of Kriging predictions of log-
transformed data to the original scale of the measurements by 1gnpp() (see section 6.2).
In more detail, the following items are computed:

e trend: the fitted values, a:(s)TB,

e var.pred: the variances of the Kriging predictions, Vary[Y (s)] or Varé[Z(s)],

e cov.pred.target: the covariances between the predictions and the prediction tar-
gets, CovyY (s),Y (s)] or CovylZ(s), Z(s)],

e var.target: the variances of the prediction targets Vary[Y (s)] or Vary[Z(s)].

o8

Figure 32: Approximation of four blocks By, ..., B4 by a group of 16 pixels PX; ..., PX16. The
original geometry of blocks with the grid of the pixels is shown on the left and the approximation
on the right.

6.1.3 Block Kriging

georob.predict () uses functions of the package constrainedKriging (Hofer and Papritz,
2011) for efficiently computing the required integrals of the covariance function. The target
blocks are approximated for this by sets of rectangular pizels arranged on a regular lattice
(Figure 32). The integrals can then be computed very efficiently because the PDF of the
distance between two points, that are uniformly distributed in two rectangles on a regular
lattice, can be computed by closed-form expressions (Clifford, 2005). Also the PDF of the
distance between a fixed point and a point uniformly distributed in a rectangle is available
in closed form (Hofer and Papritz, 2011). Hence, for a two-dimensional study region, only
1-dimensional integrals of the covariance function must be evaluated numerically instead
of 2- and 4-dimensional integrals (see Hofer and Papritz, 2011, for details).

The arguments pwidth and pheight of control.predict.georob() define the dimension
of the pixel used for the approximation of the blocks, and napp defines how many rep-
etitions of the approximation by randomly placed grid of pixels should be averaged (see
help page of the function preCKrige of package constrainedKriging for more details).

For the time being constrainedKriging does not integrate the following (generalized)
covariances : RMaskey, RMdagum, RMdewijsian, RMfbm and RMgenfbm. Hence, these models
cannot, be used for block Kriging.

6.1.4 Parallelized computations

predict.georob() computes its results in parallel. The parallelization is controlled by
the arguments mmax and ncores of control.predict.georob() (and pcmp along with
the function control.pcmp(), see section 5.10): If there are m items to compute, the
task is split into ceiling(m/mmax) sub-tasks that are then distributed to ncores CPUs.
Evidently, ncores = 1 suppresses parallel execution. By default, the function uses all
available CPUs as returned by detectCores(). Note that if full.covmat is TRUE mmax
must exceed m (and parallel execution is not possible).

6.2 Lognormal Kriging

The function 1gnpp() back-transforms point or block Kriging predictions of a log-
transformed response variable computed by predict.georob(). Alternatively, the

60

function averages log-normal point Kriging predictions for a block and approxi-
mates the mean squared prediction error of the block mean. The items re-
quired for the back-transformation are computed by predict.georob() if the argu-
ment control = control.georob.predict(extended.output = TRUE) is used, see sec-
tion 6.1.

1gnpp() then performs the following three tasks:
6.2.1 Back-transformation of point Kriging predictions of a log-transformed
response

The usual, marginally unbiased back-transformation for log-normal point Kriging is used:

U(s) = exp(Z(s) + 1/2(Var[Z(s)] — Varg[Z(s)])), (11)

CovglU(s) = U(5:),Us;) = Us,)] = gl gl { exp(CovglZ(s:). Z(s;)
~2exp(CovylZ(s:), Z(s))]) + exp(CovylZ(s:), Z(s,))}, (12

where Z and U denote the log- and back-transformed predictions of the signal, and

115(8) = exp(x(s) B + 1/2Var;[Z(s)]). (13)

The expressions for the required covariance terms can be found in the Appendices of Nuss-
baum et al. (2012, 2014). Instead of the signal Z(s), predictions of the log-transformed
response Y (s) or the estimated trend (s)T3 of the log-transformed data can be back-
transformed. The above transformations are used if the object passed as first argument
to 1lgnpp() contains point Kriging predictions and if the argument is.block = FALSE
and the argument all.pred is missing.

6.2.2 Back-transformation of block Kriging predictions of a log-transformed
response

Block Kriging predictions of a log-transformed response variable are back-transformed by
the approximately unbiased transformation proposed by Cressie (2006, Appendix C)

o~

U(A) = exp(Z(A) + 1/2{Vary[Z(s)] + B M (A)B — Vars[Z(A)]}), (14)
Ej{U(4) = U(A))"] = uy(A)*{ exp(Vary|Z(A))) A
—2 exp(Covy[Z(A), Z(A)]) + exp(Varg[Z(A)])} (15)

where Z(A) and U(A) are the log- and back-transformed predictions of the block mean
U(A), respectively, M (A) is the spatial covariance matrix of the covariates

M(A) =1/]A] /A(w(S) —x(A))(z(s) — z(4))" ds (16)

within the block A, where
z(A) = 1/|A|/Am(s) ds (17)

and

61

115(A) = exp(z(A)TB + 1/2Vary[Z(A))). (18)
This back-transformation is based on the assumption that both the point data U(s) and
the block means U(A) follow log-normal laws, which strictly cannot hold. But for small

blocks the assumption works well as the bias and the loss of efficiency caused by this
assumption are small (Cressie, 2006; Hofer et al., 2013).

The above formulae are used by lgnpp() if object contains block Kriging predictions
in the form of a SpatialPolygonsDataFrame. To approximate M (A), one needs the
covariates on a fine grid for the whole study domain in which the blocks lie. The covariates
are passed to 1gnpp () as argument newdata, where newdata can be any spatial data frame
accepted by predict.georob. For evaluating M (A) the geometry of the blocks is taken
from the polygons slot of the SpatialPolygonsDataFrame passed as object to 1gnpp().

6.2.3 Back-transformation and averaging of point Kriging predictions of a
log-transformed response

1gnpp () allows as a further option to back-transform and average point Kriging predic-
tions passed as object to the function (optimal log-normal block Kriging, see Cressie,
2006). One then assumes that the predictions in object refer to points that lie in a single
block. Hence, one uses the approximation

~ 1 ~
A) ~ 174 > U(sy) (19)
$;€EA
to predict the block mean U(A), where K is the number of points in A. The mean squared
error of prediction can be approximated by

~ ~

Bl{U(4) ~ DA ~ 1 ¥ 5 CovglU(s:) = U0, Ulsy) = D(sp). (20)
s;€As;€A
In most instances, the evaluation of the above double sum is not feasible because a large
number of points is used to discretize the block A. 1gnpp() then uses the following
approximations to compute the mean squared error (see Nussbaum et al., 2012, 2014,
Appendices):

e Point prediction results are passed as object to 1gnpp() only for a random sample
of points in A (of size k), for which the evaluation of the above double sum is feasible.

e The prediction results for the complete set of points within the block are passed as
argument all.pred to lgnpp. These results are used to compute U(A).

e The mean squared error is then approximated by

B(U(A) ~ DY)~ 5 X BilU(s) - D(a0)
+K/i((/g__11) D S° CovglU(s;) = Ulsi), Usy) — U(sy)]. (21)

s;€sample s;Esample,s; #s;

62

7 Building models and assessing fitted models

7.1 Model building

Wald tests The waldtest method for class georob can be used to test hypotheses
about the fixed effects of a model. Note that this function uses conditional F- or y*-
tests (Pinheiro and Bates, 2000, section 2.4.2), i.e. it fixes the variogram parameters
at the values of the more general model of each comparison (see help page of function
waldtest () of package Imtest for details).

Besides waldtest.georob() the functions of the package multcomp can be used to test
general linear hypotheses about the fixed effects of the model.

Log-likelihood and AIC The deviance method for class georob returns for Gaussian
(RE)ML fits the residual deviance

(Y — XB)"(FI +Tp) (Y — XB),

and the logLik and extractAIC methods extract for class georob the respective goodness-
of-fit criteria, depending on the argument REML either for ML (default) or REML.

For a robust REML fit the deviance is not defined because there is no robustified log-
likelihood. deviance.georob() then computes (with a warning) the residual deviance of
an equivalent Gaussian model with heteroscedastic nugget effect 72/w, where w are the
“robustness weights”

wi = Ye(&/7)/(&/T).
For robust REML, logLik () and extractAIC() return the respective criteria also for the
equivalent Gaussian model with heteroscedastic nugget effect.

Stepwise selection of covariates The addl and dropl methods for class georob
compute all the single terms that can be added or dropped from the model according to
their scope argument. By default, the variogram parameters are kept fixed at the values
fitted for object. Use the argument fixed = FALSE if the variogram parameters should
be re-estimate afresh for each evaluated term. Then either the variogram parameters
in object$initial.objects (use.fitted.param = FALSE) or the fitted parameters of
object (use.fitted.param = TRUE) are used as initial values.

The step method for class georob! allows even finer control whether the variogram pa-
rameters are kept fixed or re-estimated when evaluating single terms. Two argument of
step.georob() control the behaviour:

fixed.addl.dropl
logical controlling whether the variogram parameters are not ad-
justed when adding or dropping model terms by addl.georob() and
dropl.georob() (default TRUE).

fixed.step logical controlling whether the variogram parameters are not adjusted
after having called addl.georob() and dropl.georob() in a cycle of
step.georob() (default TRUE). For fixed.step = FALSE the parameters
are estimated afresh for the new model that was chosen in the previous
cycle.

!The package georob provides a generic step function and re-defines the function step() of the
package stats as default method.

64

Of course, model building based on AIC is only sound for Gaussian (RE)ML as there is no
log-likelihood for robust REML. For robust REML fits add1.georob(), dropl.georob()
and step.georob() use AIC values evaluated for an equivalent Gaussian model with
heteroscedastic nugget effect, see above, and it is currently not known whether this is a
valid approach for model building.

A last remark: Use the argument ncores to let addl.georob() and dropl.georob()
evaluate single terms in parallel.

7.2 Assessing fitted models
7.2.1 Model diagnostics

The methods required for residual diagnostics (fitted, residuals, rstandard, ranef)
work for objects of class georob (either as default or specific georob method).

Note that the are two kind of residuals: residuals.georob() extracts either the esti-
mated independent errors £(s) or the sum of the latter quantities and the spatial random
effects B(s) (regression residuals). rstandard.georob() does the same but standard-
izes the residuals to unit variance. ranef.georob() extracts B(s) with the option to
standardize them as well (by argument standard).

Diagnostics plots are created by the plot method for class georob: Depending on the
value of the argument type the following plots are created:

e "variogram": the estimated variogram (default),
e "covariance": the estimated covariance function,
e "correlation": the estimated correlation function,

e "scale-location": square root of absolute regression residuals plotted against
fitted values (Scale-Location plot),

e "ta": regression residuals plotted against fitted values (Tukey-Anscombe plot),

e "qq.res": normal QQ plot of standardized errors &,

A

e "qq.ranef": normal QQ plot of standardized random effects B.

7.2.2 Log-likelihood profiles

The function profilelogLik() computes for an array of fixed values of variogram param-
eters the profile log-likelihood by maximizing the (restricted) log-likelihood with respect
to the remaining variogram parameters, the fixed and random effects. Of course, the
maximized profile log-likelihood values are meaningful only for Gaussian (RE)ML fits
(for robust fits the calculated values refer to the equivalent Gaussian model with het-
eroscedastic nugget effect, see above). Use the argument ncores to fit multiple models in
parallel.

profilelogLik() uses the function update to re-estimated the model with partly fixed
variogram parameters. Therefore, any argument accepted by georob() (except data) can
be changed when fitting the model. Some of them (e.g. verbose) are explicit arguments
of profilelogLik, but also the remaining ones can be passed by ... to the function.

65

profilelogLik() returns its results as a data frame. Customary graphics functions can
be used for display of log-likelihood profiles and dependence of estimated parameters on
each other.

7.3 Cross-validation
7.3.1 Computing cross-validation predictions

The function cv.georob() assesses the goodness-of-fit of a spatial linear model by K-fold
cross-validation. In more detail, the model is fitted K times by robust (or Gaussian)
(RE)ML, excluding each time 1/Kth of the data. The fitted models are used to compute
robust (or customary) external Kriging predictions for the omitted observations. If the
response variable is log-transformed then the Kriging predictions can be optionally trans-
formed back to the original scale of the measurements. Use the argument 1gn = TRUE for
this.

Practitioners in geostatistics commonly cross-validate a fitted model without re-estimating
the model parameters with the reduced data sets. This is clearly an unsound practice
(Hastie et al., 2009, section 7.10). Therefore, the argument re.estimate should always
be set to TRUE. The alternative is provided only for historic reasons. The argument
return.fit and reduced.output control whether results of the model fit are returned
by cv.georob().

By default, cv.georob() fits the models in parallel to the cross-validation sets. Use the
argument ncores to control parallelized computations.

Defining the cross-validation subsets The argument method controls how the data
set is partitioned into the K subsets: For method = "block" (default) the function
kmeans () is used to form geographically compact subsets of data locations and for
method = "random" simple random sampling is used to form the subsets. In analogy
to the block bootstrap in time series analysis (Kiinsch, 1989), the first method should
be preferred for model assessment, while the latter might be more informative for as-
sessing prediction precision. Instead of using method (along with the argument seed) to
form the subsets, the argument sets can be used to pass the definition of a partition to
cv.georob().

Irrespective of the method used to define the subsets, coincident sampling lo-
cations are assigned to the same subset, except when one uses the argument
duplicate.in.same.set = FALSE.

Further control When the external drift model contains factors it may happen that
observations are missing for some factor levels in some of the subsets. The argument
mfl.action controls what then happens: For mfl.action = "stop" cv.georob() stops
with an error message. For mfl.action = "offset" the effect of the respective factor
(estimated with all the data) is treated as an offset term and cv.georob() estimates
only the remaining terms of the external drift model.

cv.georob() uses the function update() to re-estimated the model with the subsets.
Therefore, any argument accepted by georob() except data can be changed when re-
fitting the model. Some of them (e.g. formula, subset, etc.) are explicit arguments of
cv.georob(), but also the remaining ones can be passed by ... to the function.

66

Sometimes, the estimated variograms differ considerably between the cross-validation sub-
sets. Using common initial values for estimating the model is then numerically inefficient.
Therefore, the arguments param and aniso accept in addition to vectors of initial var-
iogram parameters matrices with K rows of initial values. The ith row of the matrix
then contains the initial variogram parameters that are used to fit the model to the ith
cross-validation subset.

7.3.2 Criteria for assessing (cross-)validation prediction errors

The function validate.predictions() computes the items required to evaluate (and
plot) the diagnostic criteria proposed by Gneiting et al. (2007) for assessing the calibration
and the sharpness of probabilistic predictions of (cross-)validation data. To this aim,
validate.predictions() uses the assumption that the prediction errors Y (s) — Y (s)
follow normal distributions with zero mean and standard deviations equal to the Kriging
standard errors. This assumption is an approximation if the errors € come from a long-
tailed distribution. Furthermore, for the time being, the Kriging variance of the response
Y is approximated by adding the estimated nugget 72 to the Kriging variance of the signal
7. 'This approximation likely underestimates the mean squared prediction error of the
response if the errors come from a long-tailed distribution. Hence, for robust Kriging, the
standard errors of the (cross-)validation errors are likely too small.

Notwithstanding these difficulties and imperfections, validate.predictions () computes

e the probability integral transform (PIT),

PIT, = Fi(y,), (24)

where F;(y;) denotes the (plug-in) predictive CDF evaluated at y;, the value of the
ith (cross-)validation datum,

e the average predictive CDF

F.(y) =1/n)_ Fi(y), (25)

where n is the number of (cross-)validation observations and the F; are evaluated
at N quantiles equal to the set of distinct y; (or a subset of size N of them),

e the Brier Score

n

BS(y) = 1/nY_ (Fi(y) — I(y: < v))*, (26)

=1

where I(x) is the indicator function for the event z, and the Brier score is again
evaluated at the unique values of the (cross-)validation observations (or a subset of
size N of them),

e the averaged continuous ranked probability score, CRPS, a strictly proper scoring
criterion to rank predictions, which is related to the Brier score by

CRPS — / " BS(y) dy. (27)

—00

67

Gneiting et al. (2007) proposed the following plots to validate probabilistic predictions:

e A histogram (or a plot of the empirical CDF) of the PIT values. For ideal predictions,
with observed coverages of prediction intervals matching nominal coverages, the PIT
values have an uniform distribution.

e Plots of F,(y) and of the empirical CDF of the data, say G,(y), and of their dif-
ference, ,(y) — Gn(y) vs. y. The forecasts are said to be marginally calibrated if
F,(y) and G, (y) match.

e A plot of BS(y) vs. y. Probabilistic predictions are said to be sharp if the area
under this curve, which equals CRPS, is minimized.

The plot () method for class cv.georob allows to create these plots, along with scatter-
plots of observations and predictions, Tukey-Anscombe and normal QQ plots of the stan-
dardized prediction errors, and summary.cv.georob() computes the mean and dispersion
statistics of the (standardized) (cross-)validation prediction errors.

References

Bivand, R. S., Pebesma, E. J., and Gémez-Rubio, V. (2013). Applied Spatial Data Analysis
with R. Springer, New York, second edition.

Clifford, D. (2005). Computation of spatial covariance matrices. Journal of Computational
and Graphical Statistics, 14(1), 155-167.

Cressie, N. (2006). Block kriging for lognormal spatial processes. Mathematical Geology,
38(4), 413-443.

Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons, New York,
revised edition.

Diggle, P. J. and Ribeiro, Jr., P. J. (2007). Model-based Geostatistics. Springer, New
York.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calibration
and sharpness. Journal of the Royal Statistical Society Series B, 69(2), 243—-268.

Gomez, M. and Hazen, K. (1970). Evaluating sulfur and ash distribution in coal
seams by statistical response surface regression analysis. Report of investigations
7377, United States Department of the Interior, Bureau of Mines, [Washington, D.C.].
http://hdl.handle.net /2027 /mdp.39015078532879.

Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation
and to related problems. Journal of the American Statistical Association, 72, 320-340.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning;
Data Mining, Inference and Prediction. Springer, New York, second edition.

Hofer, C. and Papritz, A. (2011). constrainedKriging: An R-package for customary,
constrained and covariance-matching constrained point or block kriging. Computers €
Geosciences, 37(10), 1562-1569.

68

Hofer, C., Borer, F., Bono, R., Kayser, A., and Papritz, A. (2013). Predicting topsoil heavy
metal content of parcels of land: An empirical validation of customary and constrained
lognormal block kriging and conditional simulations. Geoderma, 193—194, 200-212.

Kiinsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations.
The Annals of Statistics, 17(3), 1217-1241.

Kiinsch, H. R., Papritz, A., Schwierz, C., and Stahel, W. A. (2011). Robust estimation of
the external drift and the variogram of spatial data. Proceedings of the ISI 58th World
Statistics Congress of the International Statistical Institute.

Kiinsch, H. R., Papritz, A., Schwierz, C., and Stahel, W. A. (in prep.). Robust geostatis-
tics.

Lark, R. M. (2000). A comparison of some robust estimators of the variogram for use in
soil survey. Furopean Journal of Soil Science, 51, 137-157.

Maronna, R. A., Martin, R. D., and Yohai, V. J. (2006). Robust Statistics Theory and
Methods. John Wiley & Sons, Chichester.

Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L. (2012). Organic carbon
stocks of swiss forest soils. Final report, Institute of Terrestrial Ecosystems, ETH Ziirich
and Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Ziirich
and Birmensdorf. http://e-collection.library.ethz.ch/eserv/eth:6027/eth-6027-01.pdf.

Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L. (2014). Estimating soil
organic carbon stocks of swiss forest soils by robust external-drift kriging. Geoscientific
Model Development, 7(3), 1197-1210.

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers &
Geosciences, 30, 683-691.

Pinheiro, J. C. and Bates, D. M. (2000). Mized-Effects Models in S and S-PLUS. Springer
Verlag.

69

	1 Summary
	2 Introduction
	2.1 Model
	2.2 Estimation
	2.3 Prediction
	2.4 Functionality

	3 Model-based Gaussian analysis of zinc, data set meuse
	3.1 Exploratory analysis
	3.2 Fitting a spatial linear model by Gaussian (RE)ML
	3.3 Computing Kriging predictions
	3.3.1 Lognormal point Kriging
	3.3.2 Lognormal block Kriging

	4 Robust analysis of coalash data
	4.1 Exploratory analysis
	4.2 Fitting a spatial linear model robust REML
	4.3 Computing robust Kriging predictions
	4.3.1 Point Kriging
	4.3.2 Block Kriging

	5 Details about parameter estimation
	5.1 Implemented variogram models
	5.2 Estimating parameters of power function variogram
	5.3 Estimating parameters of geometrically anisotropic variograms
	5.4 Estimating variance of micro-scale variation
	5.5 Estimating variance parameters by Gaussian (RE)ML
	5.6 Constraining estimates of variogram parameters
	5.7 Computing robust initial estimates of parameters for robust REML
	5.8 Estimating parameters of ``nested'' variogram models
	5.9 Controlling georob() by the function control.georob()
	5.9.1 Gaussian (RE)ML estimation
	5.9.2 Robust REML estimation
	5.9.3 Approximation of covariances of fixed and random effects and residuals
	5.9.4 Transformations of variogram parameters for (RE)ML estimation
	5.9.5 Miscellaneous arguments of control.georob()

	5.10 Parallelized computations

	6 Details about Kriging
	6.1 Functionality of predict.georob()
	6.1.1 Prediction targets
	6.1.2 Further control
	6.1.3 Block Kriging
	6.1.4 Parallelized computations

	6.2 Lognormal Kriging
	6.2.1 Back-transformation of point Kriging predictions of a log-transformed response
	6.2.2 Back-transformation of block Kriging predictions of a log-transformed response
	6.2.3 Back-transformation and averaging of point Kriging predictions of a log-transformed response

	7 Building models and assessing fitted models
	7.1 Model building
	7.2 Assessing fitted models
	7.2.1 Model diagnostics
	7.2.2 Log-likelihood profiles

	7.3 Cross-validation
	7.3.1 Computing cross-validation predictions
	7.3.2 Criteria for assessing (cross-)validation prediction errors

